Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm

Tính m để phương trình bậc hai có hai nghiệm trái dấu

Tìm m để phương trình có hai nghiệm trái dấu cung cấp cho các em phần lý thuyết cơ bản và một số dạng bài tập để các em biết cách làm các bài toán Tìm m để phương trình có hai nghiệm trái dấu. Mời các bạn tham khảo. 

I. Kiến thức cần nhớ khi làm dạng bài tìm m để phương trình có hai nghiệm trái dấu

Công thức nghiệm phương trình bậc hai

Phương trình bậc hai có dạng ax2 + bx + c = 0 (a ≠ 0)

∆ = b2 – 4ac

Nếu ∆ < 0 thì phương trình vô nghiệm

Nếu ∆ = 0 thì phương trình có nghiệm kép {x_1} = {x_2} = \frac{{ - b}}{a}\({x_1} = {x_2} = \frac{{ - b}}{a}\)

Nếu ∆ > 0 thì phương trình có 2 nghiệm phân biệt:

{x_1} = \frac{{ - b + \sqrt \Delta  }}{{2a}},{x_2} = \frac{{ - b - \sqrt \Delta  }}{{2a}}\({x_1} = \frac{{ - b + \sqrt \Delta }}{{2a}},{x_2} = \frac{{ - b - \sqrt \Delta }}{{2a}}\)

Định lý Vi-ét:

Nếu phương trình a{x^2} + bx + c = 0\left( {a \ne 0} \right)\(a{x^2} + bx + c = 0\left( {a \ne 0} \right)\) có hai nghiệm {x_1};{x_2}\({x_1};{x_2}\) phân biệt thì \left\{ \begin{array}{l}
S = {x_1} + {x_2} = \frac{{ - b}}{a}\\
P = {x_1}{x_2} = \frac{c}{a}
\end{array} \right.\(\left\{ \begin{array}{l} S = {x_1} + {x_2} = \frac{{ - b}}{a}\\ P = {x_1}{x_2} = \frac{c}{a} \end{array} \right.\)

+ Lưu ý: Trước khi áp dụng định lý Vi ét, ta cần tìm điều kiện để phương trình có 2 nghiệm phân biệt.

2. Xác định dấu các nghiệm của phương trình bậc hai:

Điều kiện để phương trình có hai nghiệm trái dấu, cùng dấu, cùng dương, cùng âm,…

+ Để phương trình có hai nghiệm phân biệt trái dấu \Leftrightarrow P < 0\(\Leftrightarrow P < 0\)

+ Để phương trình có hai nghiệm phân biệt cùng dấu \Leftrightarrow \left\{ \begin{array}{l}
\Delta  > 0\\
P > 0
\end{array} \right.\(\Leftrightarrow \left\{ \begin{array}{l} \Delta > 0\\ P > 0 \end{array} \right.\)

+ Để phương trình có hai nghiệm phân biệt cùng dấu dương \Leftrightarrow \left\{ \begin{array}{l}
\Delta  > 0\\
P > 0\\
S > 0
\end{array} \right.\(\Leftrightarrow \left\{ \begin{array}{l} \Delta > 0\\ P > 0\\ S > 0 \end{array} \right.\)

+ Để phương trình có hai nghiệm phân biệt cùng dấu âm \Leftrightarrow \left\{ \begin{array}{l}
\Delta  > 0\\
P > 0\\
S < 0
\end{array} \right.\(\Leftrightarrow \left\{ \begin{array}{l} \Delta > 0\\ P > 0\\ S < 0 \end{array} \right.\)

II. Bài tập ví dụ về bài toán tìm m để phương trình có hai nghiệm cùng dấu

Bài 1: Tìm m để phương trình {x^2} - \left( {{m^2} + 1} \right)x + {m^2} - 7m + 12 = 0\({x^2} - \left( {{m^2} + 1} \right)x + {m^2} - 7m + 12 = 0\) có 2 nghiệm trái dấu

Hướng dẫn:

Để phương trình có hai nghiệm phân biệt trái dấu \Leftrightarrow P < 0\(\Leftrightarrow P < 0\).

