Trục căn thức ở mẫu của biểu thức: Lý thuyết và Bài tập

VnDoc xin giới thiệu Chuyên đề trục căn thức ở mẫu của biểu thức: Lý thuyết và Bài tập là tài liệu tham khảo hữu ích dành cho thầy cô trong quá trình giảng dạy, ôn luyện kiến thức đã học cho các bạn đồng thời cũng giúp học sinh học tốt môn Toán lớp 9. Sau đây là tài liệu mời các bạn tải về tham khảo.

Để tiện trao đổi, chia sẻ kinh nghiệm về giảng dạy và học tập các môn học lớp 9, VnDoc mời các thầy cô giáo, các bậc phụ huynh và các bạn học sinh truy cập nhóm riêng dành cho lớp 9 sau: Nhóm Luyện thi lớp 9 lên 10. Rất mong nhận được sự ủng hộ của các thầy cô và các bạn.

Cách trục căn thức ở mẫu

Lý thuyết trục căn thức ở mẫu

+) Khi đưa thừa số A^2 ra ngoài dấu căn bậc hai ta được |A|:

\sqrt {{A^2}B} = \left| A \right|\sqrt B với B \geqslant 0

+) Khi đưa thừa số A không âm vào trong dấu căn bậc hai ta được A^2:

A\sqrt B = \sqrt {{A^2}B} với A \geqslant 0;\,\,B \geqslant 0

Chú ý: A\sqrt B = - \sqrt {{A^2}B} với A < 0;\,\,\,B \geqslant 0.

+ Khử mẫu của biểu thức lấy căn:

Nhân tử và mẫu với thừa số phụ thích hợp để mẫu là một bình phương.

\sqrt {\frac{A}{B}} = \sqrt {\frac{{A.B}}{{B.B}}} = \frac{1}{{|B|}}.\sqrt {AB} với AB \geqslant 0;\,\,B \ne 0

+) Trục căn thức ở mẫu:

\frac{A}{{\sqrt B }} với B > 0 

Bài tập trục căn thức ở mẫu

Khử mẫu của các biểu thức sau:

a) a\sqrt {\frac{b}{a}} b) x\sqrt {\frac{5}{x}}

Lời giải:

a) Nếu a > 0 thì a\sqrt {\frac{b}{a}} = \sqrt {\frac{b}{a}.{a^2}} = \sqrt {ab}

Nếu a < 0 thì a\sqrt {\frac{b}{a}} = - |a|\sqrt {\frac{b}{a}} = - \sqrt {\frac{b}{a}.{a^2}} = - \sqrt {ab}

b) Để căn thức có nghĩa, ta có x > 0 

x\sqrt {\frac{5}{x}} = \sqrt {\frac{5}{x}.{x^2}} = \sqrt {5x}

Trục căn thức ở mẫu của biểu thức

Lý thuyết trục căn thức ở mẫu của biểu thức

+) Với các biểu thức A,B (B>0), ta có: \frac{A}{{\sqrt B }} = \frac{{A\sqrt B }}{B}

+) Với các biểu thức A,B,C(A\geq 0, A\neq B^{2}), ta có:

\frac{C}{\sqrt{A}+B}=\frac{C(\sqrt{A}-B)}{A-B^{2}}

\frac{C}{\sqrt{A}-B}=\frac{C(\sqrt{A}+B)}{A-B^{2}}

+) Với các biểu thức A,B,C(A\geq 0,B\geq 0,A\neq B), ta có:

\frac{C}{\sqrt{A}+\sqrt{B}}=\frac{C(\sqrt{A}-\sqrt{B})}{A-B}

\frac{C}{\sqrt{A}-\sqrt{B}}=\frac{C(\sqrt{A}+\sqrt{B})}{A-B}

Bài tập trục căn thức ở mẫu lớp 9

Bài 50 (trang 30 SGK Toán 9 Tập 1): Trục căn thức ở mẫu với giả thiết các biểu thức chữ đều có nghĩa.

