Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169

Đề thi tuyển sinh lớp 10 THPT chuyên Nguyễn Trãi, Hải Dương - Môn Toán (2010 - 2011)

Lớp: Lớp 10
Loại File: Word
Phân loại: Tài liệu Tính phí

Để chuẩn bị cho kỳ thi vào cấp 3 sắp tới, Vndoc.com xin gửi đến các bạn: Đề thi tuyển sinh lớp 10 THPT chuyên Nguyễn Trãi, Hải Dương - Môn Toán (2010 - 2011).

Đề thi tuyển sinh lớp 10 môn Toán:

SỞ GIÁO DỤC VÀ ĐÀO TẠO
HẢI DƯƠNG


(Đề thi chính thức)
KỲ THI TUYỂN SINH LỚP 10 THPT CHUYÊN NGUYỄN TRÃI
NĂM HỌC 2010-2011

KHÓA NGÀY 08/07/2010
Môn thi: TOÁN (Dành cho thí sinh thi vào lớp chuyên Toán)
Thời gian làm bài: 150 phút (không kể thời gian giao đề)

Câu 1 (2,0 điểm)

1) Cho:

Không dùng máy tính cầm tay, hãy tính giá trị của biểu thức: M = (9x3 - 9x2 - 3)2

2) Cho trước a,b thuộc R; gọi x, y là hai số thực thỏa mãn

Chứng minh rằng: x2011 + y 2011 = s2011 + b2011

Câu 2 (2,0 điểm)

Cho phương trình: x3 + ax2 + bx - 1 = 0 (1)

1) Tìm các số hữu tỷ a và b để phương trình (1) có nghiệm

2) Với giá trị a, b tìm được ở trên; gọi x1, x2, x3 là ba nghiệm của phương trình (1). Tính giá trị của biểu thức

Câu 3 (2,0 điểm)

1) Tìm các số nguyên x, y thỏa mãn điều kiện: x2 + y2 + 5x2y2 + 6 = 37xy

2) Giải hệ phương trình:

Câu 4 (3,0 điểm)

Cho hai đường tròn (O ; R) và (O’ ; R’) cắt nhau tại I và J (R’ > R). Kẻ các tiếp tuyến chung của hai đường tròn đó; chúng cắt nhau ở A. Gọi B và C là các tiếp điểm của hai tiếp tuyến trên với (O’ ; R’); D là tiếp điểm của tiếp tuyến AB với (O ; R) (điểm I và điểm B ở cùng nửa mặt phẳng bờ là O’A). Đường thẳng AI cắt (O’ ; R’) tại M (điểm M khác điểm I).

1) Gọi K là giao điểm của đường thẳng IJ với BD. Chứng minh: ; từ đó suy ra KB = KD.

2) AO’ cắt BC tại H. Chứng minh 4 điểm I, H, O’, M nằm trên một đường tròn.

3) Chứng minh đường thẳng AM là tiếp tuyến của đường tròn ngoại tiếp tam giác IBD.

Câu 5 (1,0 điểm)

Mọi điểm trên mặt phẳng được đánh dấu bởi một trong hai dấu (+) hoặc ().

Chứng minh rằng luôn chỉ ra được 3 điểm trên mặt phẳng làm thành tam giác vuông cân mà ba đỉnh của nó được đánh cùng dấu.

Chọn file muốn tải về:
Đóng Chỉ thành viên VnDoc PRO/PROPLUS tải được nội dung này!
Đóng
79.000 / tháng
Đặc quyền các gói Thành viên
PRO
Phổ biến nhất
PRO+
Tải tài liệu Cao cấp 1 Lớp
30 lượt tải tài liệu
Xem nội dung bài viết
Trải nghiệm Không quảng cáo
Làm bài trắc nghiệm không giới hạn
Mua cả năm Tiết kiệm tới 48%
9

Có thể bạn quan tâm

Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo
🖼️

Lớp 10

Xem thêm
🖼️

Gợi ý cho bạn

Xem thêm