Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập cuối chương 2 Bất đẳng thức. Bất phương trình bậc nhất một ẩn

Vndoc.com xin gửi tới bạn đọc bài viết Trắc nghiệm Toán 9 chương 2: Bất đẳng thức. Bất phương trình bậc nhất một ẩn sách Cánh Diều. Mời các bạn cùng tham khảo chi tiết bài viết dưới đây nhé!

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Tìm điều kiện tham số m theo yêu cầu

    Tìm điều kiện của tham số m để bất phương trình \left( m^{2} - 2m ight)x^{2} + mx +
3 > 0 là bất phương trình bậc nhất một ẩn?

    Hướng dẫn:

    Để bất phương trình là bất phương trình bậc nhất một ẩn thì

    \Leftrightarrow \left\{ \begin{matrix}
m^{2} - 2m = 0 \\
m eq 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m(m - 2) = 0 \\
m eq 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
\left\lbrack \begin{matrix}
m = 0 \\
m = 2 \\
\end{matrix} ight.\  \\
m eq 0 \\
\end{matrix} ight.\  \Leftrightarrow m = 2

    Vậy m = 2 thì bất phương trình đã cho là bất phương trình bậc nhất một ẩn.

  • Câu 2: Nhận biết
    Chọn kết luận sai

    Chọn một số a bất kì, chọn kết luận không chính xác?

    Hướng dẫn:

    - 5 < 1 nên cộng hai vế của bất đẳng thức với số 2a bất kì ta được:

    2a - 5 < 2a + 1 (đúng)

    0 < 1 nên cộng hai vế của bất đẳng thức với số 4a bất kì ta được:

    4a < 4a + 1 (đúng)

    1 > - 2 nên cộng hai vế của bất đẳng thức với số 5a bất kì ta được:

    5a + 1 > 5a - 2 (đúng)

    - 3 < - 1 nên cộng hai vế của bất đẳng thức với số 3a bất kì ta được:

    3a - 3 < 3a - 1 vậy bất đẳng thức 3a - 3 > 3a - 1 (sai)

  • Câu 3: Thông hiểu
    Sắp xếp các số theo thứ tự giảm dần

    Cho biết a - 1 =
b + 2 = c - 3. Sắp xếp các số a;b;c theo thứ tự giảm dần ta được:

    Hướng dẫn:

    Từ a - 1 = b + 2 suy ra a = b + 2 + 1 = b + 3

    Từ b + 2 = c - 3 suy ra c = b + 2 + 3 = b + 5

    b < b + 3 < b + 5 nên b < a < c

    Vậy sắp xếp các số theo thứ tự giảm dần là c;a;b.

  • Câu 4: Nhận biết
    Xác định bất đẳng thức

    Trong các phương án sau, hãy chỉ ra phương án là một bất đẳng thức?

    Hướng dẫn:

    Bất đẳng thức cần tìm là 2a < b + 1.

  • Câu 5: Nhận biết
    Tìm bất phương trình nhận x = 4 làm nghiệm

    Kiểm tra xem x =
4 là nghiệm của bất phương trình nào trong các bất phương trình nào sau đây?

    Hướng dẫn:

    Thay x = 4vào từng bất phương trình ta được:

    4 + 5 > 9 vô lí nên x = 4 không là nghiệm của bất phương trình.

    0 \geq 1 vô lí nên x = 4 không là nghiệm của bất phương trình.

    4.4 < 4 + 3.4 \Leftrightarrow 16 <
16 4.4 < 4 + 3.4 vô lí nên x = 4 không là nghiệm của bất phương trình.

    3.4 \geq 8 + 4 \Leftrightarrow 12 \geq
12 thỏa mãn nên x = 4 là nghiệm của bất phương trình.

  • Câu 6: Nhận biết
    Xác định bất phương trình bậc nhất một ẩn

    Bất phương trình nào sau đây là bất phương trình bậc nhất một ẩn?

    Hướng dẫn:

    Bất phương trình bậc nhất một ẩn có dạng ax + b > 0 (hoặc ax + b < 0; ax + b \geq 0; ax + b \leq 0) với a eq 0 được gọi là bất phương trình bậc nhất một ẩn.

    Bất phương trình bậc nhất một ẩn cần tìm là \frac{3}{4} - y \leq 0.

  • Câu 7: Vận dụng cao
    Tính giá trị nhỏ nhất của biểu thức

    Cho hai số thực dương x;y thỏa mãn \frac{4}{x^{2}} + \frac{5}{y^{2}} \geq 9. Tìm giá trị nhỏ nhất của biểu thức C =
2x^{2} + \frac{6}{x^{2}} + 3y^{2} + \frac{8}{y^{2}}?

