Tìm m để phương trình có 2 nghiệm x1 x2 thỏa mãn điều kiện cho trước
Chuyên đề luyện thi vào 10: Tìm m để phương trình có hai nghiệm phân biệt thỏa mãn điều kiện cho trước
- I. Kiến thức cần nhớ khi làm dạng bài tìm m để phương trình có 2 nghiệm x1, x2 thỏa mãn điều kiện cho trước
- II. Bài tập ví dụ về bài toán tìm m để phương trình có 2 nghiệm x1, x2 thỏa mãn điều kiện cho trước
- III. Bài tập tự luyện về bài toán tìm m để phương trình có 2 nghiệm x1, x2 thỏa mãn điều kiện cho trước
Tìm m để phương trình có hai nghiệm phân biệt thỏa mãn điều kiện cho trước được VnDoc biên soạn gồm hướng dẫn giải chi tiết cho dạng bài tập "Tìm giá trị của tham số để phương trình có hai nghiệm phân biệt thỏa mãn điều kiện cho trước". Qua đó sẽ giúp các bạn học sinh ôn tập các kiến thức, chuẩn bị cho các bài thi học kì và ôn thi vào lớp 10 hiệu quả nhất. Sau đây mời các bạn học sinh cùng tham khảo tải về bản đầy đủ chi tiết.
I. Kiến thức cần nhớ khi làm dạng bài tìm m để phương trình có 2 nghiệm x1, x2 thỏa mãn điều kiện cho trước
– Đặt điều kiện cho tham số để phương trình đã cho có hai nghiệm x1 và x2 (thường là a≠0 và
– Áp dụng hệ thức Vi-ét để biến đổi biểu thức nghiệm đã cho
Nếu phương trình
Một số biến đổi biểu thức nghiệm thường gặp:
– Đối chiếu với điều kiện xác định của tham số để xác định giá trị cần tìm
II. Bài tập ví dụ về bài toán tìm m để phương trình có 2 nghiệm x1, x2 thỏa mãn điều kiện cho trước
Bài 1: Cho phương trình bậc hai
a, Chứng minh phương trình trên luôn có 2 nghiệm phân biệt x1, x2 với mọi m khác 2
b, Tìm m để hai nghiệm x1, x2 của phương trình thỏa mãn hệ thức:
Hướng dẫn:
a) Để chứng minh phương trình bậc hai luôn có hai nghiệm, ta chứng minh ∆ luôn dương với mọi giá trị của tham số.
b) Khi phương trình đã có 2 nghiệm phân biệt, ta áp dụng Vi-ét để thay vào hệ thức và tìm giá trị của tham số.
Lời giải chi tiết:
a, Ta có:
Vậy với mọi m khác 2 thì phương trình luôn có hai nghiệm phân biệt x1, x2
b, Với mọi m ≠ 2 thì phương trình luôn có hai nghiệm phân biệt x1, x2 thỏa mãn hệ thức Vi-ét:
Ta có:
Vậy với m = – 2 thì phương trình có hai nghiệm phân biệt thỏa mãn
Bài 2: Cho phương trình
a, Chứng minh phương trình luôn luôn có hai nghiệm phân biệt với mọi m
b, Tìm m để hai nghiệm phân biệt x1, x2 của phương trình thỏa mãn
Hướng dẫn:
a) Để chứng minh phương trình bậc hai luôn có hai nghiệm, ta chứng minh ∆ luôn dương với mọi giá trị của tham số.
b) Khi phương trình đã có 2 nghiệm phân biệt, ta áp dụng Vi-ét để thay vào hệ thức và tìm giá trị của tham số.
Lời giải chi tiết:
a, Ta có
Vậy với mọi m phương trình luôn có hai nghiệm phân biệt x1, x2
b, Với mọi m thì phương trình luôn có hai nghiệm phân biệt x1, x2 thỏa mãn hệ thức Vi-ét:
Ta có:
Vậy với
Bài 3: Tìm m để phương trình
Hướng dẫn:
• Bước 1: Tìm điều kiện của tham số để phương trình có hai nghiệm phân biệt.
