Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169

Đề thi tuyển sinh vào lớp 10 THPT môn Toán sở GD&ĐT Khánh Hòa năm 2016 - 2017

Lớp: Lớp 9
Môn: Toán
Loại File: PDF + Word
Phân loại: Tài liệu Tính phí

Đề thi tuyển sinh vào lớp 10 THPT môn Toán

Đề thi tuyển sinh vào lớp 10 THPT môn Toán sở GD&ĐT Khánh Hòa năm 2016 - 2017 được VnDoc sưu tầm và đăng tải nhằm giúp các em học sinh có thêm nhiều tài liệu ôn thi vào lớp 10 môn Toán để tham khảo chuẩn bị tốt cho kì thi tuyển sinh sắp tới đây đạt kết quả cao. Mời các em cùng tham khảo.

Đề thi tuyển sinh vào lớp 10 THPT môn Toán trường PTNK, Đại Học Quốc Gia TP. HCM năm 2016 - 2017

Đề thi tuyển sinh vào lớp 10 THPT chuyên môn Ngữ văn trường Đại học Ngoại Ngữ, Hà Nội năm 2016 - 2017

Đề thi tuyển sinh vào lớp 10 THPT môn Ngữ văn trường THPT Chuyên Lam Sơn, Thanh Hóa năm 2016 - 2017

SỞ GIÁO DỤC VÀ ĐÀO TẠO KHÁNH HÒA KỲ THI TUYỂN SINH VÀO LỚP 10 THPT CHUYÊN
NĂM HỌC: 2016 - 2017
Môn thi: Toán (chuyên)
Ngày thi: 03/06/2016
Thời gian: 150 phút - không kể thời gian phát đề)
(Đề thi có 01 trang)

Đề thi chính thức

Bài 1 (2,0 điểm)

1. Rút gọn biểu thức Đề thi vào lớp 10 môn Toán

2. Cho a là nghiệm của phương trình x2 - 3x + 1 = 0. Không tìm giá trị của a, hãy tính giá trị của biểu thức Đề thi vào lớp 10 môn Toán

Bài 2 (2,0 điểm)

1. Giải phương trình Đề thi vào lớp 10 môn Toán

2. Giải hệ phương trình Đề thi vào lớp 10 môn Toán

Bài 3 (2,0 điểm)

1. Cho x ≥ 1. Tìm giá trị nhỏ nhất của biểu thức Đề thi vào lớp 10 môn Toán

2. Hãy tính tất cả các số nguyên tố sao cho 8p2 + 1 và 8p2 - 1 là các số nguyên tố.

Bài 4 (3,0 điểm)

Cho hai đường tròn (O), (O') cắt nhau tại hai điểm phân biệt A và B. Từ điểm E nằm trên tia đối của tia AB, kẻ đến đường tròn (O') các tiếp tuyến EC và ED (C, D là các tiếp điểm phân biệt). Các đường thẳng AC và AD theo thứ tự cắt đường tròn (O) lần lượt tại hai điểm P và Q (P và Q khác A)

1. Chứng minh hai tam giác BCP và BDQ đồng dạng.

2. Chứng minh CA.DQ = CP.DA.

3. Chứng minh ba điểm C, D và trung điểm I của đoạn thẳng PQ thẳng hàng.

Bài 5 (1,0 điểm)

Trong mặt phẳng cho 10 điểm đôi một phân biệt sao cho bất kỳ 4 điểm này trong 10 điểm đã cho cũng có 3 điểm thẳng hàng. Chứng minh rằng ta có thể bỏ đi một điểm trong 10 điểm đã cho để 9 điểm còn lại cùng thuộc một đường thẳng

Chọn file muốn tải về:
Đóng Chỉ thành viên VnDoc PRO/PROPLUS tải được nội dung này!
Đóng
79.000 / tháng
Đặc quyền các gói Thành viên
PRO
Phổ biến nhất
PRO+
Tải tài liệu Cao cấp 1 Lớp
30 lượt tải tài liệu
Xem nội dung bài viết
Trải nghiệm Không quảng cáo
Làm bài trắc nghiệm không giới hạn
Mua cả năm Tiết kiệm tới 48%

Có thể bạn quan tâm

Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo
🖼️

Đề thi vào 10 môn Toán

Xem thêm
🖼️

Gợi ý cho bạn

Xem thêm