Bài tập trắc nghiệm Xác suất (Có đáp án)

VnDoc.com xin giới thiệu tới quý thầy cô và các bạn học sinh tài liệu tham khảo Bài tập trắc nghiệm xác suất (Có đáp án). Tài liệu được VnDoc biên soạn và đăng tải, hi vọng sẽ giúp các bạn ôn tập kiến thức môn Toán hiệu quả, sẵn sàng cho những kì thi sắp tới. Mời các bạn tham khảo và tải về miễn phí tại đây!

Để tiện trao đổi, chia sẻ kinh nghiệm về giảng dạy và học tập các môn học lớp 11, VnDoc mời các thầy cô giáo, các bậc phụ huynh và các bạn học sinh truy cập nhóm riêng dành cho lớp 11 sau: Nhóm Tài liệu học tập lớp 11. Rất mong nhận được sự ủng hộ của các thầy cô và các bạn.

Trắc nghiệm Xác suất Toán 11

Bản quyền thuộc về VnDoc.
Nghiêm cấm mọi hình thức sao chép nhằm mục đích thương mại.

Phương pháp: Các quy tắc tính xác suất:

1. Tính xác suất theo định nghĩa xác suất cổ điển:

P\left( A \right)=\frac{n\left( A \right)}{n\left( \Omega \right)}

2. Quy tắc cộng xác suất

- Nếu hai biến cố A và B xung khắc thì P\left( A\cup B \right)=P\left( A \right)+P\left( B \right)

+ Mở rộng quy tắc cộng xác suất

Cho m biến cố {{A}_{1}},{{A}_{2}},....{{A}_{m}} đôi một xung khắc. Khi đó:

P\left( {{A}_{1}}\cup {{A}_{2}}\cup ...\cup {{A}_{m}} \right)=P\left( {{A}_{1}} \right)+P\left( {{A}_{2}} \right)+...+\left( {{A}_{k}} \right)

  • P\left( \overline{A} \right)=1-P\left( A \right)
  •  Giả sử A và B là hai biến cố tùy ý cũng liên quan đến một phép thử. Khi đó:

P\left( A\cup B \right)=P\left( A \right)+P\left( B \right)-P\left( AB \right)

3. Quy tắc nhân xác suất

- Hai biến cố A và B độc lập nếu xảy ra (hay không xảy ra) của A không làm ảnh hưởng đến xác suất của B.

- Hai biến cố A và B độc lập khi và chỉ khi P\left( AB \right)=P\left( A \right).P\left( B \right)

Câu 1: Gieo một con xúc xắc 4 lần. Tìm xác suất của biến cố A: “Mặt 4 chấm xuất hiện ít nhất một lần”

A. P\left( A \right)=\frac{5}{6} B. P\left( A \right)=1-{{\left( \frac{5}{6} \right)}^{4}}
C. P\left( A \right)={{\left( \frac{5}{6} \right)}^{3}} D. P\left( A \right)=1-{{\left( \frac{5}{6} \right)}^{3}}

Câu 2: Một hộp đựng 4 viên bi xanh, 3 viên bi đỏ, 2 viên bi vàng. Chọn ngẫu nhiên 2 viên bi. Tính xác suất để chọn được hai viên bi khác màu nhau.

A. P\left( A \right)=\frac{11}{18} C. P\left( A \right)=\frac{13}{18}
B. P\left( A \right)=\frac{7}{18} D. P\left( A \right)=\frac{5}{18}

Câu 3: Xác suất sinh con gái mỗi lần sinh là 0,46. Tính xác suất sao cho 3 lần sinh có ít nhất 1 con gái.