    Hướng dẫn:

    Ta có:

    C = 2x^{2} + \frac{6}{x^{2}} + 3y^{2} +
\frac{8}{y^{2}}

    = 2x^{2} + \frac{2}{x^{2}} + 3y^{2} +
\frac{3}{y^{2}} + \frac{4}{x^{2}} + \frac{5}{y^{2}}

    = 2\left( x^{2} + \frac{1}{x^{2}}
ight) + 3\left( y^{2} + \frac{1}{y^{2}} ight) + \left(
\frac{4}{x^{2}} + \frac{5}{y^{2}} ight)

    Mặt khác ta có:

    2\left( x^{2} + \frac{1}{x^{2}} ight)
\geq 2.2 = 4

    Dấu bằng xảy ra khi và chỉ khi x^{2} =
\frac{1}{x^{2}} \Leftrightarrow x^{4} = 1 \Leftrightarrow x = 1 (vì x > 0)

    3\left( y^{2} + \frac{1}{y^{2}} ight)
\geq 3.2 = 6 dấu bằng xảy ra khi và chỉ khi y^{2} = \frac{1}{y^{2}} \Leftrightarrow y^{4} = 1
\Leftrightarrow y = 1 vì (y >0)

    \left( \frac{4}{x^{2}} + \frac{5}{y^{2}}
ight) \geq 9 theo giả thiết.

    Khi x =1; y = 1 thì dấu bằng xảy ra

    \Rightarrow C \geq 4 + 6 + 9 =
19

    Vậy giá trị nhỏ nhất của biểu thức C bằng 19 khi x = y = 1.

  • Câu 8: Vận dụng cao
    Giải bất phương trình và tìm nghiệm theo yêu cầu

    Tìm số nguyên lớn nhất thỏa mãn bất phương trình:

    \frac{1987 - x}{15} + \frac{1988 -
x}{16} + \frac{27 + x}{1999} + \frac{28 + x}{2000} > 4

    Hướng dẫn:

    Ta có:

    \frac{1987 - x}{15} + \frac{1988 -
x}{16} + \frac{27 + x}{1999} + \frac{28 + x}{2000} > 4

    \Leftrightarrow \left( \frac{1987 -
x}{15} - 1 ight) + \left( \frac{1988 - x}{16} - 1 ight) + \left(
\frac{27 + x}{1999} - 1 ight) + \left( \frac{28 + x}{2000} - 1 ight)
> 0

    \Leftrightarrow \frac{1972 - x}{15} +
\frac{1972 - x}{16} + \frac{x - 1972}{1999} + \frac{x - 1972}{2000} >
0

    \Leftrightarrow (1972 - x)\left(
\frac{1}{15} + \frac{1}{16} + \frac{1}{1999} + \frac{1}{2000} ight)
> 0

    \frac{1}{15} + \frac{1}{16} +
\frac{1}{1999} + \frac{1}{2000} > 0 nên 1972 - x > 0 \Leftrightarrow x <
1972

    Suy ra nghiệm của bất phương trình là x
< 1972

    Vậy số nguyên lớn nhất thỏa mãn bất phương trình là 1971

  • Câu 9: Thông hiểu
    Tìm số nguyên nhỏ nhất thỏa mãn bất phương trình

    Số nguyên nhỏ nhất thỏa mãn bất phương trình \frac{x + 4}{5} - x + 5 < \frac{x + 3}{3}
- \frac{x - 2}{2} là:

    Hướng dẫn:

    Ta có:

    \frac{x + 4}{5} - x + 5 < \frac{x +
3}{3} - \frac{x - 2}{2}

    \Leftrightarrow 6(x + 4) - 30x + 150
< 10(x + 3) - 15(x - 2)

    \Leftrightarrow 6x - 30x - 10x + 15x
< 30 + 30 - 24 - 150

    \Leftrightarrow - 19x < - 114
\Leftrightarrow x > 6

    Suy ra nghiệm của bất phương trình là x
> 6

    Vậy nghiệm nguyên nhỏ nhất thỏa mãn bất phương trình là x = 7.

  • Câu 10: Nhận biết
    Xác định khẳng định sai

    Chọn câu sai?

    Hướng dẫn:

    Khi nhân cả hai vế của một bất đẳng thức với cùng một số âm, ta được một bất đẳng thức mới ngược chiều với bất đẳng thức đã cho.

