Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169

Lý thuyết Toán 10 Bài 1 KNTT

Lớp: Lớp 10
Môn: Toán
Dạng tài liệu: Lý thuyết
Bộ sách: Kết nối tri thức với cuộc sống
Phân loại: Tài liệu Tính phí

Lý thuyết Toán 10 Bài 1 KNTT được VnDoc.com sưu tầm và xin gửi tới bạn đọc cùng tham khảo. Mời các bạn cùng theo dõi bài viết dưới đây nhé.

1. Mệnh đề, mệnh đề chứa biến

a. Mệnh đề

Định nghĩa:

Mệnh đề logic (gọi tắt là mệnh đề) là những câu nói, khẳng định có tính đúng hoặc sai.

Những câu không xác định được tính đúng sai không phải là mệnh đề.

Ví dụ: “Một tuần có 7 ngày” là một mệnh đề (đúng)

“Số 23 không là số nguyên tố” là mệnh đề (sai).

Nhận xét:

Mỗi mệnh đề phải hoặc đúng hoặc sai.

Một mệnh đề không thể vừa đúng vừa sai.

=> Câu nghi vấn, câu cảm thán, câu cầu khiến thường không là mệnh đề.

Kí hiệu: Thường sử dụng các chữ cái P, Q, R, … để biểu thị các mệnh đề.

b. Mệnh đề chứa biến

Một câu chưa khẳng định được tính đúng sai, nhưng nếu cho một giá trị cụ thể thì câu đó cho ta một mệnh đề. Những câu như vậy được gọi là mệnh đề chứa biến.

Ví dụ: P: “3n+1 chia hết cho 5”

Q: “x < 5”

2. Mệnh đề phủ định

+ Để phủ định một mệnh đề P, người ta thường thêm (hoặc bớt) từ “không” hoặc “không phải” vào trước vị ngữ của mệnh đề P. Kí hiệu \overline P\(\overline P\)là mệnh đề phủ định của mệnh đề P.

Nhận xét:

+ Nếu P đúng thì \overline P\(\overline P\) sai, còn nếu P sai thì \overline P\(\overline P\) đúng.

3. Mệnh đề kéo theo, mệnh đề đảo

a. Mệnh đề kéo theo

+ Mệnh đề “Nếu P thì Q” được gọi là mệnh đề kéo theo, kí hiệu: P \Rightarrow Q\(P \Rightarrow Q\).

+ Cách phát biểu định lí toán học dạng P \Rightarrow Q\(P \Rightarrow Q\):

P là giả thiết của định lí, Q là kết luận của định lí.

P là điều kiện đủ để có Q

Q là điều kiện cần để có P.

b. Mệnh đề đảo

Mệnh đề Q \Rightarrow P\(Q \Rightarrow P\) được gọi là mệnh đề đảo của mệnh đề P \Rightarrow Q\(P \Rightarrow Q\).

Chú ý: Mệnh đề đảo của một mệnh đề đúng không nhất thiết là đúng.

4. Mệnh đề tương đương

+ Mệnh đề “P nếu và chỉ nếu Q” được gọi là một mệnh đề tương đương, kí hiệu: P \Leftrightarrow Q\(P \Leftrightarrow Q\)

Trên đây VnDoc.com vừa gửi tới bạn đọc bài viết Lý thuyết Toán 10 Bài 1 KNTT. Hi vọng qua bài viết này bạn đọc có thêm tài liệu để học tập tốt hơn nhé. Mời các bạn cùng tham khảo thêm mục Giải Toán 10 KNTT, Lý thuyết Toán 10 KNTT, Trắc nghiệm Toán 10 KNTT...

Đóng Chỉ thành viên VnDoc PRO/PROPLUS tải được nội dung này!
Đóng
79.000 / tháng
Đặc quyền các gói Thành viên
PRO
Phổ biến nhất
PRO+
Tải tài liệu Cao cấp 1 Lớp
30 lượt tải tài liệu
Xem nội dung bài viết
Trải nghiệm Không quảng cáo
Làm bài trắc nghiệm không giới hạn
Mua cả năm Tiết kiệm tới 48%

Có thể bạn quan tâm

Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo
🖼️

Lý thuyết Toán 10 KNTT

Xem thêm
🖼️

Gợi ý cho bạn

Xem thêm