Giải bài tập trang 27, 28 SGK Toán lớp 6 tập 1: Lý thuyết lũy thừa với số mũ tự nhiên. Nhân hai lũy thừa cùng cơ số

46 8.345

Giải bài tập trang 27, 28 SGK Toán lớp 6 tập 1: Lý thuyết lũy thừa với số mũ tự nhiên, nhân hai lũy thừa cùng cơ số với lời giải chi tiết, rõ ràng theo khung chương trình sách giáo khoa Toán lớp 6. Lời giải hay bài tập Toán 6 gồm các bài giải tương ứng với từng bài học trong sách giúp cho các em học sinh ôn tập và củng cố các dạng bài tập, rèn luyện kỹ năng giải Toán.

Lý thuyết lũy thừa với số mũ tự nhiên. Nhân hai lũy thừa cùng cơ số lớp 6

1. Lũy thừa với số mũ tự nhiên:

Lũy thừa bậc n của a là tích của n thừa số bằng nhau, mỗi thừa số bằng a.

an = a . a . … . a (n ≠0)

Ta có:

a . a = a2: (đọc a bình phương hay bình phương của a)

a . a . a = a3: (đọc a lập phương hay lập phương của a)

a . a . a . a = a4: (đọc a mũ 4)

a . a . a . a . a = a5: (đọc a mũ 5)

an: (đọc a mũ n)

Qui ước: a1 = a

2. Nhân hai lũy thừa cùng cơ số: am . an = am + n

3. Chia hai lũy thừa cùng cơ số: am : an = am – n

4. Thứ tự ưu tiên các phép tính:

Thứ tự ưu tiên các phép tính đối với biểu thức có dấu ngoặc :() –> [] –> {}

Thứ tự ưu tiên các phép tính đối với biểu thức không có dấu ngoặc: lũy thừa –> nhân và chia –> cộng và trừ

Câu hỏi 1 SGK Toán 6 trang 27 tập 1

Điền vào ô trống cho đúng:

Lũy thừa

Cơ số

Số mũ

Giá trị của lũy thừa

 

72

 

 

 

(1)

23

 

 

 

(2)

 

3

4

 

(3)

Phương pháp giải 

Lũy thừa an(n≠0) có a là cơ số và n là số mũ.

Lời giải chi tiết

- Ở hàng ngang (1) ta có lũy thừa 72 có cơ số là 7, Số mũ là 2, Giá trị của lũy thừa là 49

- Ở hàng ngang (2) ta có lũy thừa 23 có cơ số là 2, Số mũ là 3, Giá trị của lũy thừa là 8

- Ở hàng ngang (3) có cơ số là 3, Số mũ là 4 nên ta có lũy thừa là 34, Giá trị của lũy thừa là 81.

Ta có bảng:

Lũy thừa

Cơ số

Số mũ

Giá trị của lũy thừa

72

7

2

49

23

2

3

8

34

3

4

81

Câu hỏi 2 SGK Toán 6 trang 27 tập 1

Viết tích của hai lũy thừa sau thành một lũy thừa: x5.x4; a4.a.

Phương pháp giải - Xem chi tiết

Sử dụng công thức am.an=am+n
Lời giải chi tiết

Ta có:

x5.x4=x5+4=x9

a4.a=a4+1=a5

Giải bài tập Toán 6 trang 27, 28: Lý thuyết lũy thừa với số mũ tự nhiên. Nhân hai lũy thừa cùng cơ số – Chương 1.

Giải Toán SGK Đại số 6 tập 1 trang 27 Bài 56

Viết gọn các tích sau bằng cách dùng lũy thừa:

a) 5 . 5 . 5 . 5 . 5 . 5;            b) 6 . 6 . 6 . 3 . 2;

c) 2 . 2 . 2 . 3 . 3;              d) 100 . 10 . 10 . 10.

