Đề thi học kì 1 môn Toán lớp 6 tỉnh Bắc Giang năm học 2015 - 2016
Đề thi học kì 1 môn Toán lớp 6 tỉnh Bắc Giang
Đề thi học kì 1 môn Toán lớp 6 tỉnh Bắc Giang năm học 2015 - 2016 được VnDoc.com sưu tầm và đăng tải, đây là tài liệu ôn tập môn Toán hữu ích, giúp các bạn củng cố kiến thức nửa đầu năm học lớp 6 hiệu quả. Mời các bạn tham khảo.
Đề kiểm tra học kì 1 môn Toán lớp 6 trực tuyến năm 2015 - 2016 Trường THCS Tân Sơn
Đề kiểm tra học kì 1 môn Toán lớp 6 trường THCS Tân Sơn năm 2015 - 2016
Đề thi học kì 1 môn Toán lớp 6 trường THCS Long Mỹ, Vĩnh Long năm 2015 - 2016
SỞ GIÁO DỤC VÀ ĐÀO TẠO BẮC GIANG | ĐỀ KIỂM TRA CHẤT LƯỢNG HỌC KÌ I NĂM HỌC 2015 - 2016 MÔN: TOÁN LỚP 6 Thời gian làm bài: 90 phút |
Câu 1 (2,5 điểm)
1) Tính nhanh: 1975.14 + 86.1975
2) Thực hiện phép tính: [3(27 + 75 : 52) - 15.22] + 20150
3) Từ ba chữ số 3; 0 và 5 hãy viết các số có ba chữ số khác nhau thỏa mãn điều kiện số đó chia hết cho 5.
Câu 2 (3,0 điểm)
1) Tìm số tự nhiên biết:
a) - 105:21 = 519: 517
b) 48⋮x, 60⋮x, 72⋮x và lớn nhất.
2) Viết tập hợp gồm các số tự nhiên lớn hơn 3 và nhỏ hơn 10 bằng 2 cách, sau đó điền ký hiệu ∈, ∉ thích hợp vào ô trống:
Câu 3 (1,5 điểm)
Hai bạn An và Bách cùng học tại một trường Trung học sơ sở nhưng ở hai lớp khác nhau. Bạn An cứ 10 ngày lại trực nhật một lần còn bạn Bách cứ 12 ngày lại trực nhật một lần. Hỏi sau khi hai bạn cùng trực nhật vào một ngày thì ít nhất bao nhiêu ngày nữa hai bạn đó lại cùng trực nhật ?
Câu 4 (2,5 điểm)
Trên tia lấy hai điểm và sao cho
1) Tính độ dài đoạn thẳng .
2) Vẽ tia là tia đối của tia . Trên tia lấy điểm sao cho . Hỏi điểm có là trung điểm của đoạn thẳng không ? Vì sao?
Câu 5 (0,5 điểm)
Cho biểu thức A = 2 + 22 + 23 + 24 +25 + 26 + ...+ 22014 + 22015 +22016
Chứng minh rằng A chia hết cho 7.
Đáp án đề thi học kì 1 môn Toán lớp 6
Câu 1:
Phần 1 (1 điểm)
1975.14 + 86.1975
= 1975.(14 + 86)
= 1975.100
= 197500
Phần 2 (1 điểm)
[3(27 + 75 : 52) - 15.22] + 20150
= [3(27 + 75 : 25) - 15.4] + 1
= [3(27 + 3) - 60] + 1
= (3.30 - 60) + 1
= (90 - 60) + 1 = 31
Phần 3 (0.5 điểm)
Từ ba chữ số 3, 0, 5 viết được tất cả 3 số có 3 chữ số khác nhau chia hết cho 5 là: 350; 305; 530
Câu 2
Phần 1a (1 điểm)
x - 105:21 = 519: 517
x - 5 = 519-17
x - 5 = 52
x - 5 = 25
x = 5 + 25 = 30
Vậy = 30
Phần 1b (1 điểm)
Vì 48⋮x; 60⋮x; 72⋮x nên x ∈ UC(48, 60, 72)
mà x lớn nhất nên x = UCLN (48, 60, 72) (1)
Ta có 48 = 24.3
60 = 22.3.5
72 = 23.32
UCLN (48, 60, 72) = 22.3 = 12 (2)
Từ (1) và (2) suy ra x = 12
Vậy x = 12
Phần 2 (1 điểm)
Cách 1: M = {4; 5; 6; 7; 8; 9}
Cách 2: M = {x N|3 < x < 10}
4 ∈ M, 10 ∉ M
Câu 3
Vì bạn An cứ 10 ngày và bạn Bách cứ 12 ngày trực nhật một lần nên số ngày cần tìm là bội chung nhỏ nhất của 10 và 12.
Ta có 10 = 2.5
12 = 22. 3
BCNN(10,12) = 22.3.5 = 60
Vậy sau ít nhất 60 ngày thì hai bạn lại cùng trực nhật
Câu 4
Hình vẽ:
Phần 1 (1.25 điểm)
Vì trên tia Ox có OA = 8 (cm); OB = 5 (cm) mà 0 < 5 < 8 nên điểm B nằm giữa hai điểm O và A
Vì điểm B nằm giữa hai điểm O và A nên OB + AB = OA
Thay số, ta được: 5 + AB = 8
AB = 8-5=3
Vậy AB = 3 (cm)
Phần 2 (0.75 điểm)
Điểm O là trung điểm của đoạn thẳng BC
Giải thích:
Vì điểm C nằm trên tia Oy nên hai tia OC và Oy trùng nhau
Vì điểm B nằm trên tia Ox nên hai tia OB và Ox trùng nhau mà tia Oy là tia đối của tia Ox nên hai tia OB và OC đối nhau.
Suy ra điểm O nằm giữa hai điểm B và C (1)
Ta có OA = 8 (cm); OB = 5 (cm) nên OB = OC (2)
Từ (1) và (2) suy ra điểm O là trung điểm của đoạn thẳng BC
Câu 5
A = 2 + 22 + 23 + 24 +25 + 26 + ...+ 22014 + 22015 +22016
(Tổng A có 2016 số hạng, chia A thành 672 nhóm, mỗi nhóm có 3 số hạng)
A = (2 + 22 + 23) + (24 +25 + 26)+ ...+ (22014 + 22015 + 22016)
A = (1.2 + 2.2 + 2. 22) + (1.24 + 2. 24 + 22. 24) + ... + (1. 22014 + 2. 22014 + 22. 22014)
A = 2(1 + 2 + 22) + 24 (1 + 2 + 22) + ... + 22014 (1 + 2 + 22)
A = 2.7+ 24 .7 + ... + 22014 .7
A= 7.(2 + 24 + ... + 22014)⋮7