Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Phân loại: Tài liệu Tính phí
32_Lê Thị Anh Thư Toán học Lớp 9

Cho tam giác ABC cân tại B có đường trung tuyến BI

. Vẽ E là điểm đối xứng vs B qua I.

a) Chứng minh: ABCE là hình thoi.

b) Vẽ AM vuông góc với CE và CN vuông góc vs AB. 

chứng minh: ANCM là hình chữ nhật.

 

3
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
3 Câu trả lời
  • Chàng phi công
    Chàng phi công

    mn giúp mình với nhé

    Trả lời hay
    4 Trả lời 14/11/22
  • Xuka
    Xuka

    b. Xét tam giác ABC và tam giác AEC có:

    AC chung

    BI = IE (đối xứng)

    AI = IC

    => tam giác ABC = AEC

    Mà ABC cân => AEC cân

    - Ta có: AM ⊥ CE ; CN ⊥ AB

    Nên AM là đường trung tuyến của tam giác AEC, CN là đường trung tuyến của tam giác ABC.

    mà ABC = AEC => AM = CN

    - Xét tứ giác AMCN có:

    là hai cạnh đối, AM = CN

    góc ANC = góc AMC = 90*

    => Tứ giác AMCN là hình chữ nhật

    Trả lời hay
    1 Trả lời 14/11/22
  • Gà Bông
    Gà Bông

    a) Xét tứ giác ABCE, có:

    + E đối xứng B qua I => BI = IE

    + AI = IC (t/c đường trung tuyến trong tam giác cân)

    + Tam giác ABC cân tại B => BI ⊥ AC => BE ⊥ AC

    Mà AC, BE là hai đường chéo của tứ giác

    Nên ABCE là hình thoi (tứ giác có hai đường chéo vuông góc)

    0 Trả lời 14/11/22

Toán học

Xem thêm