Tìm m để phương trình có 2 nghiệm x1 x2 thỏa mãn điều kiện cho trước

Tìm m để phương trình có hai nghiệm phân biệt thỏa mãn điều kiện cho trước được VnDoc biên soạn và đăng tải. Dưới đây là Chuyên đề Tìm m để phương trình có 2 nghiệm x1, x2 thỏa mãn điều kiện điều kiện Toán 9. Giúp các em ôn tập nắm vững các kiến thức, các dạng bài tập để chuẩn bị cho kỳ thi sắp đến. Để tìm hiểu thêm các em cùng tham khảo tài liệu này nhé.

Chuyên đề này được VnDoc biên soạn gồm hướng dẫn giải chi tiết cho dạng bài tập "Tìm giá trị của tham số để phương trình có hai nghiệm phân biệt thỏa mãn điều kiện cho trước", vốn là một câu hỏi điển hình trong đề thi tuyển sinh vào lớp 10. Đồng thời tài liệu cũng tổng hợp thêm các bài toán để các bạn học sinh có thể luyện tập, củng cố kiến thức. Qua đó sẽ giúp các bạn học sinh ôn tập các kiến thức, chuẩn bị cho các bài thi học kì và ôn thi vào lớp 10 hiệu quả nhất. Sau đây mời các bạn học sinh cùng tham khảo tải về bản đầy đủ chi tiết.

I. Kiến thức cần nhớ khi làm dạng bài tìm m để phương trình có 2 nghiệm x1, x2 thỏa mãn điều kiện cho trước

Cách giải dạng bài tìm m thỏa mãn điều kiện cho trước

+ Đặt điều kiện cho tham số để phương trình đã cho có hai nghiệm x1 và x2 (thường là a \ne 0\Delta  \ge 0)

+ Áp dụng hệ thức Vi-ét để biến đổi biểu thức nghiệm đã cho

Nếu phương trình a{x^2} + bx + c = 0\left( {a \ne 0} \right) có hai nghiệm {x_1};{x_2} phân biệt thì \left\{ \begin{array}{l}
S = {x_1} + {x_2} = \frac{{ - b}}{a}\\
P = {x_1}{x_2} = \frac{c}{a}
\end{array} \right.

Một số biến đổi biểu thức nghiệm thường gặp:

  • x_1^2 + x_2^2 = x_1^2 + x_2^2 + 2{x_1}{x_2} - 2{x_1}{x_2} = {\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}{x_2}
  • x_1^3 + x_2^3 = \left( {{x_1} + {x_2}} \right)\left( {x_1^2 - {x_1}{x_2} + x_2^2} \right) = \left( {{x_1} + {x_2}} \right)\left[ {{{\left( {{x_1} + {x_2}} \right)}^2} - 3{x_1}{x_2}} \right]

+ Đối chiếu với điều kiện xác định của tham số để xác định giá trị cần tìm

II. Bài tập ví dụ về bài toán tìm m để phương trình có 2 nghiệm x1, x2 thỏa mãn điều kiện cho trước

Bài 1: Cho phương trình bậc hai {x^2} - 2mx + 4m - 4 = 0 (x là ẩn số, m là tham số)

a, Chứng minh phương trình trên luôn có 2 nghiệm phân biệt x1, x2 với mọi m khác 2

b, Tìm m để hai nghiệm x1, x2 của phương trình thỏa mãn hệ thức: 3\left( {{x_`} + {x_2}} \right) = {x_1}{x_2}

Hướng dẫn:

a) Để chứng minh phương trình bậc hai luôn có hai nghiệm, ta chứng minh ∆ luôn dương với mọi giá trị của tham số.

b) Khi phương trình đã có 2 nghiệm phân biệt, ta áp dụng Vi-ét để thay vào hệ thức và tìm giá trị của tham số.