• Bước 2: Khi phương trình đã có hai nghiệm phân biệt, ta áp dụng Vi-ét để tìm các giá trị của tham số.
• Bước 3. Đối chiếu với điều kiện và kết luận bài toán.
Lời giải chi tiết:
Để phương trình có hai nghiệm phân biệt
Ta có
Với mọi m phương trình luôn có hai nghiệm phân biệt x1, x2 thỏa mãn hệ thức Vi-ét:
Ta có:
Mặt khác:
Vậy với
Bài 4: Cho phương trình
Hướng dẫn:
Bước 1: Tìm điều kiện của tham số để phương trình có hai nghiệm phân biệt.
Bước 2: Khi phương trình đã có hai nghiệm phân biệt, ta áp dụng Vi-ét để tìm các giá trị của tham số.
Bước 3. Đối chiếu với điều kiện và kết luận bài toán.
Lời giải chi tiết:
Để phương trình có hai nghiệm phân biệt
Ta có
Vậy với
Có
Vậy với m = 4 thì phương trình có hai nghiệm phân biệt x1, x2 thỏa mãn
III. Bài tập tự luyện về bài toán tìm m để phương trình có 2 nghiệm x1, x2 thỏa mãn điều kiện cho trước
Bài 1: Cho phương trình: x2 – 14x + 29 = 0 có hai nghiệm x1, x2. Hãy tính:
a) ![]() |
b) ![]() |
Bài 2: Cho phương trình x2 – 2(m + 1)x + m – 4 = 0, m là tham số.
a) Giải phương trình khi m = – 5.
b) Chứng minh rằng: Phương trình luôn có nghiệm x1, x2 với mọi tham số m.
c) Tìm m để phương trình có hai nghiệm trái dấu.
d) Tìm m để phương trình có hai nghiệm dương.
e) Chứng minh rằng biểu thức A = x1(1 – x2) + x2(x – x1) không phụ thuộc tham số m.
Bài 3: Cho phương trình ẩn x: (m – a)x2 + 2mx + m – 2 = 0
a) Giải phương trình khi m = 5.
b) Tìm m để phương trình có nghiệm
c) Tìm m để phương trình có nghiệm? Có 2 nghiệm phân biệt? Vô nghiệm? Có nghiệm kép?
d) Khi phương trình có nghiệm x1, x2 hãy tính:
i) A = x21 + x22 theo tham số m.
ii) Tìm m để A = 1
Bài 4: Cho phương trình x2 + mx + 2m – 4 = 0 (m tham số)
a, Chứng minh phương trình trên luôn có nghiệm với mọi giá trị của m
b, Tìm m để phương trình có hai nghiệm x1, x2 thỏa mãn x21 + x22 = 4.
Bài 5: Cho phương trình x2 – 2x + m – 1 = 0
a, Giải phương trình khi m = – 2
b, Tìm m để phương trình có hai nghiệm x1, x2 thỏa mãn
Bài 6: Tìm m để phương trình
Bài 7: Tìm m để phương trình
Bài 8: Tìm m để phương trình
Bài 9: Tìm m để phương trình
Bài 10: Cho phương trình x2 + ax + b + 1 = 0 với a, b là các tham số.
a) Giải phương trình khi a = 3; b = – 5.
b) Tìm giá trị của a và b để phương trình trên có hai nghiệm phân biệt x1, x2 thỏa mãn điều kiện:
Bài 11: Cho phương trình ẩn x: x2 – (2m + 1)x + m2 + 5m = 0.
a) Giải phương trình với m = – 2.
b) Tìm m để phương trình có hai nghiệm sao cho tích các nghiệm bằng 6.
Bài 12: Cho phương trình
a) Tìm m để phương trình có hai nghiệm phân biệt x1, x2 thỏa mãn
b) Tìm m nguyên để phương trình có hai nghiệm nguyên.
..........................