Lời giải:

Để phương trình có hai nghiệm phân biệt trái dấu \Leftrightarrow P < 0\(\Leftrightarrow P < 0\)

\begin{array}{l}
 \Leftrightarrow {m^2} - 7m + 12 < 0\\
 \Leftrightarrow \left( {m - 3} \right)\left( {m - 4} \right) < 0
\end{array}\(\begin{array}{l} \Leftrightarrow {m^2} - 7m + 12 < 0\\ \Leftrightarrow \left( {m - 3} \right)\left( {m - 4} \right) < 0 \end{array}\)

Xảy ra hai trường hợp:

Trường hợp 1: \left\{ \begin{array}{l}
m - 3 > 0\\
m - 4 < 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
m > 3\\
m < 4
\end{array} \right. \Leftrightarrow 3 < m < 4\(\left\{ \begin{array}{l} m - 3 > 0\\ m - 4 < 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} m > 3\\ m < 4 \end{array} \right. \Leftrightarrow 3 < m < 4\)

Trường hợp 2: \left\{ \begin{array}{l}
m - 3 < 0\\
m - 4 > 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
m < 3\\
m > 4
\end{array} \right.\(\left\{ \begin{array}{l} m - 3 < 0\\ m - 4 > 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} m < 3\\ m > 4 \end{array} \right.\)(vô lý)

Vậy với 3 < m < 4 thì phương trình có hai nghiệm trái dấu

Bài 2: Tìm m để phương trình 3{x^2} - 4mx + {m^2} - 2m - 3 = 0\(3{x^2} - 4mx + {m^2} - 2m - 3 = 0\) có hai nghiệm phân biệt cùng dấu.

Hướng dẫn:

Để phương trình có hai nghiệm phân biệt cùng dấu \Leftrightarrow \left\{ \begin{gathered}
  \Delta \(\Leftrightarrow \left\{ \begin{gathered} \Delta ' > 0 \hfill \\ P > 0 \hfill \\ \end{gathered} \right.\).

Lời giải:

3{x^2} - 4mx + {m^2} - 2m - 3 = 0\(3{x^2} - 4mx + {m^2} - 2m - 3 = 0\)

Để phương trình có hai nghiệm phân biệt \Leftrightarrow \Delta \(\Leftrightarrow \Delta ' > 0\)

\Delta \(\Delta ' = 4{m^2} - 3\left( {{m^2} - 2m - 3} \right)\)

\begin{gathered}
   = 4{m^2} - 3{m^2} + 6m + 9 \hfill \\
   = {m^2} + 6m + 9 \hfill \\
   = {\left( {m - 3} \right)^2} > 0\forall m \ne 3 \hfill \\ 
\end{gathered}\(\begin{gathered} = 4{m^2} - 3{m^2} + 6m + 9 \hfill \\ = {m^2} + 6m + 9 \hfill \\ = {\left( {m - 3} \right)^2} > 0\forall m \ne 3 \hfill \\ \end{gathered}\)

Với mọi m ≠ 3, phương trình có hai nghiệm phân biệt thỏa mãn hệ thức Vi-ét:

\left\{ \begin{gathered}
  {x_1} + {x_2} = \frac{{ - b}}{a} = \frac{{4m}}{3} \hfill \\
  {x_1}{x_2} = \frac{c}{a} = \frac{{{m^2} - 2m - 3}}{3} \hfill \\ 
\end{gathered}  \right.\(\left\{ \begin{gathered} {x_1} + {x_2} = \frac{{ - b}}{a} = \frac{{4m}}{3} \hfill \\ {x_1}{x_2} = \frac{c}{a} = \frac{{{m^2} - 2m - 3}}{3} \hfill \\ \end{gathered} \right.\)

Để phương trình có hai nghiệm phân biệt cùng dấu khi và chỉ khi:

P > 0 \Leftrightarrow 3\left( {{m^2} - 2m - 3} \right) > 0\(P > 0 \Leftrightarrow 3\left( {{m^2} - 2m - 3} \right) > 0\)

