Tính m để phương trình bậc hai có hai nghiệm trái dấu
Chuyên đề luyện thi vào 10: Tìm m để phương trình có hai nghiệm phân biệt trái dấu, cùng dấu, cùng dấu âm, cùng dấu dương
Tìm m để phương trình có hai nghiệm trái dấu cung cấp cho các em phần lý thuyết cơ bản và một số dạng bài tập để các em biết cách làm các bài toán Tìm m để phương trình có hai nghiệm trái dấu. Mời các bạn tham khảo.
I. Kiến thức cần nhớ khi làm dạng bài tìm m để phương trình có hai nghiệm trái dấu
Công thức nghiệm phương trình bậc hai
Phương trình bậc hai có dạng ax2 + bx + c = 0 (a ≠ 0)
∆ = b2 – 4ac
Nếu ∆ < 0 thì phương trình vô nghiệm
Nếu ∆ = 0 thì phương trình có nghiệm kép \({x_1} = {x_2} = \frac{{ - b}}{a}\)
Nếu ∆ > 0 thì phương trình có 2 nghiệm phân biệt:
\({x_1} = \frac{{ - b + \sqrt \Delta }}{{2a}},{x_2} = \frac{{ - b - \sqrt \Delta }}{{2a}}\)
Định lý Vi-ét:
Nếu phương trình \(a{x^2} + bx + c = 0\left( {a \ne 0} \right)\) có hai nghiệm \({x_1};{x_2}\) phân biệt thì \(\left\{ \begin{array}{l} S = {x_1} + {x_2} = \frac{{ - b}}{a}\\ P = {x_1}{x_2} = \frac{c}{a} \end{array} \right.\)
+ Lưu ý: Trước khi áp dụng định lý Vi ét, ta cần tìm điều kiện để phương trình có 2 nghiệm phân biệt.
2. Xác định dấu các nghiệm của phương trình bậc hai:
Điều kiện để phương trình có hai nghiệm trái dấu, cùng dấu, cùng dương, cùng âm,…
+ Để phương trình có hai nghiệm phân biệt trái dấu \(\Leftrightarrow P < 0\)
+ Để phương trình có hai nghiệm phân biệt cùng dấu \(\Leftrightarrow \left\{ \begin{array}{l} \Delta > 0\\ P > 0 \end{array} \right.\)
+ Để phương trình có hai nghiệm phân biệt cùng dấu dương \(\Leftrightarrow \left\{ \begin{array}{l} \Delta > 0\\ P > 0\\ S > 0 \end{array} \right.\)
+ Để phương trình có hai nghiệm phân biệt cùng dấu âm \(\Leftrightarrow \left\{ \begin{array}{l} \Delta > 0\\ P > 0\\ S < 0 \end{array} \right.\)
II. Bài tập ví dụ về bài toán tìm m để phương trình có hai nghiệm cùng dấu
Bài 1: Tìm m để phương trình \({x^2} - \left( {{m^2} + 1} \right)x + {m^2} - 7m + 12 = 0\) có 2 nghiệm trái dấu
Hướng dẫn:
Để phương trình có hai nghiệm phân biệt trái dấu \(\Leftrightarrow P < 0\).
Lời giải:
Để phương trình có hai nghiệm phân biệt trái dấu \(\Leftrightarrow P < 0\)
\(\begin{array}{l} \Leftrightarrow {m^2} - 7m + 12 < 0\\ \Leftrightarrow \left( {m - 3} \right)\left( {m - 4} \right) < 0 \end{array}\)
Xảy ra hai trường hợp:
Trường hợp 1: \(\left\{ \begin{array}{l} m - 3 > 0\\ m - 4 < 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} m > 3\\ m < 4 \end{array} \right. \Leftrightarrow 3 < m < 4\)
Trường hợp 2: \(\left\{ \begin{array}{l} m - 3 < 0\\ m - 4 > 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} m < 3\\ m > 4 \end{array} \right.\)(vô lý)
Vậy với 3 < m < 4 thì phương trình có hai nghiệm trái dấu
Bài 2: Tìm m để phương trình \(3{x^2} - 4mx + {m^2} - 2m - 3 = 0\) có hai nghiệm phân biệt cùng dấu.
