Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169

Đề thi thử tốt nghiệp THPT năm 2013 tỉnh Đồng Tháp - Môn Toán (Có đáp án)

Loại File: PDF
Phân loại: Tài liệu Tính phí

SỞ GIÁO DỤC VÀ ĐÀO TẠO
TỈNH ĐỒNG THÁP
(Đề thi chính thức)

KỲ THI DIỄN TẬP TỐT NGHIỆ THPT NĂM 2013
MÔN THI: TOÁN - Giáo dục THPT
Thời gian làm bài: 150 phút (không kể thời gian giao đề)

I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm)

Câu 1. (3,0 điểm).

Cho hàm số y = – x3 + 3x + 2 (1).

1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số (1).

2) Dựa vào đồ thị (C), hãy biện luận số nghiệm phương trình tùy theo giá trị của tham số m.

Câu 2. (3,0 điểm).

1) Giải phương trình 3.4x – 2.6x = 9x.

2) Tính diện tích hình phẳng giới hạn bởi các đường: x = e, y = 0 và y = lnx.

3) Cho hàm số y = x4 + ax2 + b. Tìm a, b để hàm số có cực trị bằng 3/2 khi x = 1.

Câu 3. (1,0 điểm).

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc mặt đáy và mặt phẳng (SBD) tạo với mặt đáy một góc 600. Tính thể tích khối chóp S.ABCD.

II. PHẦN RIÊNG - PHẦN TỰ CHỌN (3,0 điểm)

Thí sinh chỉ được làm một trong hai phần (phần 1 hoặc phần 2)

1. Theo chương trình Chuẩn

Câu 4.a. (2,0 điểm).

Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(–1;0; –2), M(1; 1; –3) và mp(α): x + 2y + 2z + 3 = 0.

1) Viết phương trình mặt phẳng (P) đi qua A và song song mặt phẳng (α).

2) Tìm phương trình mặt cầu (S) có bán kính R = 3 và tiếp xúc với mặt phẳng (α) tại M.

Câu 5.a. (1,0 điểm).

Giải phương trình z2 + z + 1 = 0 trên tập số phức.

2. Theo chương trình Nâng Cao

Câu 4.b. (2,0 điểm).

Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có phương trình (S): x2 + y2 + z2 – 2x + 2y + 4z – 3 = 0 và hai đường thẳng Δ1, Δ2 có phương trình (Δ1):

1) Chứng minh Δ1 và Δ2 chéo nhau, tính độ dài đoạn vuông góc chung của Δ1 và Δ2.

2) Viết phương trình tiết diện của mặt cầu (S), biết tiết diện đó song song với hai đường thẳng Δ1 và Δ2.

Câu 5.b. (1,0 điểm).

Giải phương trình z2 – (3 + 4i)z + (–1 + 5i) = 0 trên tập số phức.

Chọn file muốn tải về:
Đóng Chỉ thành viên VnDoc PRO/PROPLUS tải được nội dung này!
Đóng
79.000 / tháng
Đặc quyền các gói Thành viên
PRO
Phổ biến nhất
PRO+
Tải tài liệu Cao cấp 1 Lớp
30 lượt tải tài liệu
Xem nội dung bài viết
Trải nghiệm Không quảng cáo
Làm bài trắc nghiệm không giới hạn
Mua cả năm Tiết kiệm tới 48%
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo
🖼️

Thư viện Học liệu

Xem thêm
🖼️

Gợi ý cho bạn

Xem thêm