Xảy ra hai trường hợp:

Trường hợp 1: \left\{ \begin{gathered}
  m + 1 > 0 \hfill \\
  m - 3 > 0 \hfill \\ 
\end{gathered}  \right. \Leftrightarrow \left\{ \begin{gathered}
  m >  - 1 \hfill \\
  m > 3 \hfill \\ 
\end{gathered}  \right. \Rightarrow m > 3\(\left\{ \begin{gathered} m + 1 > 0 \hfill \\ m - 3 > 0 \hfill \\ \end{gathered} \right. \Leftrightarrow \left\{ \begin{gathered} m > - 1 \hfill \\ m > 3 \hfill \\ \end{gathered} \right. \Rightarrow m > 3\)

Trường hợp 2: \left\{ \begin{gathered}
  m + 1 < 0 \hfill \\
  m - 3 < 0 \hfill \\ 
\end{gathered}  \right. \Leftrightarrow \left\{ \begin{gathered}
  m <  - 1 \hfill \\
  m < 3 \hfill \\ 
\end{gathered}  \right. \Rightarrow m <  - 1\(\left\{ \begin{gathered} m + 1 < 0 \hfill \\ m - 3 < 0 \hfill \\ \end{gathered} \right. \Leftrightarrow \left\{ \begin{gathered} m < - 1 \hfill \\ m < 3 \hfill \\ \end{gathered} \right. \Rightarrow m < - 1\)

Vậy với m < -1 hoặc m < 3 nên phương trình có hai nghiệm phân biệt cùng dấu

Bài 3: Tìm m để phương trình {x^2} - \left( {2m + 3} \right)x + m = 0\({x^2} - \left( {2m + 3} \right)x + m = 0\) có hai nghiệm phân biệt cùng dấu âm

Hướng dẫn:

Để phương trình có hai nghiệm cùng dấu âm \Leftrightarrow \left\{ \begin{gathered}
  \Delta  > 0 \hfill \\
  P > 0 \hfill \\
  S < 0 \hfill \\ 
\end{gathered}  \right.\(\Leftrightarrow \left\{ \begin{gathered} \Delta > 0 \hfill \\ P > 0 \hfill \\ S < 0 \hfill \\ \end{gathered} \right.\)

Lời giải:

Để phương trình có hai nghiệm cùng dấu âm \Leftrightarrow \left\{ \begin{array}{l}
\Delta  > 0\\
P > 0\\
S < 0
\end{array} \right.\(\Leftrightarrow \left\{ \begin{array}{l} \Delta > 0\\ P > 0\\ S < 0 \end{array} \right.\)

Với \Delta  > 0 \Leftrightarrow {\left( {2m + 3} \right)^2} - 4m > 0\(\Delta > 0 \Leftrightarrow {\left( {2m + 3} \right)^2} - 4m > 0\)

\begin{array}{l}
 \Leftrightarrow 4{m^2} + 12m + 9 - 4m > 0\\
 \Leftrightarrow 4{m^2} + 8m + 9 > 0\\
 \Leftrightarrow 4\left( {{m^2} + 2m + 1} \right) + 5 > 0\\
 \Leftrightarrow 4{\left( {m + 1} \right)^2} + 5 > 0\forall m
\end{array}\(\begin{array}{l} \Leftrightarrow 4{m^2} + 12m + 9 - 4m > 0\\ \Leftrightarrow 4{m^2} + 8m + 9 > 0\\ \Leftrightarrow 4\left( {{m^2} + 2m + 1} \right) + 5 > 0\\ \Leftrightarrow 4{\left( {m + 1} \right)^2} + 5 > 0\forall m \end{array}\)

Với P > 0 \Leftrightarrow m > 0\(P > 0 \Leftrightarrow m > 0\)

Với S < 0 \Leftrightarrow 2m + 3 < 0 \Leftrightarrow m < \frac{{ - 3}}{2}\(S < 0 \Leftrightarrow 2m + 3 < 0 \Leftrightarrow m < \frac{{ - 3}}{2}\) kết hợp với m > 0

Vậy không tồn tại m để phương trình có hai nghiệm phân biệt cùng dấu âm

Bài 4: Tìm m để phương trình {x^2} - 2mx + 2m - 4 = 0\({x^2} - 2mx + 2m - 4 = 0\) có hai nghiệm phân biệt cùng dấu dương.

