Bài tập toán chuyển động trên dòng nước lớp 5

Bài tập Toán chuyển động trên dòng nước lớp 5 được VnDoc sưu tầm là tài liệu có ví dụ minh họa và cách giải chi tiết kèm theo các dạng bài tập luyện tập về dạng Toán này giúp các em học sinh củng cố kiến thức, ôn tập các dạng bài Toán chuyển động trên dòng nước chuẩn bị cho các kì thi học sinh giỏi lớp 5 đạt kết quả cao. Mời các em cùng tham khảo.

Ngoài ra để luyện tập thêm về phần bài toán chuyển động trên dòng nước này, các em học sinh có thể tham khảo thêm: Bài tập nâng cao Toán lớp 5: Bài toán về chuyển động trên dòng nước

A. Lý thuyết cần nhớ về chuyển động trên dòng nước

+ Nếu vật chuyển động ngược dòng thì có lực cản của dòng nước

+ Nếu vật chuyển động xuôi dòng thì có thêm vận tốc dòng nước

+ Vận tốc xuôi dòng = vận tốc của vật + vận tốc dòng nước

+ Vận tốc ngược dòng = vận tốc của vật - vận tốc dòng nước

+ Vận tốc dòng nước = (vận tốc xuôi - vận tốc ngược) : 2

+ Vận tốc thực của vật = (vận tốc xuôi + vận tốc ngược) : 2

B. Một số bài toán ví dụ về chuyển động trên dòng nước

Bài toán 1:

Một ca nô đi xuôi dòng từ A đến B hết 32 phút và ngược dòng từ B về A hết 48 phút. Hỏi một cụm bèo trôi từ A về B hết bao lâu?

* Phân tích 1

+ Trên cùng một quãng đường thì vận tốc và thời gian là hai đại lượng tỉ lệ nghịch.

+ Thời gian bèo trôi từ A dến B chính là thời gian dòng nước chảy từ A đến B

+ Vận tốc xuôi dòng – vận tốc ngược dòng = 2 lần vận tốc dòng nước

* Cách giải 1

+ Tỉ số thời gian ca nô xuôi dòng và ngược dòng là: \frac{{32}}{{48}} = \frac{2}{3}

+ Trên cùng quãng đường AB nên vận tốc và thời gian là hai đại lượng tỉ lệ nghịch vời nhau, nên ta có tỉ số giữa vận tốc xuôi dòng và ngược dòng là: \frac{3}{2}

Ta có sơ đồ sau:

bài toán chuyển động trên dòng nước ảnh số 1

Nhìn vào sơ đồ ta có: Vxuôi = 3 x 2Vnước = 6 x Vnước

Vì trên cùng một quãng đường thời gian tỉ lệ nghịch với vận tốc

Nên thời gian cụm bèo trôi = 6 x thời gian xuôi dòng = 6 x 32phút = 192 phút

Đáp số: 192 phút

*Phân tích 2:

+ Ta đi tìm trung bình mỗi giờ ca nô đi xuôi dòng được số phần của quãng sông AB là bao nhiêu.

+ Trung bình mỗi giờ ca nô đi ngược dòng được số phần của quãng sông AB là bao nhiêu.

+ Tính trung bình mỗi giờ cụm bèo trôi được bao nhiêu phần của quãng sông AB

* Cách giải 2:

Trung bình mỗi giờ ca nô xuôi dòng được là: 1:32 = \frac{1}{{32}}( Quãng sông AB)

Trung bình mỗi giờ ca nô đi ngược dòng được là: 1:48 = \frac{1}{{48}} ( Quãng sông AB)

Vì hiệu vận tốc xuôi dòng và ngược dòng bằng hai lần vận tốc dòng nước, nên mỗi giờ cụm bèo trôi được là: \left( {\frac{1}{{32}} - \frac{1}{{48}}} \right):2 = \frac{1}{{192}}( Quãng sông AB)

Thời gian cụm bèo trôi từ A đến B là: 1:\frac{1}{{192}}(phút)

Đáp số: 192 phút

Bài toán 2:

Một ca nô chạy trên một khúc sông từ bến A đến bến B, khi đi xuôi dòng thì mất 5 giờ, khi đi ngược dòng thì mất 6 giờ. Tính khoảng cách từ bến A đến bến B, biết vận tốc của ca nô khi đi xuôi dòng hơn vân tốc của ca nô khi đi ngược dòng là 6km/giờ?

* Phân tích 1:

+ Cần phải tính được vận tốc xuôi dòng hoặc là vận tốc ngược dòng.

+ Lấy vận tốc vừa tìm được nhân với thời gian tương ứng

+ Trên cùng một quãng đường thì vận tốc và thời gian là hai đại lượng tỉ lệ nghịch.