Lời giải:

a, Ta có: \Delta ' = b{'^2} - ac

= {m^2} - \left( {4m - 4} \right) = {m^2} - 4m + 4 = {\left( {m - 2} \right)^2} > 0\forall m \ne 2

Vậy với mọi m khác 2 thì phương trình luôn có hai nghiệm phân biệt x1, x2

b, Với mọi m khác 2 thì phương trình luôn có hai nghiệm phân biệt x1, x2 thỏa mãn hệ thức Vi-ét:

\left\{ \begin{array}{l}
{x_1} + {x_2} = \frac{{ - b}}{a} = 2m\\
{x_1}{x_2} = \frac{c}{a} = 4m - 4
\end{array} \right.

Ta có 3\left( {{x_`} + {x_2}} \right) = {x_1}{x_2} \Leftrightarrow 3.2m = 4m - 4 \Leftrightarrow 2m =  - 4 \Leftrightarrow m =  - 2\left( {tm} \right)

Vậy với m = -2 thì phương trình có hai nghiệm phân biệt thỏa mãn 3\left( {{x_`} + {x_2}} \right) = {x_1}{x_2}

Bài 2: Cho phương trình {x^2} - 2mx - 1 = 0 (x là ẩn số, m là tham số)

a, Chứng minh phương trình luôn luôn có hai nghiệm phân biệt với mọi m

b, Tìm m để hai nghiệm phân biệt {x_1};{x_2} của phương trình thỏa mãn x_1^2 + x_2^2 = x_1^2x_2^2 + 2

Hướng dẫn:

a) Để chứng minh phương trình bậc hai luôn có hai nghiệm, ta chứng minh ∆ luôn dương với mọi giá trị của tham số.

b) Khi phương trình đã có 2 nghiệm phân biệt, ta áp dụng Vi-ét để thay vào hệ thức và tìm giá trị của tham số.

Lời giải:

a, Ta có \Delta ' = b{'^2} - ac

= {m^2} + 1 \ge 1 > 0\forall m

Vậy với mọi m phương trình luôn có hai nghiệm phân biệt x1, x2

b, Với mọi m thì phương trình luôn có hai nghiệm phân biệt x1, x2 thỏa mãn hệ thức Vi-ét:

\left\{ \begin{array}{l}
{x_1} + {x_2} = \frac{{ - b}}{a} = 2m\\
{x_1}{x_2} = \frac{c}{a} =  - 1
\end{array} \right.

Ta có x_1^2 + x_2^2 = x_1^2x_2^2 + 2 \Leftrightarrow {\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}{x_2} = {\left( {{x_1}{x_2}} \right)^2} + 2

\begin{array}{l}
 \Leftrightarrow 4{m^2} - 2.\left( { - 1} \right) = {\left( { - 1} \right)^2} + 2\\
 \Leftrightarrow 4{m^2} + 2 = 1 + 2\\
 \Leftrightarrow 4{m^2} = 1\\
 \Leftrightarrow {m^2} = \frac{1}{4} \Leftrightarrow m =  \pm \frac{1}{2}
\end{array}

Vậy với m =  \pm \frac{1}{2} thì phương trình có hai nghiệm phân biệt thỏa mãn x_1^2 + x_2^2 = x_1^2x_2^2 + 2

Bài 3: Tìm m để phương trình {x^2} + 2\left( {m + 1} \right)x - 2 = 0 có hai nghiệm phân biệt thỏa mãn 3{x_1} + 2{x_2} = 4

Hướng dẫn:

Bước 1: Tìm điều kiện của tham số để phương trình có hai nghiệm phân biệt.

Bước 2: Khi phương trình đã có hai nghiệm phân biệt, ta áp dụng Vi-ét để tìm các giá trị của tham số.

Bước 3. Đối chiếu với điều kiện và kết luận bài toán. 

Lời giải:

Để phương trình có hai nghiệm phân biệt \Leftrightarrow \Delta ' > 0

Ta có \Delta ' = {\left( {m + 1} \right)^2} - 4\left( { - 2} \right) = {\left( {m + 1} \right)^2} + 8 > 0\forall m

Với mọi m phương trình luôn có hai nghiệm phân biệt x1, x2 thỏa mãn hệ thức Vi-ét:

\left\{ \begin{array}{l}
{x_1} + {x_2} =  - \frac{b}{a} =  - 2\left( {m + 1} \right) \Rightarrow {x_1} =  - 2\left( {m + 1} \right) - {x_2}\\
{x_2}{x_2} = \frac{c}{a} =  - 2
\end{array} \right.