Hướng dẫn:

Để phương trình có hai nghiệm cùng dấu dương \Leftrightarrow \left\{ \begin{gathered}
  \Delta \(\Leftrightarrow \left\{ \begin{gathered} \Delta ' > 0 \hfill \\ P > 0 \hfill \\ S > 0 \hfill \\ \end{gathered} \right.\)

Lời giải:

Để phương trình có hai nghiệm cùng dấu dương \Leftrightarrow \left\{ \begin{array}{l}
\Delta \(\Leftrightarrow \left\{ \begin{array}{l} \Delta ' > 0\\ P > 0\\ S > 0 \end{array} \right.\)

Với \Delta \(\Delta ' > 0 \Leftrightarrow {m^2} - \left( {2m - 4} \right) > 0\)

\begin{array}{l}
 \Leftrightarrow {m^2} - 2m + 4 > 0\\
 \Leftrightarrow \left( {{m^2} - 2m + 1} \right) + 3 > 0\\
 \Leftrightarrow {\left( {m - 1} \right)^2} + 3 > 0\forall m
\end{array}\(\begin{array}{l} \Leftrightarrow {m^2} - 2m + 4 > 0\\ \Leftrightarrow \left( {{m^2} - 2m + 1} \right) + 3 > 0\\ \Leftrightarrow {\left( {m - 1} \right)^2} + 3 > 0\forall m \end{array}\)

Với P > 0 \Leftrightarrow 2m - 4 > 0 \Leftrightarrow m > 2\(P > 0 \Leftrightarrow 2m - 4 > 0 \Leftrightarrow m > 2\)

Với S > 0 \Leftrightarrow 2 > 0\(S > 0 \Leftrightarrow 2 > 0\) (luôn đúng)

Vậy với m > 2 thì phương trình có hai nghiệm phân biệt cùng dấu dương.

Bài 5. Cho phương trình bậc hai {x^2} - mx - 1 = 0\left( * \right)\({x^2} - mx - 1 = 0\left( * \right)\) (m là tham số). Chứng minh phương trình luôn có hai nghiệm trái dấu.

Hướng dẫn giải

Ta có a.c = 1.(-1) < 0 với mọi m nên phương trình (*) luôn có hai nghiệm trái dấu với mọi m.

Vậy phương trình có hai nghiệm trái dấu với mọi giá trị của tham số m.

Bài 6. Cho phương trình {x^2} - 2\left( {m - 1} \right)x - 3 - m = 0\({x^2} - 2\left( {m - 1} \right)x - 3 - m = 0\) (m là tham số). Tìm m để phương trình có hai nghiệm trái dấu.

Hướng dẫn giải

Phương trình có hai nghiệm trái dấu khi và chỉ khi

a.c < 0

=> -3 – m < 0

=> m > -3

Vậy m > -3 thì phương trình có hai nghiệm trái dấu.

III. Bài tập tự luyện về bài toán tìm m để phương trình có hai nghiệm cùng dấu dương, hai nghiệm cùng dấu âm

Bài 1: Tìm m để phương trình {x^2} - 2\left( {m + 1} \right)x + m + 4 = 0\({x^2} - 2\left( {m + 1} \right)x + m + 4 = 0\) có hai nghiệm phân biệt:

a) Trái dấu. b) Cùng dấu.
c) Cùng dấu âm. d) Cùng dấu dương.