    Khi đó: “Nếu a > bc < 0 thì ac > bc.”

  • Câu 11: Thông hiểu
    Chọn bất đẳng thức thỏa mãn yêu cầu

    Trong các bất đẳng thức sau, bất đẳng thức nào cho kết quả a < b?

    Hướng dẫn:

    \frac{1}{2}a > \frac{1}{2}b
\Leftrightarrow 2.\left( \frac{1}{2}a ight) > 2.\left( \frac{1}{2}b
ight) \Leftrightarrow a > b

    Ta có:

    - 7a < - 7b \Leftrightarrow -
7a.\left( - \frac{1}{7} ight) > - 7b.\left( - \frac{1}{7} ight)
\Leftrightarrow a > b

    Ta có:

    \frac{1}{2}a + 3 > \frac{1}{2}b + 3
\Leftrightarrow \frac{1}{2}a + 3 - 3 > \frac{1}{2}b + 3 -
3

    \Leftrightarrow \frac{1}{2}a >
\frac{1}{2}b \Leftrightarrow 2.\frac{1}{2}a > 2.\frac{1}{2}b
\Leftrightarrow a > b

    Ta có:

    \left( \sqrt{5} - 2 ight)a - 1 <
\left( \sqrt{5} - 2 ight)b - 1

    \Leftrightarrow \left( \sqrt{5} - 2
ight)a - 1 + 1 < \left( \sqrt{5} - 2 ight)b - 1 + 1

    \Leftrightarrow \left( \sqrt{5} - 2
ight)a < \left( \sqrt{5} - 2 ight)b

    \Leftrightarrow \left( \sqrt{5} - 2
ight)a.\frac{1}{\sqrt{5} - 2} < \left( \sqrt{5} - 2
ight)b.\frac{1}{\sqrt{5} - 2}

    \Leftrightarrow a < b

  • Câu 12: Vận dụng
    Xác định độ dài đoạn đường tối thiểu

    Một người đi bộ một quảng đường dài 10 km trong khoảng thời gian không nhiều hơn 3 giờ. Lúc đầu người đó đi với vận tốc 4 km/h, về sau đi với vận tốc 3 km/h. Xác định độ dài đoạn đường tối thiểu mà người đó đã đi với vận tốc 4 km/h.

    Hướng dẫn:

    Gọi độ dài đoạn đường tối thiểu mà người đó đi được với vận tốc 4 km/h là x (km).

    Điều kiện: 0 < x < 10.

    Quãng đường lúc sau là 10 − x (km).

    Thời gian lúc đầu là \frac{x}{4} giờ

    Thời gian lúc sau \frac{10 - x}{3} giờ

    Do tổng thời gian đi bộ không quá 3 giờ nên ta có bất phương trình \frac{x}{4} + \frac{10 - x}{3} \leq
3 Giải ra ta được x ≥ 4.

    Kết hợp điều kiện ta được 4 ≤ x < 10.

    Vậy độ dài tối thiểu mà người đó đi được với vận tốc 4 km/h là 4 km.

  • Câu 13: Nhận biết
    Chọn phép biến đổi đúng

    Cho bất phương trình 2x - 5 > 7, phép biến đổi nào sau đây đúng?

    Hướng dẫn:

    Ta có:

    2x - 5 > 7 \Leftrightarrow 2x > 7
+ 5

  • Câu 14: Thông hiểu
    Tìm nghiệm của bất phương trình

    Kết luận nào sau đây đúng khi nói về nghiệm của bất phương trình

    (x + 3)(x + 4) > (x - 2)(x + 9) +
25?

    Hướng dẫn:

    Ta có:

    (x + 3)(x + 4) > (x - 2)(x + 9) +
25

    \Leftrightarrow x^{2} + 7x + 12 >
x^{2} + 7x - 18 + 25

    \Leftrightarrow x^{2} + 7x + 12 - x^{2}
- 7x + 18 - 25 > 0

    \Leftrightarrow 5 > 0 đúng với mọi x\mathbb{\in R}

    Vậy bất phương trình có vô số nghiệm x\mathbb{\in R}.

  • Câu 15: Vận dụng
    Chọn kết luận đúng

    Biết rằng 0 <
a < b. Chọn kết luận đúng?