Ta có 3{x_1} + 2{x_2} = 4 \Leftrightarrow 3\left[ { - 2\left( {m + 1} \right) - {x_2}} \right] + 2{x_2} = 4

\begin{array}{l}
 \Leftrightarrow  - 6\left( {m + 1} \right) - 3{x_2} + 2{x_2} = 4\\
 \Leftrightarrow {x_2} =  - 6\left( {m + 1} \right) - 4 =  - 10 - 6m\\
 \Rightarrow {x_1} =  - 2\left( {m + 1} \right) + 6\left( {m + 1} \right) + 4 = 4m + 8
\end{array}

{x_1}{x_2} =  - 2 \Leftrightarrow  - \left( {6m + 10} \right)\left( {4m + 8} \right) =  - 2

\begin{array}{l}
 \Leftrightarrow \left( {6m + 10} \right)\left( {4m + 8} \right) = 2\\
 \Leftrightarrow 24{m^2} + 48m + 40m + 80 = 2\\
 \Leftrightarrow 24{m^2} + 88m + 78 = 0\\
 \Leftrightarrow \left[ \begin{array}{l}
m = \frac{{ - 3}}{2}\\
m = \frac{{ - 13}}{6}
\end{array} \right.
\end{array}

Vậy với m =  - \frac{3}{2} hoặc m = \frac{{ - 13}}{6} thì phương trình có hai nghiệm phân biệt x1, x2 thỏa mãn 3{x_1} + 2{x_2} = 4

Bài 4: Cho phương trình {x^2} - 5x + m = 0. Tìm m để phương trình có hai nghiệm phân biệt x1, x2 thỏa mãn \left| {{x_1} - {x_2}} \right| = 3.

Hướng dẫn:

Bước 1: Tìm điều kiện của tham số để phương trình có hai nghiệm phân biệt.

Bước 2: Khi phương trình đã có hai nghiệm phân biệt, ta áp dụng Vi-ét để tìm các giá trị của tham số.

Bước 3. Đối chiếu với điều kiện và kết luận bài toán.

Lời giải:

Để phương trình có hai nghiệm phân biệt \Leftrightarrow \Delta  > 0

Ta có \Leftrightarrow 25 - 4m > 0 \Leftrightarrow m < \frac{{25}}{4}

Vậy với m < \frac{{25}}{4} phương trình luôn có hai nghiệm phân biệt x1, x2 thỏa mãn hệ thức Vi-ét \left\{ \begin{array}{l}
{x_1} + {x_2} = \frac{{ - b}}{a} = 5\\
{x_1}{x_2} = \frac{c}{a} = m
\end{array} \right.

A = \left| {{x_1} - {x_2}} \right| = 3 \Rightarrow {A^2} = {\left( {{x_1} - {x_2}} \right)^2} = 9

\begin{array}{l}
 \Leftrightarrow x_1^2 + x_2^2 - 2{x_1}{x_2} = 9 \Leftrightarrow {\left( {{x_1} + {x_2}} \right)^2} - 4{x_1}{x_2} = 9\\
 \Leftrightarrow 25 - 4m = 9 \Leftrightarrow 4m = 16 \Leftrightarrow m = 4
\end{array}

Vậy với m = 4 thì phương trình có hai nghiệm phân biệt x1, x2 thỏa mãn \left| {{x_1} - {x_2}} \right| = 3