Phương pháp giải

Lũy thừa bậc nn của aa là tích của nn thừa số bằng nhau, mỗi thừa số bằng a:

an = a.a.....a

n thừa số (n≠0)

Đáp án và hướng dẫn giải:

a) 5 . 5 . 5 . 5 . 5 . 5 = 56

b) 6 . 6 . 6 . 3 . 2= 63.3.2 hay 64 hay 24 . 34;

c) 2 . 2 . 2 . 3 . 3 = 23 . 32;

d) 100 . 10 . 10 . 10 = 105

Giải Toán SGK Đại số 6 tập 1 trang 28 Bài 57

Tính giá trị các lũy thừa sau:

a) 23, 24, 25, 26, 27, 28, 29, 210;        b) 32, 33, 34, 35;

c) 42, 43, 44;                      d) 52, 53, 54;                e) 62, 63, 64

Đáp án và hướng dẫn giải:

a) 23 = 8; 24 = 16; 25 = 32; 26 = 64; 27 = 128;

28 = 256; 29 = 512; 210 = 1024

b) 32 = 9; 33 = 27; 34 = 81; 35 = 243.

c) 42 = 16; 43 = 64; 44 = 256.

d) 52 = 25; 53 = 125; 54 = 625.

e) 62 = 36; 63 = 216; 64 = 1296.

Giải Toán SGK Đại số 6 tập 1 trang 28 Bài 58

a) Lập bảng bình phương của các số tự nhiên từ 0 đến 20.

b) Viết mỗi số sau thành bình phương của một số tự nhiên: 64; 169; 196.

Phương pháp giải

Ta có: a2=a.a . Dựa vào đây ta tính được bình phương của 1 số.

Đáp án và hướng dẫn giải

a) Công thức a binh phương la bằng a x a

02 = 0x0 = 0

12=1×1=1

22 = 2×2=4

32 = 3×3=9

42 = 4×4=16

…..

2020 = 20×20=400

b) Hướng dẫn: Có thể nhẩm hoặc dùng bảng vừa thiết lập trong câu a.

Đáp số: 64 = 82; 169 = 132 196 = 142

Giải Toán SGK Đại số 6 tập 1 trang 28 Bài 59

a) Lập bảng lập phương của các số tự nhiên từ 0 đến 10.

b) Viết mỗi số sau thành lập phương của một số tự nhiên: 27; 125; 216.

Phương pháp giải

Ta có: a3=a.a.a. Dựa vào đây ta tính được lập phương của 1 số.

Đáp án và hướng dẫn giải:

a) Các em lưu ý a3 = a.a.a. VD 33= 3.3.3 = 27

a

0

1

2

3

4

5

6

7

8

9

10

a3

0

1

8

27

64

125

216

343

512

729

1000

b) Theo bảng trên ta có:

27 = 33; 125 = 53; 216 = 63.

Giải Toán SGK Đại số 6 tập 1 trang 28 Bài 60

Viết kết quả mỗi phép tính sau dưới dạng một lũy thừa.

a) 33 . 34;                b) 52 . 57;               c) 75 . 7.

Phương pháp giải

Áp dụng quy tắc nhân hai lũy thừa cùng cơ số: am . an = am + n

Đáp án và hướng dẫn giải:

Theo quy tắc nhân hai lũy thừa cùng cơ số: am. an = am + n ta có:

a) 33 . 34 = 37;

b) 52 . 57 = 59;

c) 75 . 7 = 76.

Giải Toán SGK Đại số 6 tập 1 trang 28 Bài 61

Trong các số sau, số nào là lũy thừa của một số tự nhiên với số mũ lớn hơn 1 (chú ý rằng có những số có nhiều cách viết dưới dạng lũy thừa): 8, 16, 20, 27, 60, 64, 81, 90, 100?

Phương pháp giải

Một số viết được dưới dạng lũy thừa của một số tự nhiên với số mũ lớn hơn 11 nếu số đó viết được dưới dạng: an với n>1

Đáp án và hướng dẫn giải:

8 = 23; 16 = 42 hay 24; 27 = 33; 64 = 82 hay 26;

81 = 92 hay 34; 100 = 102.

