Xác định tâm đường tròn nội tiếp, đường tròn ngoại tiếp tam giác và đường tròn ngoại tiếp tứ giác

Chuyên đề luyện thi vào 10: Tâm đường tròn nội tiếp, đường tròn ngoại tiếp tam giác và đường tròn ngoại tiếp tam giác

Bài toán xác định tâm đường tròn ngoại tiếp, đường tròn nội tiếp tam giác hay tâm đường tròn ngoại tiếp tứ giác là một dạng toán thường có trong các đề thi tuyển sinh vào lớp 10 môn Toán gần đây. Tài liệu được VnDoc biên soạn và giới thiệu tới các bạn học sinh cùng quý thầy cô tham khảo. Nội dung tài liệu sẽ giúp các bạn học sinh học tốt môn Toán lớp 9 hiệu quả hơn. Mời các bạn tham khảo.

Để tiện trao đổi, chia sẻ kinh nghiệm về giảng dạy và học tập các môn học lớp 9, VnDoc mời các thầy cô giáo, các bậc phụ huynh và các bạn học sinh truy cập nhóm riêng dành cho lớp 9 sau: Nhóm Luyện thi lớp 9 lên 10. Rất mong nhận được sự ủng hộ của các thầy cô và các bạn.

Tài liệu dưới đây được VnDoc biên soạn gồm hướng dẫn giải chi tiết cho dạng bài liên quan đến việc xác định tâm đường tròn ngoại tiếp và nội tiếp tam giác, tứ giác và tổng hợp các bài toán để các bạn học sinh có thể luyện tập thêm. Qua đó sẽ giúp các bạn học sinh ôn tập các kiến thức, chuẩn bị cho các bài thi học kì và ôn thi vào lớp 10 hiệu quả nhất. Sau đây mời các bạn học sinh cùng tham khảo tải về bản đầy đủ chi tiết.

I. Cách xác định tâm của đường tròn

1. Xác định tâm của đường tròn ngoại tiếp tam giác

+ Tâm của đường tròn ngoại tiếp tam giác là giao điểm ba đường trung trực của ba cạnh tam giác

+ Trong tam giác vuông, trung điểm của cạnh huyền chính là tâm của đường tròn ngoại tiếp tam giác vuông ấy

2. Xác định tâm của đường tròn nội tiếp tam giác

+ Tâm của đường tròn nội tiếp tam giác là giao điểm ba đường phân giác kẻ từ 3 đỉnh của tam giác

3. Xác định tâm của đường tròn ngoại tiếp tứ giác

+ Tứ giác có bốn đỉnh các đều một điểm. Điểm đó là tâm đường tròn ngoại tiếp tam giác

+ Lưu ý: Quỹ tích các điểm nhìn đoạn thẳng AB dưới một góc vuông là đường tròn đường kính AB

II. Bài tập ví dụ cho các bài tập về tâm của đường tròn

Bài 1: Cho tam giác ABC cân tại A. Các đường cao AD, BE và CF cắt nhau tại H. Chứng minh tứ giác AEHF là tứ giác nội tiếp. Xác định tâm I của đường tròn ngoại tiếp tứ giác đó

Lời giải:

Xác định tâm đường tròn nội tiếp, đường tròn ngoại tiếp tam giác và đường tròn ngoại tiếp tứ giác

+ Gọi I là trung điểm của AH

+ Có HF vuông góc với AF (giả thiết) suy ra tam giác AFH vuông tại F

I là trung điểm của cạnh huyền AH

Suy ra IA = IF = IH (1)

+ Có HE vuông góc với AE (giả thiết) suy ra tam giác AEH vuông tại E

I là trung điểm của cạnh huyền AH

Suy ra IA = IE = IH (2)

+ Từ (1) và (2) suy ra IA = IF = IH = IE

Hay I cách đều bốn đỉnh A, E, H, F

Suy ra tứ giác AEHF nội tiếp đường tròn có tâm I là trung điểm của AH

Bài 2: Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (O). Các đường cao AD, BE, CF cắt nhau tại H và cắt đường tròn (O) lần lượt tại M, N, P

a, Chứng minh tứ giác CEHD là tứ giác nội tiếp

b, Chứng minh 4 điểm B, C, E, F cùng nằm trên một đường tròn

c, Xác định tâm đường tròn nội tiếp tam giác DEF

Lời giải:

