Các trường hợp đồng dạng của tam giác vuông

Chuyên đề Toán học lớp 8: Các trường hợp đồng dạng của tam giác vuông được VnDoc sưu tầm và giới thiệu tới các bạn học sinh cùng quý thầy cô tham khảo. Nội dung tài liệu sẽ giúp các bạn học sinh học tốt môn Toán học lớp 8 hiệu quả hơn. Mời các bạn tham khảo.

Chuyên đề: Các trường hợp đồng dạng của tam giác vuông

A. Lý thuyết

1. Áp dụng các trường hợp đồng dạng của tam giác vào tam giác vuông

Hai tam giác vuông đồng dạng với nhau nếu:

+ Tam giác vuông này có một góc nhọn bằng góc nhọn của tam giác vuông kia.

+ Tam giác vuông này có hai cạnh góc vuông tỉ lệ với hai cạnh góc vuông của tam giác vuông kia.

2. Dấu hiệu đặc biệt nhận biết hai tam vuông đồng dạng

Định lý 1: Nếu cạnh huyền và một cạnh góc vuông của tam giác vuông này tỉ lệ với cạnh huyền và cạnh góc vuông của tam giác vuông kia thì hai tam giác vuông đó đồng dạng với nhau.

Tổng quát: Δ ABC,Δ A'B'C', Aˆ = A'ˆ = 900; B'C'/BC = A'B'/AB

\Rightarrow Δ ABC ∈ Δ A'B'C'.

3. Tỉ số hai đường cao, tỉ số diện tích của hai tam giác đồng dạng

Định lý 2: Tỉ số hai đường cao tương ứng của hai tam giác đồng dạng bằng tỉ số đồng dạng.

Lý thuyết: Các trường hợp đồng dạng của tam giác vuông

Định lý 3: Tỉ số diện tích hai tam giác đồng dạng bằng bình phương tỉ số đồng dạng.

Lý thuyết: Các trường hợp đồng dạng của tam giác vuông

4. Mở rộng

Nếu hai tam giác đồng dạng với nhau thì:

+ Tỉ số hai đường cao tương ứng bằng tỉ số đồng dạng.

+ Tỉ số hai đường phân giác tương ứng bằng tỉ số đồng dạng.

+ Tỉ số hai đường trung tuyến tương ứng bằng tỉ số đồng dạng.

+ Tỉ số các chu vi bằng tỉ số đồng dạng.

+ Tỉ số các diện tích bằng bình phương tỉ số đồng dạng.

Ví dụ: Cho tam giác đồng dạng với tam giác ABC theo tỉ số k = 4/3. Tính chu vi của tam giác ABC, biết chu vi của tam giác A'B'C' bằng 27cm.

Hướng dẫn:

Ta có Δ ABC ∈ Δ A'B'C'

Lý thuyết: Các trường hợp đồng dạng của tam giác vuông

B. Trắc nghiệm & Tự luận

I. Bài tập trắc nghiệm

Bài 1: Cho tam giác vuông ABC vuông tại A, chân đường cao AH của tam giác ABC chia cạnh huyền BC thành hai đoạn thẳng BH = 4cm, HC = 9cm. Tính diện tích tam giác ABC?

A. SABC = 39cm2 B. SABC = 36cm2 C. SABC = 78cm2 D. SABC = 18cm2

Áp dụng hệ thức lượng trong tam giác ABC vuông tại A

Ta có:Bài tập: Các trường hợp đồng dạng của tam giác vuông

Vậy SABC = 1/2AB.AC = 1/2.2√(13) .3√(13) = 39( cm2 )

Chọn đáp án A.

Bài 2: Cho Δ ABC và Δ MNP có Aˆ = Mˆ = 900, AB/MN = BC/NP thì?

A. Δ ABC ∼ Δ PMN

B. Δ ABC ∼ Δ NMP

C. Δ ABC ∼ Δ MNP

D. Δ ABC ∼ Δ MPN

Ta có:Bài tập: Các trường hợp đồng dạng của tam giác vuông

⇒ Δ ABC ∼ Δ MNP (c - g - c)

Chọn đáp án D.

