Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169

Đề thi học sinh giỏi tỉnh Long An lớp 12 vòng 2 năm 2011 - 2012 môn Toán

Lớp: Lớp 12
Dạng tài liệu: Đề thi HSG
Loại File: Word
Phân loại: Tài liệu Tính phí

Nhằm giúp các bạn chuẩn bị thật tốt kiến thức để làm bài thi đạt hiệu quả cao, Vndoc.com xin giới thiệu: Đề thi học sinh giỏi tỉnh Long An lớp 12 vòng 2 năm 2011 - 2012 môn Toán.

Đề thi học sinh giỏi môn Toán:

SỞ GIÁO DỤC VÀ ĐÀO TẠO
LONG AN

(Đề thi chính thức)

KỲ THI CHỌN HỌC SINH GIỎI LỚP 12 VÒNG II
MÔN THI: TOÁN

(Thời gian làm bài 180 phút không kể thời gian giao đề)
Ngày thi: 10/11/2011

Bài 1 (4 điểm)

a) Giải phương trình: Đề thi học sinh giỏi tỉnh lớp 12 môn Toán

b) Cho ba số thực dương a, b, c. Chứng minh:
Đề thi học sinh giỏi tỉnh lớp 12 môn Toán

Bài 2 (5 điểm)

Cho dãy số thực (xn) với Đề thi học sinh giỏi tỉnh lớp 12 môn Toán

Xét các dãy số thực (un) với un = x2n-1 (n thuộc N*) và (vn) với vn = x2n (n thuộc N*)

a) Chứng minh các dãy số (un), (vn) có giới hạn hữu hạn khi n -> +

b) Chứng minh các dãy số (xn) có giới hạn hữu hạn khi n -> + và tìm giới hạn đó.

Bài 3 (5 điểm)

a) Cho tam giác có lần lượt là trọng tâm, trực tâm, tâm đường tròn ngoại tiếp. Gọi là điểm sao cho . Gọi G1, G2, G3 lần lượt là trọng tâm các tam giác KBC, KCA, KAB

Chứng minh: G1A, G2B, G3C đồng quy và G1A = G2B = G3C

b) Trong mặt phẳng cho ngũ giác đều ABCDE nội tiếp đường tròn tâm O bán kính R và điểm tùy ý.Tìm vị trí của M để MA + MB + MC + MD + ME ngắn nhất.

Bài 4 (3 điểm)

Chứng minh rằng không tồn tại các số nguyên x, y, z sao cho: x2012 + 2009y2012 = 2011 + 2012z2010

Bài 5 (3 điểm)

Trên mặt phẳng cho 2011 điểm sao cho với ba điểm bất kỳ trong số các điểm đó ta luôn tìm được hai điểm để đoạn thẳng được tạo thành có độ dài bé hơn 1. Chứng minh luôn tồn tại một hình tròn bán kính 1 chứa không ít hơn 1006 điểm đã cho.

Chọn file muốn tải về:
Đóng Chỉ thành viên VnDoc PRO/PROPLUS tải được nội dung này!
Đóng
79.000 / tháng
Đặc quyền các gói Thành viên
PRO
Phổ biến nhất
PRO+
Tải tài liệu Cao cấp 1 Lớp
30 lượt tải tài liệu
Xem nội dung bài viết
Trải nghiệm Không quảng cáo
Làm bài trắc nghiệm không giới hạn
Mua cả năm Tiết kiệm tới 48%
4

Có thể bạn quan tâm

Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo
🖼️

Thi học sinh giỏi lớp 12

Xem thêm
🖼️

Gợi ý cho bạn

Xem thêm