Giải bất phương trình chứa căn bằng phép biến đổi tương đương

Giải bất phương trình chứa căn bằng phép biến đổi tương đương tổng hợp các dạng bài tập và hướng dẫn chi tiết về bất phương trình phổ biến trong các kì thi, bài kiểm tra trong chương trình trọng tâm phần Đại số Toán 10 nhằm giúp các bạn nắm vững kiến thức cơ bản, nâng cao kĩ năng tư duy bài tập. Chúc các bạn ôn tập hiệu quả!

Để tiện trao đổi, chia sẻ kinh nghiệm về giảng dạy và học tập các môn học lớp 10, VnDoc mời các thầy cô giáo, các bậc phụ huynh và các bạn học sinh truy cập nhóm riêng dành cho lớp sau: Nhóm Tài liệu học tập lớp 10. Rất mong nhận được sự ủng hộ của các thầy cô và các bạn.

Tài liệu do VnDoc.com biên soạn và đăng tải, nghiêm cấm các hành vi sao chép với mục đích thương mại.

Phương pháp biến đổi tương đương

I. Phương pháp biến đổi tương đương

Dạng 1: Bất phương trình có dạng: \sqrt{f(x)} < g(x)\Leftrightarrow \left\{ \begin{matrix} g(x)>0 \\ 0\le f(x)<{{g}^{2}}(x) \\ \end{matrix} \right.

Dạng 2: Bất phương trình: \sqrt{f(x)}>g(x)\Leftrightarrow \left[ \begin{matrix} \left\{ \begin{matrix} g(x)<0 \\ f(x)\ge 0 \\ \end{matrix} \right. \\ \left\{ \begin{matrix} g(x)\ge 0 \\ f(x)>{{g}^{2}}(x) \\ \end{matrix} \right. \\ \end{matrix} \right.

Chú ý: Khi giải bất phương trình ta sẽ làm theo các bước cơ bản sau:

  •  Bước 1: Tìm điều kiện xác định (nếu có)
  •  Bước 2: Sử dụng phép biến đổi tương đương chuyển bất phương trình về hệ bất phương trình đại số, từ đó xác định nghiệm x
  •  Bước 3: Kiểm tra nghiệm cùng điều kiện ở bước 1
  •  Kết luận

II. Ví dụ minh họa

Ví dụ 1: Giải bất phương trình: \sqrt{5x+1}-\sqrt{4x-1}\le 3\sqrt{x}

Hướng dẫn giải:

Điều kiện xác định: \left\{ \begin{matrix} 5x+1\ge 0 \\ 4x-1\ge 0 \\ x\ge 0 \\ \end{matrix} \right.\Leftrightarrow \left\{ \begin{matrix} x\ge \dfrac{-1}{5} \\ x\ge \dfrac{1}{4} \\ x\ge 0 \\ \end{matrix} \right.\Leftrightarrow x\ge \dfrac{1}{4}

BPT tương đương: \sqrt{5x+1}\le 3\sqrt{x}+\sqrt{4x-1}

\Leftrightarrow 5x+1\le 9x+4x-1+6\sqrt{x\left( 4x-1 \right)}

\Leftrightarrow 3\sqrt{x\left( 4x-1 \right)}\ge 1-4x luôn đúng với điều kiện đề bài

Vậy bất phương trình có tập nghiệm x\ge \frac{1}{4}

Ví dụ 2: Giải bất phương trình: \dfrac{1-\sqrt{1-4{{x}^{2}}}}{x}<3

Hướng dẫn giải:

Điều kiện xác định: \left\{ \begin{matrix} 1-4{{x}^{2}}\ge 0 \\ x\ne 0 \\ \end{matrix}\Leftrightarrow \left\{ \begin{matrix} x\in \left[ \dfrac{-1}{2},\dfrac{1}{2} \right] \\ x\ne 0 \\ \end{matrix} \right. \right.

Cách 1: Sử dụng nhân liên hợp:

BPT \Leftrightarrow \frac{(1-\sqrt{1-4{{x}^{2}}})\left( 1+\sqrt{1-4{{x}^{2}}} \right)}{x\left( 1+\sqrt{1-4{{x}^{2}}} \right)}<3\Leftrightarrow 4x<3\left( 1+\sqrt{1-4{{x}^{2}}} \right)

\Leftrightarrow 3\sqrt{1-4{{x}^{2}}}>4x-3\Leftrightarrow \left[ \begin{matrix} \left\{ \begin{matrix} 4x-3<0 \\ 1-4{{x}^{2}}\ge 0 \\ \end{matrix} \right. \\ \left\{ \begin{matrix} 4x-3\ge 0 \\ 9(1-4{{x}^{2}})>{{\left( 4x-3 \right)}^{2}} \\ \end{matrix} \right. \\ \end{matrix} \right.