Bài 3: Nếu hai tam giác đồng dạng với nhau thì: Chọn phát biểu sai trong các phát biểu sau?

A. Tỉ số hai đường cao tương ứng bằng tỉ số đồng dạng.

B. Tỉ số hai đường phân giác tương ứng bằng tỉ số đồng dạng.

C. Tỉ số hai đường trung tuyến tương ứng bằng tỉ số đồng dạng.

D. Tỉ số các chu vi bằng 2 lần tỉ số đồng dạng.

Áp dụng tính chất mở rộng

Nếu hai tam giác đồng dạng với nhau thì:

+ Tỉ số hai đường cao tương ứng bằng tỉ số đồng dạng.

+ Tỉ số hai đường phân giác tương ứng bằng tỉ số đồng dạng.

+ Tỉ số hai đường trung tuyến tương ứng bằng tỉ số đồng dạng.

+ Tỉ số các chu vi bằng tỉ số đồng dạng.

Đáp án D sai.

Chọn đáp án D.

Bài 4: Cho hai tam giác ABC và DEF có Aˆ = Dˆ = 900 ,AB = 3cm, BC = 5cm,EF = 10cm, DF = 6cm. Chọn phát biểu đúng trong các phát biểu sau?

A. Δ ABC ∼ Δ DEF B. Δ ABC ∼ Δ EDF

C. Δ ABC ∼ Δ DFE D. Δ ABC ∼ Δ FDE

Ta có:Bài tập: Các trường hợp đồng dạng của tam giác vuông

⇒ Δ ABC ∼ Δ DFE ( c - g - c )

Chọn đáp án C.

II. Bài tập tự luận

Bài 1: Cho hình bên là tam giác ABC vuông tại A, đường cao AH

a) Trong hình bên có bao nhiêu cặp tam giác đồng dạng với nhau. Hãy chỉ ra các cặp đồng dạng và theo các đỉnh tương ứng.

b) Cho biết AB = 5cm, AC = 12cm. Tinh độ dài các đoạn thẳng BC, AH, BH và CH.

Bài tập: Các trường hợp đồng dạng của tam giác vuông

Hướng dẫn:

a) Trong hình bên có 3 cặp tam giác đồng dạng là BHA và BAC; CHA và CAB; HAB và HCA.

b) Áp dụng định lý Py – ta – go vào tam giác ABC vuông tại A ta có:

BC2 = CA2 + AB2 ⇒ BC2 = 122 + 52 = 132 ⇔ BC = 13 cm

Vì SABC = 1/2AB.AC = 1/2AH.BC ⇒ AH.BC = AB.AC

Hay 12.5 = AH.13 ⇒ AH = 60/13 cm

Từ câu a ta có: Δ BHA ∼ Δ BAC ⇒ BH/BA = BA/BC hay BH/5 = 5/13 ⇔ BH = 25/13 cm

Do đó: CH = BC - BH = 13 - 25/13 = 144/13 cm

Bài 2: Chân đường cao AH chia cạnh huyền BC thành hai đoạn thẳng có độ dài lần lượt là 25 cm và 36 cm. Tính chu vi và diện tích của tam giác đó.

Bài tập: Các trường hợp đồng dạng của tam giác vuông

Hướng dẫn:

Ta có: Δ AHB ∼ Δ CHA ⇒ AH/HC = HB/HA

Hay HA/36 = 25/HA ⇔ HA2 = 302 ⇒ HA = 30 cm

Ta có: SABC = 1/2AH.BC = 1/2.30.61 = 915 cm2

Áp dụng định lý Py – ta –go ta được:

Bài tập: Các trường hợp đồng dạng của tam giác vuông

Trên đây VnDoc đã giới thiệu tới các bạn lý thuyết môn Toán học 8: Các trường hợp đồng dạng của tam giác vuông. Để có kết quả cao hơn trong học tập, VnDoc xin giới thiệu tới các bạn học sinh tài liệu Chuyên đề Toán học 8, Giải bài tập Toán lớp 8, Giải VBT Toán lớp 8VnDoc tổng hợp và giới thiệu tới các bạn đọc

Đánh giá bài viết
3 1.331
0 Bình luận
Sắp xếp theo
Chuyên đề Toán 8 Xem thêm