Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm

Đề thi học sinh giỏi lớp 10 THPT Chuyên tỉnh Vĩnh Phúc năm 2012 môn Toán - Có đáp án

Vndoc.com xin giới thiệu đến các bạn lớp 9, chuẩn bị thi lên lớp 10: Đề thi học sinh giỏi lớp 10 THPT Chuyên tỉnh Vĩnh Phúc năm 2012 môn Toán - Có đáp án.

Đề thi học sinh giỏi lớp 10 môn Toán:

SỞ GIÁO DỤC VÀ ĐÀO TẠO
TỈNH VĨNH PHÚC

(ĐỀ THI CHÍNH THỨC)

KỲ THI CHỌN HSG LỚP 10 NĂM HỌC 2011-2012
ĐỀ THI MÔN: TOÁN

Dành cho học sinh THPT chuyên Vĩnh Phúc
Thời gian làm bài: 180 phút, không kể thời gian giao đề

Câu 1 (3,0 điểm)

1. Giải hệ phương trình:

2. Tìm tất cả hàm số f: ¡ → ¡ thoả mãn: f(x + y) = f(x) + y với mọi x, y thuộc ¡ và

Câu 2 (2,0 điểm)

Tìm tất cả các số nguyên tố p, q sao cho (7p - 4p)(7q - 4q) chia hết cho pq.

Câu 3 (2,0 điểm).

Cho tứ giác ABCD ngoại tiếp được một đường tròn. Một đường thẳng Δ đi qua A cắt đoạn thẳng BC, tia đối của tia CD tương ứng tại E, F (E, F không trùng với B, C). Gọi I1, I2 và I3 lần lượt là tâm đường tròn nội tiếp của các tam giác ABE, ECF và FAD. Tiếp tuyến của đường tròn song song với CD (gần CD hơn) cắt Δ tại H. Chứng minh rằng H là trực tâm của tam giác I1I2I3

Câu 4 (2,0 điểm).

Xét các số thực dương a, b, c thỏa mãn a + 2b + 3c ≥ 20. Tìm giá trị nhỏ nhất của biểu thức:

Câu 5 (1,0 điểm).

Tìm tất cả các tập hợp X là tập con của tập số nguyên dương thoả mãn các tính chất: X chứa ít nhất hai phần tử và với mọi m, n thuộc X, m < n thì tồn tại k thuộc X sao cho n = mk2.

Chia sẻ, đánh giá bài viết
2
Sắp xếp theo
    🖼️

    Gợi ý cho bạn

    Xem thêm
    🖼️

    Thi học sinh giỏi lớp 10

    Xem thêm