* Cách giải 1

Tỉ số thời gian xuôi dòng và ngược dòng là: \frac{5}{6}

Trên cùng một quãng sông AB thì vận tốc và thời gian là hai đại lượng tỉ lệ nghịch với nhau, nên ta có tỉ số giữa vận tốc xuôi dòng và ngược dòng là: \frac{6}{5}

Ta có sơ đồ sau:

bài toán chuyển động trên dòng nước ảnh số 2

Nhìn vào sơ đồ ta có:

Vận tốc xuôi dòng là: 6 x 6 = 36 (km/giờ)

Khoảng cách bến sông AB là 36 x 5 = 180 (km)

Đáp số: 180 km

*Phân tích 2:

+ Ta đi tìm trung bình mỗi giờ ca nô đi xuôi dòng được số phần của quãng sông AB là bao nhiêu.

+ Trung bình mỗi giờ ca nô đi ngược dòng được số phần của quãng sông AB là bao nhiêu.

+ Tính trung bình mỗi giờ dòng nước trôi được bao nhiêu phần của quãng sông AB

+ Vận tốc xuôi dòng hơn vận tốc ngược dòng 6km/giờ đó chính là 2 lần vận tốc của dòng nước, từ đó ta tính được vận tốc của dòng nước

*Cách giải 2

Trung bình mỗi giờ ca nô xuôi dòng được là: 1:5 = \frac{1}{5}(quãng sông)

Trung bình mỗi giờ ca nô đi ngược dòng được là: 1:6 = \frac{1}{6}(quãng sông)

Vì hiệu vận tốc xuôi dòng và ngược dòng bằng hai lần vận tốc dòng nước

Nên mỗi giờ dòng nước chảy được là: \left( {\frac{1}{5} - \frac{1}{6}} \right):2 = \frac{1}{{60}}(quãng sông)

Thời gian dòng nước chảy từ A đến B là: 1:\frac{1}{{60}} = 60(giờ)

Vận tốc của dòng nước là: 6 : 2 = 3 (km/giờ)

Quãng sông AB là: 60 x 3 = 180 (km)

Đáp số: 180 km

Bài toán 3:

Một ca nô xuôi dòng từ A đến B hết 4 giờ và ngược dòng từ B về A hết 6 giờ. Biết vận tốc của dòng nước 50m/phút. Tính

a, Chiều dài quãng sông AB

b, Vận tốc ca nô trong nước yên lặng.

* Phân tích 1

+ Trên cùng một quãng đường thì vận tốc và thời gian là hai đại lượng tỉ lệ nghịch.

+ Để tính chiều dài quãng sông AB ta có thể tiến hành theo nhiều cách: Vận tốc xuôi dòng nhân với thời gian xuôi dòng hoặc vận tốc ngược dòng nhân với thời gian ngược dòng hoặc vận tốc dòng nước nhân với thời gian của dòng nước trôi từ A đến B

+ Vận tốc ca nô trong nước lặng chính là vận tốc thực của ca nô = vận tốc xuôi dòng – vận tốc của dòng nước hoặc là = vận tốc ngược dòng + vận tốc dòng nước.

* Cách giải 1

Vận tốc dòng nước là: 50m/phút = 3km/giờ

Tỉ số thời gian xuôi dòng và ngược dòng là:

Trên cung một quãng đường thì vận tốc và thời gian là hai đại lượng tỉ lệ nghịch với nhau

Nên tỉ số vận tốc xuôi dòng và ngược dòng là : \frac{4}{6}

Ta có sơ đồ vận tốc sau:

bài toán chuyển động trên dòng nước ảnh số 3

Vì trên cùng một quãng đường thì vận tốc và thời gian là hai đại lượng tỉ lệ nghịch với nhau nên thời gian dòng nước trôi từ A đến B là: 4 x 6 = 24 (giờ)

a, Quãng sông AB là: 3 x 24 = 72 (km)

b, Vận tốc của ca nô đi trong nước lặng là: (3 x 6) – 3 = 15 (km/giờ)

Đáp số: a, 72 km/ b, 15 km/giờ

*Cách giải 2:

Trung bình mỗi giờ ca nô xuôi dòng được là: 1:4 = \frac{1}{4}(quãng sông AB)

Trung bình mỗi giờ ca nô ngược dòng được là: 1:6 = \frac{1}{6}(quãng sông AB)

Vì hiệu vận tốc xuôi dong và ngược dòng bằng hai lần vận tốc dòng nước, nên mỗi giờ dòng nước chảy được là: \left( {\frac{1}{4} - \frac{1}{6}} \right):2 = \frac{1}{{24}}(quãng sông AB)

Thời gian dòng nước chảy từ A đến B là: 1:\frac{1}{{24}} = 24(giờ)

a, Ta có vận tốc dòng nước là: 50m/phút = 3km/giờ

Quãng sông AB dài là: 3 x 24 = 72 (km)

Vận tốc của ca nô khi đi trong nước lặng là: 72 : 6 + 3 = 15 (km/giờ)

Đáp số: a, 72 km/ b, 15 km/giờ

C. Bài tập vận dụng về chuyển động trên dòng nước

Bài tập 1

Một ca nô xuôi dòng từ A đến B hết 2 giờ và ngược dòng từ B về A hết 4 giờ. Hỏi một cụm bèo trôi theo dòng nước từ A đến B hết mấy giờ?