Hướng dẫn:
Để phương trình có hai nghiệm phân biệt cùng dấu \(\Leftrightarrow \left\{ \begin{gathered} \Delta ' > 0 \hfill \\ P > 0 \hfill \\ \end{gathered} \right.\).
Lời giải:
\(3{x^2} - 4mx + {m^2} - 2m - 3 = 0\)
Để phương trình có hai nghiệm phân biệt \(\Leftrightarrow \Delta ' > 0\)
Có \(\Delta ' = 4{m^2} - 3\left( {{m^2} - 2m - 3} \right)\)
\(\begin{gathered} = 4{m^2} - 3{m^2} + 6m + 9 \hfill \\ = {m^2} + 6m + 9 \hfill \\ = {\left( {m - 3} \right)^2} > 0\forall m \ne 3 \hfill \\ \end{gathered}\)
Với mọi m ≠ 3, phương trình có hai nghiệm phân biệt thỏa mãn hệ thức Vi-ét:
\(\left\{ \begin{gathered} {x_1} + {x_2} = \frac{{ - b}}{a} = \frac{{4m}}{3} \hfill \\ {x_1}{x_2} = \frac{c}{a} = \frac{{{m^2} - 2m - 3}}{3} \hfill \\ \end{gathered} \right.\)
Để phương trình có hai nghiệm phân biệt cùng dấu khi và chỉ khi:
\(P > 0 \Leftrightarrow 3\left( {{m^2} - 2m - 3} \right) > 0\)
Xảy ra hai trường hợp:
Trường hợp 1: \(\left\{ \begin{gathered} m + 1 > 0 \hfill \\ m - 3 > 0 \hfill \\ \end{gathered} \right. \Leftrightarrow \left\{ \begin{gathered} m > - 1 \hfill \\ m > 3 \hfill \\ \end{gathered} \right. \Rightarrow m > 3\)
Trường hợp 2: \(\left\{ \begin{gathered} m + 1 < 0 \hfill \\ m - 3 < 0 \hfill \\ \end{gathered} \right. \Leftrightarrow \left\{ \begin{gathered} m < - 1 \hfill \\ m < 3 \hfill \\ \end{gathered} \right. \Rightarrow m < - 1\)
Vậy với m < -1 hoặc m < 3 nên phương trình có hai nghiệm phân biệt cùng dấu
Bài 3: Tìm m để phương trình \({x^2} - \left( {2m + 3} \right)x + m = 0\) có hai nghiệm phân biệt cùng dấu âm
Hướng dẫn:
Để phương trình có hai nghiệm cùng dấu âm \(\Leftrightarrow \left\{ \begin{gathered} \Delta > 0 \hfill \\ P > 0 \hfill \\ S < 0 \hfill \\ \end{gathered} \right.\)
Lời giải:
Để phương trình có hai nghiệm cùng dấu âm \(\Leftrightarrow \left\{ \begin{array}{l} \Delta > 0\\ P > 0\\ S < 0 \end{array} \right.\)
Với \(\Delta > 0 \Leftrightarrow {\left( {2m + 3} \right)^2} - 4m > 0\)
\(\begin{array}{l} \Leftrightarrow 4{m^2} + 12m + 9 - 4m > 0\\ \Leftrightarrow 4{m^2} + 8m + 9 > 0\\ \Leftrightarrow 4\left( {{m^2} + 2m + 1} \right) + 5 > 0\\ \Leftrightarrow 4{\left( {m + 1} \right)^2} + 5 > 0\forall m \end{array}\)
Với \(P > 0 \Leftrightarrow m > 0\)
Với \(S < 0 \Leftrightarrow 2m + 3 < 0 \Leftrightarrow m < \frac{{ - 3}}{2}\) kết hợp với m > 0
Vậy không tồn tại m để phương trình có hai nghiệm phân biệt cùng dấu âm
Bài 4: Tìm m để phương trình \({x^2} - 2mx + 2m - 4 = 0\) có hai nghiệm phân biệt cùng dấu dương.
