Đề KSCL học kì 2 lớp 9 môn Toán trường THCS Tân Viên, An Lão năm học 2017 - 2018

1 213
VnDoc - Tải tài liệu, văn bản pháp luật, biểu mẫu miễn phí
VnDoc - Tải tài liệu, văn bản pháp luật, biểu mẫu miễn phí
UBND
UBND
HUY
HUY
N
N
AN
AN
L
L
Ã
Ã
O
O
TRƯỜNG THCS TÂN VIÊN
ĐỀ
ĐỀ
THI
THI
KSCL
KSCL
H
H
C
C
K
K
Ì
Ì
II
II
N
N
Ă
Ă
M
M
H
H
C
C
2017-2018
2017-2018
MÔN TOÁN LỚP 9
Thời gian làm bài 90 phút (không kể thời gian giao đề)
I. MA TRẬN ĐỀ KIỂM TRA
Cấp độ
Chủ đề
Nhận
biết
Thông hiểu
Vận dụng
Tổng
Cấp độ thấp
1-Hệ hai
phương trình
bậc nhất hai
ẩn
-Hiểu khái niệm
phương trình
bậc nhất hai
ẩn,nghiệm
cách giải.
Vận dụng các
phương pháp giải hệ
phương trình bậc
nhất hai ẩn
Số câu
Số điểm
Tỉ lệ %
2
10%
1
0,5đ
5%
3
1,5đ
15%
2-Hàm số
y = ax
2
(a
o).
Phương trình
bậc hai một
ẩn.
Hiểu các nh
chất của m số
y = ax
2
(a
0).
- Vận dụng giải pt
bậc hai bằng CT
nghiệm
- Chứng minh được
pt bậc hai hai
nghiệm
- Vận dụng được các
bước giải toán bằng
cách lập phương
trình bậc hai.
Số câu
Số điểm
Tỉ lệ %
2
10%
3
3,0đ
30%
6
4,5đ
45%
3 -Góc với
đường tròn.
Vận dụng các ng
thức tính độ dài
diện tích
Vận dụng các tính
chất của các loại góc
với đường tròn
chứng minh các i
toán hình học
Số câu
Số điểm
Tỉ lệ %
3
30%
3
30%
4- Hình trụ,
hình nón,
Hiểu nh
diện tích xung
VnDoc - Tải tài liệu, văn bản pháp luật, biểu mẫu miễn phí
VnDoc - Tải tài liệu, văn bản pháp luật, biểu mẫu miễn phí
hình cầu.
quanh, thể tích
của hình nón
Số câu
Số điểm
Tỉ lệ %
1
10%
1
10%
Tổng số câu
Tổng số điểm
Tỉ lệ %
5
30%
5
60%
11
10đ
100%
UBND
UBND
HUY
HUY
N
N
AN
AN
L
L
Ã
Ã
O
O
TRƯỜNG THCS TÂN
VIÊN
ĐỀ
ĐỀ
THI
THI
KSCL
KSCL
H
H
C
C
K
K
Ì
Ì
II
II
N
N
Ă
Ă
M
M
H
H
C
C
2017-2018
2017-2018
MÔN TOÁN LỚP 9
Thời gian làm bài 90 phút (không k thời gian giao đề)
Câu 1 (1,5 điểm)
a/ Giải hệ phương trình sau:
3
12
yx
yx
b
/ Giải phương trình:
x
4
3x
2
+ 2 = 0
Câu 2 (1 điểm) Cho m số y = (m-1)x
2
a/ Tìm m biết đồ thị hàm số đi qua điểm A(-1;2)
b/ Vẽ đồ thị hàm số tìm được câu a
Câu 3 (3 điểm)
1.Cho phương trình: x
2
-2(m-3)x - 2m + 4 = 0 (1)
a/ Giải phương trình với m = 1
b/ Chứng minh phương trình (1) luôn hai nghiệm phân biệt với mọi giá trị của tham số m.
2. Giải i toán sau bằng cách lập phương trình hoặc hệ phương trình:
Cho tam giác vuông cạnh huyền bằng 13 cm, chu vi của tam giác đó bằng 30cm, Tính diện tích
của tam giác đã cho.
Câu 4 ( 3điểm) Cho tam giác ABC 3 góc nhọn nội tiếp đường tròn tâm O. Vẽ 2 đường cao AD
BE. Gọi H trực tâm của tam giác ABC.