Giải Toán SGK Đại số 6 tập 1 trang 28 Bài 62

a) Tính: 102 ; 103; 104; 105; 106

b) Viết mỗi số sau dưới dạng lũy thừa của 10:

1000; 1 000 000; 1 tỉ; 1 00…0 (12 chữ số 0)

Đáp án và hướng dẫn giải:

a) Ta biết: 10n = 1 0…0 (n chữ số 0).

Ta có 102 = 100;

103 = 1000;

104 = 10000;

105 = 100000;

106 = 1000000;

b) 1000 = 103;

1 000 000 = 106 ;

1 tỉ = 1 000 000 000 = 109

1000…00 = 1012.

Giải Toán SGK Đại số 6 tập 1 trang 28 Bài 63

Điền dấu “x” vào ô thích hợp:

Câu

Đúng

Sai

a) 23 . 22 = 26

 

 

b) 23 . 22 = 25

 

 

c) 54 . 5 = 54

 

 

Đáp án và hướng dẫn giải

Câu

Đúng

Sai

a) 23 . 22 = 26

 

x

b) 23 . 22 = 25

x

 

c) 54 . 5 = 54

 

x

Giải Toán SGK Đại số 6 tập 1 trang 29 Bài 64

Viết kết quả phép tính dưới dạng một lũy thừa:

a) 23 . 22 . 24;              b) 102 . 103 . 105;

c) x . x5;                  d) a3 . a2 . a5

Đáp án và hướng dẫn giải:

Hướng dẫn: Áp dụng quy tắc: am. an = am + n và quy ước a1 = a.

a) 23 . 22 . 24 = 23 + 2 + 4 = 29;

b) 102 . 103 . 105 = 102 + 3 + 5 = 1010

c) x . x5 = x1 + 5 = x6

d) a3 . a2 . a5 = a3 + 2 + 5 = a10

Giải Toán SGK Đại số 6 tập 1 trang 29 Bài 65

Bằng cách tính, em hãy cho biết số nào lớn hơn trong hai số sau?

a) 23 và 32

b) 24 và 42

c) 25 và 52

d) 210 và 100.

Đáp án và hướng dẫn giải bài 65:

a) 23 < 32 vì 23 = 8, 32 = 9;             b) 24 = 42 vì 24 = 16, 42 = 16;

c) 25 > 52 vì 25 = 32, 52 = 25;            d) 210 > 100 vì 210 = 1024.

Giải Toán SGK Đại số 6 tập 1 trang 29 Bài 66

Ta biết 112 = 121; 1112 = 12321.

Hãy dự đoán: 11112 bằng bao nhiêu? Kiểm tra lại dự đoán đó.

Đáp án và hướng dẫn giải:

Qua hai kết quả tính 112 và 1112 ta thấy các kết quả này được viết bởi một số có một số lẻ các chữ số. Các chữ số đứng hai bên chữ số chính giữa đối xứng với nhau và các chữ số bắt đầu từ chữ số đầu tiên bên trái đến chữ số chính giữa là những số tự nhiên liên tiếp đầu tiên. Vì thế có thể dự đoán

11112 = 1234321.

Thật vậy, 11112 = (1000 + 111)(1000 + 111) = 10002 + 111000 + 111000 + 1112 = 1000000 + 222000 + 12321 = 1234321.

Lưu ý: Tương tự ta có thể kết luận:

111112 = 123454321; 1111112 = 12345654321;…

1111111112 = 12345678987654321.

Tuy nhiên với 11111111112 (có 10 chữ số 1) thì quy luật này không còn đúng nữa. Thật vậy,

1111111111= 10000000002 + 222222222000000000 + 1111111112 = 1000000000000000000 + 222222222000000000 + 12345678987654321 = 12345678900987654321.

Ngoài ra các em học sinh có thể tham khảo các bài giải SGK môn Toán lớp 6, Môn Ngữ văn 6, Môn Vật lý 6, môn Sinh Học 6, Lịch sử 6, Địa lý 6....và các đề thi học kì 1 lớp 6 đề thi học kì 2 lớp 6 để chuẩn bị cho các bài thi đề thi học kì đạt kết quả cao.

Tham khảo các dạng bài tập toán khác:

Đánh giá bài viết
46 8.345
Giải bài tập Toán lớp 6 Xem thêm