Bài toán về tạo lập số tự nhiên

5 7.570

Bài toán về tạo lập số tự nhiên

Ở bậc tiểu học, các em đã làm quen với các dạng toán tạo lập số. Nhằm giúp các em học tốt môn toán, VnDoc.com xin giới thiệu bài toán về tạo lập số tự nhiên. Tài liệu này giúp các em vận dụng các phương pháp thích hợp để giải bài toán về lập các số từ các chữ số cho trước. Mời các bạn tham khảo.

120 bài Toán luyện thi Violympic lớp 5

Bài toán thêm, bớt một chữ số bên trái một số

Bài toán giải bằng phương pháp thử chọn

LẬP SỐ
CÁC SỐ TỰ NHIÊN

Các bài tập về lập số các số tự nhiên thường ta căn cứ vào cấu tạo số tự nhiên để lập các số theo yêu cầu của đề bài. Nên chú ý lập số theo một thứ tự nhất định, như: từ nhỏ đến lớn hoặc ngược lại từ lớn đến nhỏ như thế sẽ ít bị sai sót hơn.

CÁCH 1: Liệt kê

Ví dụ 1: Cho 3 chữ số 1; 2; 3. Lập được tất cả bao nhiêu số tự nhiên có 3 chữ số?

Bài giải:

Các số tự nhiên có 3 chữ số được viết từ 3 chữ số: 1; 2; 3 là:

111; 112; 113; 121; 122; 123; 131; 132; 133

211; 212; 213; 221; 222; 223; 231; 232; 233

311; 312; 313; 321; 322; 323; 331; 332; 333

Có tất cả 27 số.

Ví dụ 2: Cho 3 chữ số 1; 2; 3. Lập được tất cả bao nhiêu số tự nhiên có 3 chữ số khác nhau?

Bài giải:

Các số tự nhiên có 3 chữ số khác nhau được viết từ 3 chữ số: 1; 2; 3 là:

123; 132; 213; 231; 312; 321.

Có tất cả 6 số.

Ví dụ 3: Cho 4 chữ số 0; 1; 2; 3. Lập được tất cả bao nhiêu số tự nhiên có 3 chữ số khác nhau?

Bài giải:

Các số tự nhiên có 3 chữ số khác nhau được viết từ 4 chữ số: 0; 1; 2; 3 là:

102; 103; 120; 123; 130; 132

201; 203; 210; 213; 230; 231

301; 302; 310; 312; 320; 321

Có tất cả 18 số.

CÁCH 2:

Qua 3 ví dụ trên, ta thấy ở bài tập nêu ra có số lượng chữ số cho trước gồm những chữ số cụ thể và yêu cầu của số cần lập là như thế nào? Ta có cách tìm số lượng các số được lập mà không cần phải liệt kê, như sau:

Ví dụ 1: Cho 3 chữ số 1; 2; 3. Lập được tất cả bao nhiêu số tự nhiên có 3 chữ số?

Ở bài tập này đề bài cho ta 3 chữ số là 1; 2; 3. Yêu cầu ta lập các số có 3 chữ số mà số có 3 chữ số gồm có: hàng trăm, hàng chục và hàng đơn vị.

Bài giải:

Với 3 chữ số: 1; 2; 3.

- Hàng trăm có 3 lựa chọn.

- Hàng chục có 3 lựa chọn.

- Hàng đơn vị có 3 lựa chọn.

Số lượng số có 3 chữ số lập được là: 3 x 3 x 3 = 27 (số)

Ví dụ 2: Cho 3 chữ số 1; 2; 3. Lập được tất cả bao nhiêu số tự nhiên có 3 chữ số khác nhau?

Ở bài này khác với bài 1 là lập số có 3 chữ số khác nhau nên nếu đã chọn hàng trăm rồi thì không được chọn ở hàng chục và hàng đơn vị.

Bài giải:

Với 3 chữ số: 1; 2; 3.

- Hàng trăm có 3 lựa chọn.

- Hàng chục có 2 lựa chọn.

- Hàng đơn vị có 1 lựa chọn.

Số lượng số có 3 chữ số lập được là: 3 x 2 x 1 = 6 (số)

Ví dụ 3: Cho 4 chữ số 0; 1; 2; 3. Lập được tất cả bao nhiêu số tự nhiên có 3 chữ số khác nhau?

Ở bài này, các số cho trước có chữ số 0. Chữ số 0 không được đặt ở hàng cao nhất với số tự nhiên (số có 3 chữ số không thể là 023).

Bài giải:

Với 4 chữ số: 0; 1; 2; 3.

- Hàng trăm có 3 lựa chọn. (không được chọn chữ số 0).

- Hàng chục có 3 lựa chọn.

- Hàng đơn vị có 2 lựa chọn.

Số lượng số có 3 chữ số lập được là: 3 x 3 x 2 = 18 (số)

CÁCH 3: Sơ đồ HÌNH CÂY

Lập sơ đồ HÌNH CÂY chính là cụ thể của cách 2 giúp học sinh hiểu và liệt kê ra các số một cách tương đối chính xác hơn, dễ kiểm tra và tránh được những sai sót khi lập số.

Ví dụ 1: Cho 3 chữ số 1; 2; 3. Lập được tất cả bao nhiêu số tự nhiên có 3 chữ số?

Ở bài này ta lập sơ đồ như sau:

Nhìn qua sơ đồ ta thấy có 3 cách lựa chọn ở hàng trăm (1;2;3), mỗi cách lựa chọn hàng trăm có 3 cách lựa chọn ở hàng chục (1;2;3), mỗi cách lựa chọn hàng chục có 3 cách lựa chọn ở hàng đơn vị (1;2;3).

Như vậy có tất cả: 3 x 3 x 3 = 27 (số)

Ví dụ 2: Cho 3 chữ số 1; 2; 3. Lập được tất cả bao nhiêu số tự nhiên có 3 chữ số khác nhau?

Ta có sơ đồ:

Có tất cả 6 số.

Ví dụ 3: Cho 4 chữ số 0; 1; 2; 3. Lập được tất cả bao nhiêu số tự nhiên có 3 chữ số khác nhau?

Ta có sơ đồ:

Đánh giá bài viết
5 7.570
Lớp 5 Xem thêm