\frac{5}{\sqrt{10}}=\frac{5\sqrt{10}}{\sqrt{10}.\sqrt{10}}=\frac{5\sqrt{10}}{10}=\frac{\sqrt{10}}{2}

\frac{1}{3\sqrt{20}}=\frac{1}{3\sqrt{2^{2}.5}}=\frac{1}{3.2\sqrt{5}}=\frac{1\sqrt{5}}{6\sqrt{5}.\sqrt{5}}=\frac{\sqrt{5}}{6.5}=\frac{\sqrt{5}}{30}

\frac{2\sqrt{2}+2}{5\sqrt{2}}=\frac{(2\sqrt{2}+2)\sqrt{2}}{5\sqrt{2}.\sqrt{2}}=\frac{2(\sqrt{2})^{2}+2\sqrt{2}}{5.2}=\frac{4+2\sqrt{2}}{10}=\frac{2+\sqrt{2}}{5}

Bài 52 (trang 30 SGK toán 9 tập 1): Trục căn thức ở mẫu với giả thiết các biểu thức chữ đều có nghĩa.

\frac{1}{\sqrt{x}-\sqrt{y}};\frac{2ab}{\sqrt{a}-\sqrt{b}}

  • \frac{1}{\sqrt{x}-\sqrt{y}}=\frac{1(\sqrt{x}+\sqrt{y})}{(\sqrt{x}-\sqrt{y})(\sqrt{x}+\sqrt{y})}=\frac{(\sqrt{x}+\sqrt{y})}{x-y}

Do\ x\neq y\ nên \sqrt{x}\neq \sqrt{y}

  • \frac{2ab}{\sqrt{a}-\sqrt{b}}=\frac{2ab(\sqrt{a}+\sqrt{b})}{(\sqrt{a}-\sqrt{b})(\sqrt{a}+\sqrt{b})}=\frac{2ab(\sqrt{a}+\sqrt{b})}{a-b}

Do\ a\neq b\ nên\ \sqrt{a}\neq \sqrt{b}.

Các bài toán trục căn thức nâng cao

Ví dụ 1: Trục căn thức ở mẫu các biểu thức sau:

a) \frac{\sqrt{5}-\sqrt{3}}{\sqrt{2}} b) \frac{26}{5-2\sqrt{3}}

Lời giải:

a) \frac{{\sqrt 5 - \sqrt 3 }}{{\sqrt 2 }} = \frac{{\sqrt 2 \left( {\sqrt 5 - \sqrt 3 } \right)}}{2} = \frac{{\sqrt {10} - \sqrt 6 }}{2}

b) \frac{{26}}{{5 - 2\sqrt 3 }} = \frac{{26\left( {5 + 2\sqrt 3 } \right)}}{{\left( {5 + 2\sqrt 3 } \right)\left( {5 - 2\sqrt 3 } \right)}} = \frac{{26\left( {5 + 2\sqrt 3 } \right)}}{{25 - 12}} = 2\left( {5 + 2\sqrt 3 } \right) = 10 + 4\sqrt 3

Lý thuyết trục căn thức ở mẫu bậc 3

Công thức:

\frac{M}{\sqrt[3]{a}\pm \sqrt[3]{b}}=\frac{M(\sqrt[3]{a^{2}}\pm \sqrt[3]{ab}+\sqrt[3]{b^{2}})}{(\sqrt[3]{a}\pm \sqrt[3]{b})(\sqrt[3]{a^{2}}\pm \sqrt[3]{ab}+\sqrt[3]{b^{2}})}=\frac{M(\sqrt[3]{a^{2}}\pm \sqrt[3]{ab}+\sqrt[3]{b^{2}})}{a\pm b}

Ví dụ: Trục căn thức ở mẫu:\frac{1}{{\sqrt[3]{9} - \sqrt[3]{6}}}

Lời giải:

\begin{gathered} \frac{1}{{\sqrt[3]{9} - \sqrt[3]{6}}} = \frac{{\sqrt[3]{{{9^2}}} + \sqrt[3]{{9.6}} + \sqrt[3]{{{6^2}}}}}{{\left( {\sqrt[3]{9} - \sqrt[3]{6}} \right)\left( {\sqrt[3]{{{9^2}}} + \sqrt[3]{{9.6}} + \sqrt[3]{{{6^2}}}} \right)}} \hfill \\ = \frac{{\sqrt[3]{{{9^2}}} + \sqrt[3]{{9.6}} + \sqrt[3]{{{6^2}}}}}{{9 - 6}} = \frac{{\sqrt[3]{{{9^2}}} + \sqrt[3]{{9.6}} + \sqrt[3]{{{6^2}}}}}{3} \hfill \\ \end{gathered}

