Đề thi học sinh giỏi lớp 9 THCS tỉnh Hải Dương năm 2014 Môn: Toán - có đáp án

  • Đánh giá:
    ( 2 ★ | 2 Đánh giá )
  • Phát hành:
  • Sử dụng: Miễn phí
  • Dung lượng: 310 KB
  • Lượt tải: 1.536
  • Ngày cập nhật:

Giới thiệu

SỞ GIÁO DỤC & ĐÀO TẠO
HẢI DƯƠNG

ĐỀ THI CHÍNH THỨC

KÌ THI CHỌN HỌC SINH GIỎI TỈNH
LỚP 9 NĂM HỌC 2013-2014

MÔN THI: TOÁN
Thời gian làm bài: 150 phút
Ngày thi 20 tháng 03 năm 2014

Câu 1 (2 điểm).

a) Rút gọn biểu thức với Đề thi học sinh giỏi lớp 9 THCS tỉnh Hải Dương năm 2014

b) Cho a và b là các số thỏa mãn a > b > 0 và a3 - a2b + ab2 - 6b3 = 0.

Tính giá trị của biểu thức Đề thi học sinh giỏi lớp 9 THCS tỉnh Hải Dương năm 2014

Câu 2 (2 điểm).

a) Giải phương trình Đề thi học sinh giỏi lớp 9 THCS tỉnh Hải Dương năm 2014

b) Giải hệ phương trình Đề thi học sinh giỏi lớp 9 THCS tỉnh Hải Dương năm 2014

Câu 3 (2 điểm).

a) Tìm các số nguyên dương x, y thỏa mãn phương trình xy2 + 2xy + x = 32y.

b) Cho hai số tự nhiên a, b thỏa mãn 2a2 + a = 3b2 + b.

Chứng minh rằng 2a + 2b + 1 là số chính phương.

Câu 4 (3 điểm).

Cho tam giác đều ABC nội tiếp đường tròn (O, R). H là một điểm di động trên đoạn OA (H khác A). Đường thẳng đi qua H và vuông góc với OA cắt cung nhỏ AB tại M. Gọi K là hình chiếu của M trên OB.

a) Chứng minh góc HKM = 2AMH.

b) Các tiếp tuyến của (O, R) tại A và B cắt tiếp tuyến tại M của (O, R) lần lượt tại D và E. OD, OE cắt AB lần lượt tại F và G. Chứng minh OD.GF = OG.DE.

c) Tìm giá trị lớn nhất của chu vi tam giác MAB theo R.

Câu 5 (1 điểm).

Cho a, b, c là các số thực dương thỏa mãn 2ab + 6bc + 2ac = 7abc. Tìm giá trị nhỏ nhất của biểu thức:

Đề thi học sinh giỏi lớp 9 THCS tỉnh Hải Dương năm 2014

Nội dung trên chỉ thể hiện một phần hoặc nhiều phần trích dẫn. Để có đầy đủ, chi tiết và đúng định dạng, bạn vui lòng tải về Đề thi học sinh giỏi lớp 9 THCS tỉnh Hải Dương năm 2014 để xem.

Ứng dụng hay

Xem thêm Tài liệu học tập lớp 9