Định nghĩa hình tam giác cân, tam giác vuông cân

Tìm hiểu về tam giác cân và tam giác vuông cân

Thế nào là tam giác cân và tam giác vuông cân, phân biệt hai tam giác này như thế nào? Mời các bạn tham khảo tài liệu Định nghĩa hình tam giác cân, tam giác vuông cân do VnDoc.com sưu tầm và đăng tải sau đây. Hy vọng đây sẽ là tài liệu hữu ích cho các em học sinh lớp 7 ôn tập và nâng cao kiến thức môn Toán lớp 7.

Ngoài ra để hiểu rõ hơn về định nghĩa và tính chất của tam giác cân, tam giác vuông được nêu dưới đây, các bạn học sinh có thể tham khảo thêm:

Bài tập Tam giác cân, tam giác vuông cân lớp 7

I. Định nghĩa về tam giác cân

Tam giác cân là tam giác có hai cạnh bằng nhau.

Định nghĩa tam giác cân, tam giác vuông cân

Ở hình trên, tam giác ABC có AB = AC suy ra tam giác ABC cân.

Có AB và AC là hai cạnh bên nên tam giác ABC cân tại đỉnh A.

II. Tính chất của tam giác cân

Tính chất 1: Trong một tam giác cân hai góc ở đáy bằng nhau.

Chứng minh:

Giả thiết Tam giác ABC cân tại A, AB = AC
Kết luận \widehat{ABC}=\widehat{ACB}

Định nghĩa tam giác cân, tam giác vuông cân lớp 7

Trong tam giác cân ABC, gọi AM là tia phân giác của góc \widehat{BAC}

Khi đó ta có \widehat{BAM}=\widehat{CAM}

Xét tam giác ABM và tam giác ACM có:

AB = AC (gt)

\widehat{BAM}=\widehat{CAM} (cmt)

AM chung

Suy ta \Delta {ABM} = \Delta {ACM} (c.g.c) \Rightarrow \widehat{ABC}=\widehat{ACB} (đpcm)

Tính chất 2: Một tam giác có hai góc bằng nhau thì là tam giác cân.

Chứng minh

Giả thiết Tam giác ABC, \widehat{ABC}=\widehat{ACB}
Kết luận Tam giác ABC cân tại A

Định nghĩa tam giác cân, tam giác vuông cân

Trong tam giác ABC, gọi AM là tia phân giác của \widehat{BAC} \Rightarrow \widehat{BAM} = \widehat{CAM}

Tam giác ABM có \widehat{ABM} + \widehat{AMB} + \widehat {BAM} = 180^0 (tổng 3 góc trong một tam giác)

Tam giác ACM có \widehat{ACM}+\widehat{CAM} + \widehat{CMA} = 180^0 (tổng 3 góc trong một tam giác)

Mà lại có \widehat{ABC} = \widehat{ACB}

nên \widehat{AMB} = \widehat{AMC}

Xét tam giác ABM và tam giác ACM có:

\widehat{BAM} = \widehat{CAM}

\widehat{ABC} = \widehat{ACB}

\widehat{AMB} = \widehat{AMC}

Suy ra \Delta ABM=\Delta ACM (g.g.g) nên AB = AC (cạnh tương ứng bằng nhau)

Xét tam giác ABC có AB = AC, suy ra tam giác ABC cân tại A (định nghĩa)

III. Định nghĩa về tam giác vuông cân

Định nghĩa tam giác cân, tam giác vuông cân

Tam giác vuông cân là tam giác có 2 cạnh vuông góc và bằng nhau.

Tam giác ABC có AB = AC, AB AC thì tam giác ABC vuông cân tại A.

IV. Tính chất của tam giác vuông cân

Tính chất 1: Tam giác vuông cân có hai góc ở đáy bằng nhau và bằng 450

Chứng minh:

Xét tam giác vuông cân ABC cân tại A.

Vì ABC là tam giác cân nên \hat{ABC}=\hat{ACB}

ABC vuông nên \hat{BAC} = 900

Mặt khác:

Định nghĩa tam giác cân, tam giác vuông cân

Tính chất 2: Các đường cao, đường trung tuyến, đường phân giác kẻ từ đỉnh góc vuông của tam giác vuông cân trùng nhau và bằng 1 nửa cạnh huyền.

Xét tam giác ABC vuông cân tại A. Gọi D là trung điểm của BC. Ta có AD vừa là đường cao, vừa là đường phân giác, vừa là trung tuyến của BC.

AD = BD = DC = \frac{1}{2}BC

Công thức tính trung tuyến tam giác vuông cân

Tam giác vuông cân là một tam giác có một góc vuông với hai cạnh góc vuông bằng nhau và bằng a. Do đó, trung tuyến trong tam giác vuông cân mà nối từ góc vuông đến cạnh đối diện sẽ là một đoạn thẳng vuông góc với cạnh huyền và bằng một phần hai nó. Tức sẽ bằng (a căn 2)/2. Còn trung tuyến với hai cạnh góc vuông còn lại sẽ bằng nhau và bằng căn (a2 + 1/a2)

Các tính trong tam giác vuông cân khá đơn giản. Vì đây là một tam giác đặc biệt. Nhưng với tam giác thường, các tính sẽ phức tạp hơn. Và các tính đó như thế nào, các bạn hãy tham khảo tài liệu bên dưới nhé.

---------------------

Ngoài tài liệu Định nghĩa hình tam giác cân, tam giác vuông cân, mời các bạn tham khảo thêm: Giải bài tập Toán lớp 7, Giải Vở BT Toán 7, Đề thi học kì 1 lớp 7, Đề thi giữa kì 1 lớp 7, Đề thi học kì 2 lớp 7 do VnDoc.com sưu tầm và chọn lọc nhằm mang lại cho các bạn học sinh những đề ôn thi học kì chất lượng nhất. Mời các em cùng quý phụ huynh tải miễn phí đề thi về và ôn luyện.

Đánh giá bài viết
54 32.814
0 Bình luận
Sắp xếp theo
Toán lớp 7 Xem thêm