Bài tập tự luyện trục căn thức ở mẫu

Bài 1: Rút gọn các biểu thức sau với x ≥ 0:

a) 4\sqrt x - 5\sqrt x - \sqrt {25x} - 3\sqrt x - 5

b) \sqrt {16x} - 5\left( {\sqrt x - 2} \right) - \sqrt {49x} - 5

Bài 2: Rút gọn biểu thức:

a) \frac{2}{{x - 3}}\sqrt {\frac{{{x^2} - 6x + 9}}{{4{y^4}}}} với x > 3 và y ≠0 

b) \frac{2}{{2x - 1}}\sqrt {5{x^2}\left( {1 - 4x + 4{x^2}} \right)} với x > 0,5

Bài 3: Khử mẫu của biểu thức lấy căn:

a) \sqrt {\frac{1}{{540}}} b) \sqrt {\frac{{11}}{{600}}} c) \sqrt {\frac{5}{{50}}} d) \sqrt {\frac{3}{{98}}}

Bài 4: Trục căn thức ở mẫu và rút gọn (nếu được):

a) \frac{5}{{2\sqrt 5 }} b) \frac{{2\sqrt 2 + 2}}{{5\sqrt 2 }} c) \frac{3}{{\sqrt {10} + \sqrt 7 }}

Bài 5: Trục căn thức ở mẫu và rút gọn (nếu được):

a) \frac{{5\sqrt 3 - 3\sqrt 5 }}{{5\sqrt 3 + 3\sqrt 5 }}

b) \frac{{1 - \sqrt a }}{{1 + \sqrt a }} với a ≥ 0 

Bài 6: Cho biểu thức \frac{{\sqrt x + 1}}{{\sqrt x - 3}} (với x ≥ 0; x ≠3). Trục căn thức ở mẫu của biểu thức A.

Bài 7: 

a) Trục căn thức ở mẫu của các biểu thức: \frac{4}{{\sqrt 3 }}\frac{{\sqrt 5 }}{{\sqrt 5 - 1}}

b) Rút gọn: B = \left( {1 + \frac{{a + \sqrt a }}{{\sqrt a + 1}}} \right)\left( {1 - \frac{{a - \sqrt a }}{{\sqrt a - 1}}} \right)(với a > 0 và a ≠1)

Trên đây VnDoc đã hướng dẫn tới các bạn Chuyên đề trục căn thức ở mẫu của biểu thức: Lý thuyết và Bài tập. Hy vọng với tài liệu này giúp ích cho các bạn học sinh học nắm chắc Cách biến đổi đơn giản căn thức bậc hai..đồng thời học tốt môn Toán lớp 9. Chúc các bạn học tốt, mời các bạn tham khảo!

....................................

Ngoài Chuyên đề trục căn thức ở mẫu của biểu thức: Lý thuyết và Bài tập, mời các bạn học sinh tham khảo thêm các đề thi học kì 1, đề thi học kì 2 các môn Toán, Văn, Anh, Lý, Hóa, ... và các đề thi tuyển sinh vào lớp 10 môn Toán hay các chuyên đề luyện thi vào lớp 10 như Rút gọn biểu thức, Hàm số đồ thị, Phương trình - Hệ Phương trình, Giải bài toán bằng cách lập phương trình, hệ phương trình, Hình học,... mà chúng tôi đã sưu tầm và chọn lọc. Với bài tập về chuyên đề này giúp các bạn rèn luyện thêm kỹ năng giải đề và làm bài tốt hơn. Chúc các bạn học tập tốt!

Đánh giá bài viết
9 28.872
0 Bình luận
Sắp xếp theo
Toán lớp 9 Xem thêm