A. P\approx 0,84 B. P\approx 0,9
C. P\approx 0,16 D. P\approx 0,1

Một hộp đựng 10 viên bi trong đó có 4 viên bi đỏ, 3 viên bi xanh, 2 viên bi vàng, 1 viên bi trắng. Lấy ngẫu nhiên hai viên bi

Câu 4: Tính xác suất biến cố A: “Lấy được 2 viên bi cùng màu”

A. P\left( A \right)=\frac{4}{5} C. P\left( A \right)=\frac{5}{9}
B. P\left( A \right)=\frac{2}{5} D. P\left( A \right)=\frac{2}{9}

Câu 5: Tính xác suất biến cố B: “Lấy được 2 viên bi cùng màu đỏ”

A. P\left( A \right)=\frac{4}{15} B. P\left( A \right)=\frac{4}{45}
C. P\left( A \right)=\frac{1}{15} D.P\left( A \right)=\frac{2}{15}

Câu 6: Tính xác suất biến cố A: “Lấy được 2 viên bi 1 đỏ, 1 vàng”

A. P\left( A \right)=\frac{2}{15} B. P\left( A \right)=\frac{8}{45}
C. P\left( A \right)=\frac{1}{15} D. P\left( A \right)=\frac{4}{45}

Một phân xưởng có 2 tổ phân ngành hoạt động độc lập với nhau. Xác suất để hai tổ phân ngành I và II đạt hiệu quả tốt lần lượt là 0,8 và 0,7. Tính xác suất để

Câu 7: A: ”Hai tổ cùng đạt hiệu quả tốt là:

A. P\left( A \right)=0,56 C. P\left( A \right)=0,49
B. P\left( A \right)=0,64 D. P\left( A \right)=0,54

Câu 8: Số phần tử của biến cố B: “Hai tổ cùng không đạt hiệu quả tốt”

A. P\left( B \right)=0,06 C. P\left( B \right)=0,24
B. P\left( B \right)=0,14 D. P\left( B \right)=0,04

Câu 9: Số phần tử của biến cố D: “Có ít nhất một tổ đạt hiệu quả tốt”

A. P\left( D \right)=0,06 C. P\left( D \right)=0,94
B. P\left( D \right)=0,54 D. P\left( D \right)=0,48

Câu 10: Bộ bài tú lơ khơ có 52 quân bài. Rút ngẫu nhiên 4 quân bài. Tìm xác suất của biến cố A: “4 quân bài rút ra có ít nhất hai quân bích”

A. P\left( A \right)=\frac{5329}{20825} B. P\left( A \right)=\frac{2357}{69667}
C. P\left( A \right)=\frac{5148}{69667} D. P\left( A \right)=\frac{29745}{69667}

Có 100 thẻ bài được đánh số thứ tự từ 1 đến 100. Lấy ngẫu nhiên 5 thẻ:

Câu 11: Tính xác suất để A: “Số ghi trên thẻ được chọn là số chẵn”

A. P\left( A \right)=\frac{1457}{38412} C. P\left( A \right)=\frac{2045}{19206}
B. P\left( A \right)=\frac{1081}{19206} D. P\left( A \right)=\frac{1081}{38412}

Câu 12: Tính xác suất để B: “Có ít nhất một số ghi trên thẻ được chọn là số chia hết cho 3”

A. P\left( B \right)=\frac{871}{6790} C. P\left( B \right)=\frac{989}{6790}
B. P\left( B \right)=\frac{5919}{6790} D. P\left( B \right)=\frac{2145}{6790}

Đáp án trắc nghiệm

1.B 2.C 3.A 4.D
5.D 6.B 7.A 8.A
9.C 10.A 11.D 12.B

-------------------------------------------------------

Trên đây VnDoc.com đã giới thiệu tới bạn đọc tài liệu: Bài tập trắc nghiệm xác suất (Có đáp án). Để có kết quả cao hơn trong học tập, VnDoc xin giới thiệu tới các bạn học sinh tài liệu Sinh học lớp 11, Vật lý lớp 11, Hóa học lớp 11, Giải bài tập Toán 11 mà VnDoc tổng hợp và đăng tải.

Đánh giá bài viết
1 39
0 Bình luận
Sắp xếp theo
Toán lớp 11 Xem thêm