a) Chứng minh: Tứ giác DHEC nội tiếp, tứ giác AEDB nội tiếp.
b) Chứng minh: CA.CE = CB.CD
VnDoc - Tải tài liệu, văn bản pháp luật, biểu mẫu miễn phí
VnDoc - Tải tài liệu, văn bản pháp luật, biểu mẫu miễn phí
c) Chứng minh: OC
DE.
Câu 5 (1điểm): Cho tam giác ABC vuông tại A. Quay tam giác ABCmột vòng quanh cạnh AB ta
được một hình nón. Tính thể tích, diện tích xung quanh của hình nón biết BC = 12cm
·
o
ABC 30
(Sử dụng
3,14
, kết quả làm tròn đến chữ số thập phân thứ hai).
Câu 6: (0,5 điểm)
Cho các phương trình bậc hai sau: ax
2
+ bx + c = 0 (1) cx
2
+bx + a = 0 (2). (a,b,c khác 0)
Chứng minh rằng nếu phương trình (1) có hai nghiệm x
1
;x
2
> 0 thì phương trình (2) cũng hai
nghiệm x
3
; x
4
> 0 x
1
+ x
2
+ x
3
+ x
4
4
Thí sinh không được sử dụng tài liệu. Giám thị không giải thích gì thêm.
Họ tên thí sinh ............................................................ Số báo danh............................... ...............................
Chữ ký giám thị 1 .................................... .................... Chữ giám thị 2 ........................................................
VI
. ĐÁP ÁN BIỂU ĐIỂM :
Bài
Đáp án
Điểm
Câu 1
(1,5 điểm)
a/ Giải hệ pt:
3
12
yx
yx
3
4
yx
y
7
4
x
y
Vậy hệ pt nghiệm (7;4)
b/ x
4
3x
2
+ 2= 0
Đặt t = x
2
, điều kiện t
0.
Phương trình đã cho tr thành: t
2
3t + 2 = 0
Giải phương trình n t: 1+(-3)+2 = 0
=> t
1
= 1 (nhận); t
2
= 2 (nhận)
Với t = t
1
= 1
x
2
= 1
x = 1 hoặc x = –1
Với t = t
2
= 2
x
2
= 2
x =
2
hoặc x = -
2
Vậy phương trình đã cho 4 nghiệm: x
1
= 1; x
2
= -1;
x
3
=
2
; x
4
=
2
0,25 điểm
0,25 điểm
0,25 điểm
0,25 điểm
0,25 điểm
0,25 điểm
Cho hàm số y = (m-1)x
2
a/ Do đồ thị hàm số đi qua A(-1;2) => thay x = -1;y = 2 vào công thức
0,5 điểm

Đề KSCL học kì 2 lớp 9 môn Toán trường THCS Tân Viên

Đề KSCL học kì 2 lớp 9 môn Toán trường THCS Tân Viên, An Lão năm học 2017 - 2018 là đề tham khảo dành cho các bạn học sinh và thầy cô nghiên cứu, học tập tốt môn Toán lớp 9 cũng như luyện tập và làm quen với nhiều đề thi nhằm chuẩn bị tốt nhất cho các kì thi sắp diễn ra. Mời các bạn tham khảo.

Mời các bạn tham khảo tài liệu liên quan

Đề thi học kì 2 lớp 9 môn Toán Phòng GD&ĐT Quận Thủ Đức, Thành Phố Hồ Chí Minh năm học 2017 - 2018

Đề kiểm tra học kì 2 lớp 9 môn Toán Phòng GD&ĐT Bình Thạnh, Thành Phố Hồ Chí Minh năm học 2017 - 2018

Đề kiểm tra học kì 2 lớp 9 môn Ngữ văn Phòng GD&ĐT Quận Bắc Từ Liêm năm học 2017 - 2018

Đánh giá bài viết
1 213
Đề thi học kì 2 lớp 9 môn Toán Xem thêm