III. Bài tập tự luyện về bài toán tìm m để phương trình có 2 nghiệm x1, x2 thỏa mãn điều kiện cho trước

Bài 1: Cho phương trình {x^2} + mx + 2m - 4 = 0 (m tham số)

a, Chứng minh phương trình trên luôn có nghiệm với mọi giá trị của m

b, Tìm m để phương trình có hai nghiệm x1, x2 thỏa mãn x_1^2 + x_2^2 = 4

Bài 2: Cho phương trình {x^2} - 2x + m - 1 = 0

a, Giải phương trình khi m = - 2

b, Tìm m để phương trình có hai nghiệm {x_1};{x_2} thỏa mãn {x_1} = 2{x_2}

Bài 3: Tìm m để phương trình 2{x^2} + \left( {2m - 1} \right)x + m - 1 = 0 có hai nghiệm phân biệt x1, x2 thỏa mãn 3{x_1} - 4{x_2} = 11

Bài 4: Tìm m để phương trình {x^2} + 2\left( {m + 1} \right)x + {m^2} - m + 1 = 0 có hai nghiệm phân biệt x1, x2 thỏa mãn x_1^2 + x_2^2 + {x_1}{x_2} = 3

Bài 5: Tìm m để phương trình {x^2} - 2\left( {m - 1} \right)x - 4 = 0 có hai nghiệm phân biệt x1, x2 thỏa mãn \frac{1}{{{x_1}}} + \frac{1}{{{x_2}}} = 3

Bài 6: Tìm m để phương trình \left( {m - 1} \right){x^2} - 2x + 1 = 0 có hai nghiệm phân biệt x1, x2 thỏa mãn 2x1 + 3x2 = -1

Ngoài ra, VnDoc.com đã thành lập group chia sẻ tài liệu học tập THCS miễn phí trên Facebook: Tài liệu học tập lớp 9. Mời các bạn học sinh tham gia nhóm, để có thể nhận được những tài liệu mới nhất. 

Tìm m để phương trình có 2 nghiệm x1 x2 thỏa mãn điều kiện cho trước được VnDoc chia sẻ trên đây. Chắc hẳn qua bài viết bạn đọc đã nắm được những ý chính cũng như trau dồi được nội dung kiến thức của bài học rồi đúng không ạ? Bài viết cho chúng ta thấy được những kiến thức cần nhớ khi làm dạng bài tìm m để phương trình có 2 nghiệm x1, x2 thỏa mãn điều kiện cho trước, kèm theo đó là những bài tập ví dụ và bài tập vận dụng... Hy vọng với tài liệu này sẽ giúp ích cho các em nắm chắc kiến thức, cũng như làm quen với các dạng bài tập tìm m để nâng cao kỹ năng giải đề. Chúc các em học tốt, nếu thấy tài liệu hay, hãy chia sẻ cho các bạn cùng tìm hiểu nhé.

-----------------

Ngoài chuyên đề tìm m để phương trình có 2 nghiệm phân biệt x1, x2 thỏa mãn điều kiện cho trước Toán 9, để giúp bạn đọc có thêm nhiều tài liệu học tập hơn nữa, VnDoc.com mời các bạn học sinh tham khảo thêm các đề thi học kì 2 các môn Toán, Văn, Anh, Lý, Hóa, ... và các đề thi tuyển sinh vào lớp 10 môn Toán mà chúng tôi đã sưu tầm và chọn lọc. Với bài tập về chuyên đề này giúp các bạn rèn luyện thêm kỹ năng giải đề và làm bài tốt hơn. Chúc các bạn học tập tốt!

Đặt câu hỏi về học tập, giáo dục, giải bài tập của bạn tại chuyên mục Hỏi đáp của VnDoc
Hỏi - Đáp Truy cập ngay: Hỏi - Đáp học tập
Đánh giá bài viết
60 256.188
2 Bình luận
Sắp xếp theo
  • Nguyên Ân
    Nguyên Ân

    Tìm m để phương trình {x^2} - 2\left( {m - 1} \right)x - 4 = 0 Thích Phản hồi 22:19 14/12

  • Ba Thinh Ngo
    Ba Thinh Ngo Hay ạ !
    Thích Phản hồi 12/07/20
Thi vào lớp 10 môn Toán Xem thêm