Hướng dẫn:
Để phương trình có hai nghiệm cùng dấu dương \(\Leftrightarrow \left\{ \begin{gathered} \Delta ' > 0 \hfill \\ P > 0 \hfill \\ S > 0 \hfill \\ \end{gathered} \right.\)
Lời giải:
Để phương trình có hai nghiệm cùng dấu dương \(\Leftrightarrow \left\{ \begin{array}{l} \Delta ' > 0\\ P > 0\\ S > 0 \end{array} \right.\)
Với \(\Delta ' > 0 \Leftrightarrow {m^2} - \left( {2m - 4} \right) > 0\)
\(\begin{array}{l} \Leftrightarrow {m^2} - 2m + 4 > 0\\ \Leftrightarrow \left( {{m^2} - 2m + 1} \right) + 3 > 0\\ \Leftrightarrow {\left( {m - 1} \right)^2} + 3 > 0\forall m \end{array}\)
Với \(P > 0 \Leftrightarrow 2m - 4 > 0 \Leftrightarrow m > 2\)
Với \(S > 0 \Leftrightarrow 2 > 0\) (luôn đúng)
Vậy với m > 2 thì phương trình có hai nghiệm phân biệt cùng dấu dương.
Bài 5. Cho phương trình bậc hai \({x^2} - mx - 1 = 0\left( * \right)\) (m là tham số). Chứng minh phương trình luôn có hai nghiệm trái dấu.
Hướng dẫn giải
Ta có a.c = 1.(-1) < 0 với mọi m nên phương trình (*) luôn có hai nghiệm trái dấu với mọi m.
Vậy phương trình có hai nghiệm trái dấu với mọi giá trị của tham số m.
Bài 6. Cho phương trình \({x^2} - 2\left( {m - 1} \right)x - 3 - m = 0\) (m là tham số). Tìm m để phương trình có hai nghiệm trái dấu.
Hướng dẫn giải
Phương trình có hai nghiệm trái dấu khi và chỉ khi
a.c < 0
=> -3 – m < 0
=> m > -3
Vậy m > -3 thì phương trình có hai nghiệm trái dấu.
III. Bài tập tự luyện về bài toán tìm m để phương trình có hai nghiệm cùng dấu dương, hai nghiệm cùng dấu âm
Bài 1: Tìm m để phương trình \({x^2} - 2\left( {m + 1} \right)x + m + 4 = 0\) có hai nghiệm phân biệt:
a) Trái dấu. | b) Cùng dấu. |
c) Cùng dấu âm. | d) Cùng dấu dương. |
Bài 2: Tìm m để phương trình \({x^2} - 2mx - 6m - 9 = 0\) có hai nghiệm phân biệt trái dấu thỏa mãn \(x_1^2 + x_2^2 = 13\)
Bài 3: Tìm m để phương trình \({x^2} - \left( {2m + 3} \right)x + m = 0\) có hai nghiệm phân biệt:
a) Trái dấu. | b) Cùng dấu. |
c) Cùng dấu âm. | d) Cùng dấu dương. |
Bài 4: Tìm m để phương trình \({x^2} - 8x + m + 5 = 0\) có hai nghiệm phân biệt:
Bài 5: Tìm m để phương trình \({x^2} - 2mx + 5m - 4 = 0\) có hai nghiệm phân biệt:
Bài 6: Tìm m để phương trình \(2{x^2} + \left( {2m - 1} \right)x + m - 1 = 0\) có hai nghiệm phân biệt cùng dấu âm
Bài 7: Tìm m để phương trình \({x^2} - 2mx + 2m - 4 = 0\) có hai nghiệm phân biệt cùng dấu âm
Bài 8: Tìm m để phương trình \({x^2} - \left( {m + 1} \right)x + m = 0\) có hai nghiệm phân biệt cùng dấu dương
Bài 9: Tìm m để phương trình \({x^2} - 2\left( {m + 1} \right)x + m + 4 = 0\) có hai nghiệm phân biệt cùng dấu dương
Bài 10: Cho phương trình \({x^2} + \left( {m + 2} \right)x + m = 0\). Tìm m để phương trình có hai nghiệm phân biệt cùng dấu. Khi đó hai nghiệm mang dấu gì?
Bài 11: Cho phương trình: x2 - 2mx - 6m - 9 = 0. Tìm m để phương trình có 2 nghiệm trái dấu thỏa mãn x 12 +x 22 =13
Bài 12. Cho phương trình mx2 + 2(m - 2)x + m - 3 = 0. Xác định m để phương trình có hai nghiệm trái dấu.
Bài 13. Tìm giá trị m để phương trình 2x2 + mx + m - 3 = 0 có 2 nghiệm trái dấu và nghiệm âm có giá trị tuyệt đối lớn hơn nghiệm dương.