Đề thi chọn đội tuyển học sinh giỏi Toán lớp 12 năm 2011 - 2012 Đề thi học sinh giỏi Toán

  • Đánh giá:
    ( 3 ★ | 1 Đánh giá )
  • Phát hành:
  • Sử dụng: Miễn phí
  • Dung lượng: 358 KB
  • Lượt tải: 648
  • Ngày cập nhật:

Giới thiệu

Vndoc.com xin giới thiệu đến các bạn: Đề thi chọn đội tuyển học sinh giỏi Toán lớp 12 năm 2011 - 2012.

Đề thi môn Toán:

SỞ GIÁO DỤC VÀ ĐÀO TẠO
THÀNH PHỐ HỒ CHÍ MINH

 KỲ THI CHỌN ĐỘI TUYỂN HỌC SINH GIỎI
LỚP 12 NĂM HỌC 2011 - 2012
MÔN THI: TOÁN
Ngày thi thứ nhất: 19 - 10 - 2011
Thời gian làm bài: 180 phút

ĐỀ CHÍNH THỨC

Bài 1: (4 điểm)
Giải hệ phương trình sau:

Bài 2: (4 điểm)
Cho hai đường tròn và cắt nhau tại A và B. Trên tia đối của tia AB lấy điểm M. Cát tuyến qua B cắt (O1) và (O2) lần lượt tại C và D (B nằm giữa C và D). Đường thẳng MC cắt (O1) tại P khác C. Đường thẳng MD cắt (O2) tại Q khác D. Gọi O là tâm đường tròn ngoại tiếp tam giác ACD, E là giao điểm của PB và AC, F là giao điểm của QB và AD. Chứng minh rằng MO vuông góc với EF .

Bài 3: (4 điểm)
Cho a, b, c là các số thực dương, chứng minh rằng:

Bài 4: (4 điểm)
Cho đa thức P(x) = x2012 - mx2010 + m (m#0). Giả sử P(x) có đủ 2012 nghiệm thực. Chứng minh rằng trong các nghiệm của P(x) có ít nhất một nghiệm x0 thoả mãn |x0| < căn bậc 2 của 2

Bài 5: (4 điểm)
Cho các số nguyên x, y. Biết rằng: x2 – 2xy + y2 – 5x + 7y và x2 – 3xy + 2y2 + x – y đều chia hết cho 17.
Chứng minh rằng: xy – 12x + 15y chia hết cho 17.

Nội dung trên chỉ thể hiện một phần hoặc nhiều phần trích dẫn. Để có đầy đủ, chi tiết và đúng định dạng, bạn vui lòng tải về Đề thi chọn đội tuyển học sinh giỏi Toán lớp 12 năm 2011 - 2012 để xem.

Ứng dụng hay

Xem thêm Tài liệu học tập lớp 12