    Hướng dẫn:

    Với 0 < a < b ta có: (a - b)^{2} > 0

    \Leftrightarrow a^{2} - b^{2} - 2ab >
0

    \Leftrightarrow a^{2} - b^{2} >
2ab

    \Leftrightarrow \frac{a^{2} - b^{2}}{ab}
> \frac{2ab}{ab} (vì ab >
0)

    \Leftrightarrow \frac{a^{2}}{ab} -
\frac{b^{2}}{ab} > 2 \Leftrightarrow \frac{a}{b} + \frac{b}{a} >
2

  • Câu 16: Thông hiểu
    Tìm nghiệm của bất phương trình

    Cho bất phương trình 3(5x + 2) \geq 4x + 1. Nghiệm của bất phương trình là:

    Hướng dẫn:

    Ta có:

    3(5x + 2) \geq 4x + 1

    \Leftrightarrow 15x + 6 \geq 4x +
1

    \Leftrightarrow 15x - 4x \geq 1 -
6

    \Leftrightarrow 11x \geq - 5
\Leftrightarrow x \geq - \frac{5}{11}

    Vậy tập nghiệm của bất phương trình là x
\geq \frac{- 5}{11}.

  • Câu 17: Thông hiểu
    Chọn kết luận đúng

    Biết rằng x +
\frac{1}{2} = y. So sánh xy?

    Hướng dẫn:

    Ta có:

    x + \frac{1}{2} = y \Rightarrow x - y = -
\frac{1}{2} < 0 \Rightarrow x < y.

  • Câu 18: Vận dụng
    Tính giá trị lớn nhất của biểu thức

    Cho biểu thức B
= x + \frac{1}{x}. Tính giá trị lớn nhất của biểu thức B?

    Hướng dẫn:

    Ta có:

    B = x + \frac{1}{x} = \frac{x^{2} +
1}{x} + 2 - 2

    = \frac{x^{2} + 2x + 1}{x} - 2 =
\frac{(x + 1)^{2}}{x} - 2

    Ta có: (x + 1)^{2} \geq 0;\forall x <
0

    \Rightarrow (x + 1)^{2}.\frac{1}{x} \leq
0.\frac{1}{x}

    \Rightarrow (x + 1)^{2}.\frac{1}{x} \leq
0

    \Rightarrow (x + 1)^{2}.\frac{1}{x} - 2
\leq - 2

    \Rightarrow B \leq - 2

    Dấu bằng xảy ra khi và chỉ khi (x +
1)^{2} = 0 \Leftrightarrow x = - 1(tm\ \ x\  < \ 0)

    Vậy với x < 0 giá trị lớn nhất của biểu thức B là -2 khi x = -
1.

  • Câu 19: Thông hiểu
    Tìm các số nguyên thỏa mãn hai bất phương trình

    Có tất cả bao nhiêu số nguyên x thỏa mãn cả hai bất phương trình

    \frac{3x - 2}{5} \geq \frac{x}{2} +
0,31 - \frac{2x - 5}{6} >
\frac{3 - x}{4}?

    Hướng dẫn:

    Ta có:

    \frac{3x - 2}{5} \geq \frac{x}{2} +
\frac{3}{10} \Leftrightarrow 2(3x - 2) \geq 5x + 3

    \Leftrightarrow 6x - 4 \geq 5x + 3
\Leftrightarrow x \geq 7

    Vậy tập nghiệm của bất phương trình là x
\geq 7.

    Ta có:

    1 - \frac{2x - 5}{6} > \frac{3 -
x}{4}

    \Leftrightarrow 12 - 2(2x - 5) > 3(3
- x)

    \Leftrightarrow 12 - 4x + 10 > 9 - 3x
\Leftrightarrow 13 > x

    Vậy tập nghiệm của bất phương trình là x
< 13.

    Mà số cần tìm là số nguyên và thỏa mãn cả hai bất phương trình

    Suy ra x \in \left\{ 7;8;9;10;11;12
ight\}

    Vậy có 6 giá trị nguyên của x thỏa mãn yêu cầu đề bài.

  • Câu 20: Thông hiểu
    Tìm giá trị m thỏa mãn điều kiện

    Với giá trị nào của tham số m thì phương trình x - 2 = 3m + 4 có nghiệm lớn hơn 3?

    Hướng dẫn:

    Ta có:

    x - 2 = 3m + 4 \Leftrightarrow x = 3m +
6

    Theo bài ra ta có:

    x > 3 \Leftrightarrow 3m + 6 > 3
\Leftrightarrow 3m > - 3 \Leftrightarrow m > - 1

    Vậy m > - 1 thỏa mãn yêu cầu đề bài.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (30%):
    2/3
  • Thông hiểu (45%):
    2/3
  • Vận dụng (15%):
    2/3
  • Vận dụng cao (10%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo
🖼️

Toán 9 - Cánh diều

Xem thêm