Bài 2: Tìm m để phương trình {x^2} - 2mx - 6m - 9 = 0\({x^2} - 2mx - 6m - 9 = 0\) có hai nghiệm phân biệt trái dấu thỏa mãn x_1^2 + x_2^2 = 13\(x_1^2 + x_2^2 = 13\)

Bài 3: Tìm m để phương trình {x^2} - \left( {2m + 3} \right)x + m = 0\({x^2} - \left( {2m + 3} \right)x + m = 0\) có hai nghiệm phân biệt:

a) Trái dấu. b) Cùng dấu.
c) Cùng dấu âm. d) Cùng dấu dương.

Bài 4: Tìm m để phương trình {x^2} - 8x + m + 5 = 0\({x^2} - 8x + m + 5 = 0\) có hai nghiệm phân biệt:

Bài 5: Tìm m để phương trình {x^2} - 2mx + 5m - 4 = 0\({x^2} - 2mx + 5m - 4 = 0\) có hai nghiệm phân biệt:

Bài 6: Tìm m để phương trình 2{x^2} + \left( {2m - 1} \right)x + m - 1 = 0\(2{x^2} + \left( {2m - 1} \right)x + m - 1 = 0\) có hai nghiệm phân biệt cùng dấu âm

Bài 7: Tìm m để phương trình {x^2} - 2mx + 2m - 4 = 0\({x^2} - 2mx + 2m - 4 = 0\) có hai nghiệm phân biệt cùng dấu âm

Bài 8: Tìm m để phương trình {x^2} - \left( {m + 1} \right)x + m = 0\({x^2} - \left( {m + 1} \right)x + m = 0\) có hai nghiệm phân biệt cùng dấu dương

Bài 9: Tìm m để phương trình {x^2} - 2\left( {m + 1} \right)x + m + 4 = 0\({x^2} - 2\left( {m + 1} \right)x + m + 4 = 0\) có hai nghiệm phân biệt cùng dấu dương

Bài 10: Cho phương trình {x^2} + \left( {m + 2} \right)x + m = 0\({x^2} + \left( {m + 2} \right)x + m = 0\). Tìm m để phương trình có hai nghiệm phân biệt cùng dấu. Khi đó hai nghiệm mang dấu gì?

Bài 11: Cho phương trình: x2 - 2mx - 6m - 9 = 0. Tìm m để phương trình có 2 nghiệm trái dấu thỏa mãn x 12 +x 22 =13 

Bài 12. Cho phương trình mx2 + 2(m - 2)x + m - 3 = 0. Xác định m để phương trình có hai nghiệm trái dấu. 

Bài 13. Tìm giá trị m để phương trình 2x2 + mx + m - 3 = 0 có 2 nghiệm trái dấu và nghiệm âm có giá trị tuyệt đối lớn hơn nghiệm dương. 

Chia sẻ, đánh giá bài viết
56
Chọn file muốn tải về:
Chỉ thành viên VnDoc PRO tải được nội dung này!
79.000 / tháng
Đặc quyền các gói Thành viên
PRO
Phổ biến nhất
PRO+
Tải tài liệu Cao cấp 1 Lớp
Tải tài liệu Trả phí + Miễn phí
Xem nội dung bài viết
Trải nghiệm Không quảng cáo
Làm bài trắc nghiệm không giới hạn
Mua cả năm Tiết kiệm tới 48%
2 Bình luận
Sắp xếp theo
  • Ngọc Trần
    Ngọc Trần

    Add ơi, sao ở bài 1 suy ra 2 trường hợp ngược dấu lớn bé mà bài 2 suy ra 2 trường hợp cùng dấu lớn hoặc bé vậy ạ

    Thích Phản hồi 15/06/21
    • Lão Hạc
      Lão Hạc

      theo mik thì phải làm vậy ms tìm ra đáp án đúng nếu bạn làm 1 trường hợp thì sẽ thiếu nên phải làm cả 2 trường hợp


      Thích Phản hồi 23/07/21
  • Anh Quoc
    Anh Quoc

    ad ơi, còn trường hợp tìm m để pt có 2 nghiệm trái dấu thì sao ad?


    Thích Phản hồi 04/06/23
🖼️

Gợi ý cho bạn

Xem thêm
🖼️

Lý thuyết Toán 9

Xem thêm