Lời giải:

Trung bình mỗi giờ ca nô xuôi dòng được là: 1:2 = \frac{1}{2}( Quãng sông AB)

Trung bình mỗi giờ ca nô đi ngược dòng được là: 1:4 = \frac{1}{4}( Quãng sông AB)

Vì hiệu vận tốc xuôi dòng và ngược dòng bằng hai lần vận tốc dòng nước, nên mỗi giờ cụm bèo trôi được là: \left( {\frac{1}{2} - \frac{1}{4}} \right):2 = \frac{1}{8}( Quãng sông AB)

Thời gian cụm bèo trôi từ A đến B là: 1:\frac{1}{8}(giờ)

Đáp số: 8 giờ

Bài tập 2

Lúc 6 giờ sáng một chuyến tàu thuỷ chở khách xuôi dòng từ A đến B nghỉ lại 2 giờ để trả và đón khách rồi lại ngược dòng về đến A lúc 3 giờ 20 phút chiều cùng ngày. Hãy tính khoảng cách giữa hai bến A và B, biết rằng thời gian xuôi dòng nhanh hơn thời gian ngược dòng 40 phút và vận tốc của dòng nước là 50m/phút.

Lời giải:

Tổng thời gian xuôi dòng và ngược dòng (không tính thời gian nghỉ là):

15 giờ 20 phút - 6 giờ - 2 giờ = 7 giờ 20 phút

Đổi 7 giờ 20 phút = \frac{{22}}{3}giờ; 40 phút = \frac{2}{3}giờ

Thời gian ngược dòng của tàu thủy là: \left( {\frac{{22}}{3} + \frac{2}{3}} \right):2 = \frac{{12}}{3} (giờ)

Thời gian xuôi dòng của tàu thủy là: \frac{{22}}{3} - \frac{{12}}{3} = \frac{{10}}{3}(giờ)

Trung bình mỗi giờ, tàu thủy ngược dòng được là 1:\frac{{12}}{3} = \frac{3}{{12}}(quãng đường AB)

Trung bình mỗi giờ, tàu thủy xuôi dòng được là: 1:\frac{{10}}{3} = \frac{3}{{10}}(quãng đường AB)

Trung bình mỗi giờ, đám bèo trôi được: \left( {\frac{3}{{10}} - \frac{3}{{12}}} \right):2 = \frac{1}{{40}}(quãng đường AB)

Thời gian đám bèo trôi là: 1:\frac{1}{{40}} = 40(giờ)

Đổi 40 giờ = 2400 phút

Khoảng cách giữa hai bến A và B là: 50 x 2400 = 120000 (m)

Đổi 120000m = 120km

Đáp số: 120km

Bài tập 3

Một nhóm các bạn bơi thuyền đi chơi xuôi dòng sông với vận tốc là 6km/giờ và bơi ngược dòng với vận tốc là 3km/giờ. Hỏi

a, Nếu chuyến đi chơi kéo dài 4 giờ thì khi rời bến bao xa thì các bạn phải quay lại để trở về đúng giờ?

b, Vận tốc của dòng sông?

c, Vận tốc thực của thuyền?

Lời giải:

a, Tỉ số vận tốc xuôi dòng và vận tốc ngược dòng là: 6 : 3 = 2

Vậy tỉ số thời gian xuôi dòng và thời gian ngược dòng là \frac{1}{2}

Thời gian rời bến là: 4:\left( {2 + 1} \right) = \frac{4}{3}(giờ)

Các bạn đó rời bến số ki-lô-mét là: 6 \times \frac{4}{3} = 8(km)

b, Vận tốc dòng nước là: (6 - 3) : 2 = 1,5 (km/giờ)

c, Vận tốc thực của thuyền là: 6 - 1,5 = 4,5 (km/giờ)

Đáp số: a, 8km; b, 1,5km/giờ; c, 4,5km/giờ

------------

Trong quá trình học môn Toán lớp 5, các em học sinh chắc hẳn sẽ gặp những bài toán khó, phải tìm cách giải quyết. Hiểu được điều này, VnDoc quyết tâm cùng em học Toán lớp 5 giỏi hơn khi cung cấp lời Giải bài tập Toán lớp 5giải SBT Toán lớp 5 để cùng các em học tốt hơn. Ngoài ra các em học sinh hoặc quý phụ huynh còn có thể tham khảo thêm đề thi học kì 2 lớp 5 các môn Toán, Tiếng Việt, Tiếng Anh theo chuẩn thông tư 22 của bộ Giáo Dục và các dạng bài ôn tập môn Tiếng Việt 5, và môn Toán 5. Những đề thi này được VnDoc.com sưu tầm và chọn lọc từ các trường tiểu học trên cả nước nhằm mang lại cho học sinh lớp 5 những đề ôn thi học kì chất lượng nhất. Mời các em cùng quý phụ huynh tải miễn phí đề thi về và ôn luyện.

Đánh giá bài viết
52 13.673
0 Bình luận
Sắp xếp theo
Toán lớp 5 Xem thêm