Xác định tâm đường tròn nội tiếp, đường tròn ngoại tiếp tam giác và đường tròn ngoại tiếp tứ giác

a, + Có AD là đường cao của tam giác ABC \Rightarrow \widehat {ADC} = {90^0}

+ Có BE là đường cao của tam giác ABC \Rightarrow \widehat {BEC} = {90^0}

+ Xét tứ giác CEHD có: \widehat {ADC} + \widehat {BEC} = {90^0} + {90^0} = {180^0}

Hai góc ở vị trí đối nhau

Suy ra tứ giác CEHD là tứ giác nội tiếp

b, + Gọi K là trung điểm của đoạn thẳng BC

+ Xét tam giác BEC có: \widehat {BEC} = {90^0}(BE là đường cao của tam giác)

K là trung điểm của đoạn thẳng BC

Suy ra KE = KB = KC (1)

+ Xét tam giác BFC có: \widehat {BFC} = {90^0}(CF là đường cao của tam giác)

K là trung điểm của đoạn thẳng BC

Suy ra KF = KB = KC (2)

+ Từ (1), (2) suy ra KE = KB = KC = KF hay điểm K cách đều 4 điểm F, E, C, B

Suy ra tứ giác FECB nội tiếp đường tròn tâm K là trung điểm của BC

c, + Có FECB nội tiếp đường tròn \Rightarrow \widehat {FCB} = \widehat {FEB}(góc nội tiếp cùng chắn cung FB)

Lại có CEHD là tứ giác nội tiếp \Rightarrow \widehat {HED} = \widehat {HCD} (góc nội tiếp cùng chắn cung HD)

Suy ra \widehat {HED} = \widehat {FEB} hay EB là tia phân giác của góc FED

+ Chứng minh tương tự ta cũng có FC là tia phân giác của góc DFE

Mà BE và CF cắt nhau tại H nên H là tâm đường tròn nội tiếp tam giác DEF

III. Bài tập tự luyện các bài toán về tâm của đường tròn

Bài 1: Các đường cao AD, BE của tam giác ABC cắt nhau tại H (góc C khác góc vuông) và cắt đường tròn (O) ngoại tiếp tam giác ABC lần lượt tại I và K.

a, Chứng minh tứ giác CDHE nội tiếp và xác định tâm của đường tròn ngoại tiếp tứ giác đó

b, Chứng minh tam giác CIK là tam giác cân

Bài 2: Cho tam giác ABC có ba góc nhọn nội tiếp trong đường tròn (O; R). Ba đường của tam giác là AF, BE và CD cắt nhau tại H. Chứng minh tứ giác BDEC là tứ giác nội tiếp. Xác định tâm I của đường tròn ngoại tiếp tứ giác

Bài 3: Cho tam giác ABC vuông tại A có AB < AC, đường cao AH (H thuộc BC). Lấy điểm D sao cho H là trung điểm của BD. Gọi E là chân đường vuông góc hạ từ C xuống đường thẳng AD. Chứng minh tứ giác AHEC nội tiếp và xác định vị trí tâm O của đường tròn ngoại tiếp tứ giác đó.

Bài 4: Cho tam giác ABC nhọn nội tiếp đường tròn (O) (AB < AC). Gọi H là giao điểm của các đường cao AI, BM, CN của tam giác ABC. Đường thẳng BC cắt đường thẳng MN tại D. Chứng minh tứ giác BNMC nội tiếp. Xác định tâm K của đường tròn này

Bài 5: Cho tam giác nhọn ABC nội tiếp đường tròn (O; R). Các đường cao AD, BE, CF của tam giác ABC cắt nhau tại H.

a, Chứng minh bốn điểm B, F, E, C cùng nằm trên một đường tròn

b, Kẻ đường kính AK của đường tròn (O). Tứ giác BHCK là hình gì? Vì sao?

c, Chứng minh H là tâm đường tròn nội tiếp tam giác DEF

-------------------

Ngoài các dạng Toán 9 ôn thi vào lớp 10 trên, mời các bạn học sinh còn có thể tham khảo các đề thi học kì 2 lớp 9 các môn Toán, Văn, Anh, Lý, Địa, Sinh mà chúng tôi đã sưu tầm và chọn lọc. Với tài liệu này giúp các bạn rèn luyện thêm kỹ năng giải đề và làm bài tốt hơn. Chúc các bạn ôn thi tốt!

Đánh giá bài viết
1 2.106
0 Bình luận
Sắp xếp theo
Thi vào lớp 10 môn Toán Xem thêm