\Leftrightarrow \left[ \begin{matrix} \left\{ \begin{matrix} x <\dfrac{3}{4} \\ x\in \left[ \dfrac{-1}{2},\dfrac{1}{2} \right] \\ \end{matrix} \right. \\ \left\{ \begin{matrix} x\ge \dfrac{3}{4} \\ 0 < x< \dfrac{6}{13} \\ \end{matrix} \right. \\ \end{matrix} \right.kết hợp điều kiện \Leftrightarrow \left\{ \begin{matrix} x\in \left[ \dfrac{-1}{2},\dfrac{1}{2} \right] \\ x\ne 0 \\ \end{matrix} \right.

Cách 2: Xét các trường hợp điều kiện:

  • TH1: Với \dfrac{-1}{2}\le x<0

Ta có: BPT \Leftrightarrow \sqrt{1-4{{x}^{2}}}<1-3x\Leftrightarrow \left\{ \begin{matrix} 1-3x>0 \\ 1-4{{x}^{2}}<{{\left( 1-3x \right)}^{2}} \\ \end{matrix} \right.\Leftrightarrow \frac{-1}{2}\le x<0

  • TH2: Với 0< x\le \frac{1}{2}

BPT \Leftrightarrow\sqrt{1-4{{x}^{2}}} < 1-3x \Leftrightarrow \left[ \begin{matrix} \left\{ \begin{matrix} 1-3x < 0 \\ 1-4{{x}^{2}}\ge 0 \\ \end{matrix} \right. \\ \left\{ \begin{matrix} 1-3x\ge 0 \\ 1-4{{x}^{2}} > {{\left( 1-3x \right)}^{2}} \\ \end{matrix} \right. \\ \end{matrix} \right.\Leftrightarrow 0 < x\le \frac{1}{2}

Ví dụ 3: Giải bất phương trình: \sqrt{2\left( {{x}^{2}}-1 \right)}\le x+1

Hướng dẫn giải

Điều kiện xác định: {{x}^{2}}-1\ge 0\Leftrightarrow x\in \mathbb{R}\backslash \left( -1,1 \right)

BPT \Leftrightarrow \left\{ \begin{matrix} x+1\ge 0 \\ 2\left( {{x}^{2}}-1 \right)<{{\left( x+1 \right)}^{2}} \\ \end{matrix} \right.\Leftrightarrow \left\{ \begin{matrix} x\ge -1 \\ x\in \left( 3,-1 \right) \\ \end{matrix} \right.kết hợp với điều kiện đề bài \Rightarrow x\in [1,3)

Vậy tập nghiệm của bất phương trình là: x\in [1,3)

III. Bài tập vận dụng

Bài 1: Giải các bất phương trình sau:

a. \sqrt{x+1}+\sqrt{x+4}>3

b. \sqrt{{{x}^{2}}+2x-3}\le x-2

c. \sqrt{x-1}-\sqrt{x-2}<\sqrt{x-3}

d. \sqrt{{{x}^{2}}-1} < x-5

e. \sqrt{2x+4}>\sqrt{x-3}+\sqrt{x+6}

Bài 2: Giải các bất phương trình sau:

a. \dfrac{2x}{\sqrt{x+1}}\ge 3x-2

b. \frac{4{{x}^{2}}}{{{\left( 1-\sqrt{1+2x} \right)}^{2}}}<2x+3

Bài 3: Giải các bất phương trình sau:

a. \sqrt{{{x}^{2}}+x-2}+\sqrt{{{x}^{2}}+2x-3}\le \sqrt{{{x}^{2}}+4x-5}

b. \sqrt{2{{x}^{2}}-3x+6}\ge x+5

c. \sqrt{x+\sqrt{2x+1}}+\sqrt{x-\sqrt{2x+1}}>\frac{3}{2}

Bài 4: Giải biện luận bất phương trình sau:

a. \left( m+1 \right)\sqrt{2x+1}<1

b. \sqrt{x}-\sqrt{x-1}> m

c. \sqrt{x-m} < x +3

Trên đây là Giải bất phương trình chứa căn bằng phép biến đổi tương đương VnDoc.com giới thiệu tới quý thầy cô và bạn đọc. Ngoài ra VnDoc mời độc giả tham khảo thêm tài liệu ôn tập một số môn học: Tiếng anh lớp 10, Vật lí lớp 10, Ngữ văn lớp 10,...

Một số tài liệu liên quan: 

Đánh giá bài viết
1 28
0 Bình luận
Sắp xếp theo
Chuyên đề Toán 10 Xem thêm