Tìm giá trị x nguyên để A nhận giá trị nguyên

Tìm giá trị của x để biểu thức nhận giá trị nguyên được VnDoc sưu tầm và đăng tải. Dạng câu hỏi tìm giá trị x nguyên để A nhận giá trị nguyên thường gặp trong đề thi vào lớp 10. Tài liệu này sẽ giúp các em làm quen với các dạng bài tập tìm giá trị nguyên của x, đồng thời tài liệu này giúp các em ôn tập, rèn luyện củng cố thêm kiến thức, chuẩn bị tốt cho kì thi vào lớp 10 sắp tới. Dưới đây là nội dung chi tiết, các em cùng tham khảo nhé

I. Cách tìm giá trị của x để biểu thức nguyên

1. Dạng 1: Tìm giá trị nguyên của x để biểu thức A nhận giá trị nguyên

+ Thông thường biểu thức A sẽ có dạng A = \frac{{f\left( x \right)}}{{g\left( x \right)}} trong đó f(x) và g(x) là các đa thức và g(x) ≠ 0

+ Cách làm:

- Bước 1: Tách về dạng A = m\left( x \right) + \frac{k}{{g\left( x \right)}} trong đó m(x) là một biểu thức nguyên khi x nguyên và k có giá trị là số nguyên

- Bước 2: Để A nhận giá trị nguyên thì \frac{k}{{g\left( x \right)}}nguyên hay k \vdots g\left( x \right) nghĩa là g(x) thuộc tập ước của k

- Bước 3: Lập bảng để tính các giá trị của x

- Bước 4: Kết hợp với điều kiện đề bài, loại bỏ những giá trị không phù hợp, sau đó kết luận bài toán

2. Dạng 2: Tìm giá trị của x để biểu thức A nhận giá trị nguyên

+ Đây là một dạng nâng cao hơn của dạng bài tập tìm gá trị nguyên của x để biểu thức A nhận giá trị nguyên bởi ta chưa xác định giá trị của biến x có nguyên hay không để biến đổi biểu thức A về dạng A = m\left( x \right) + \frac{k}{{g\left( x \right)}}. Bởi vậy, để làm được dạng bài tập này, chúng ta sẽ thực hiện các bước sau:

- Bước 1: Áp dụng điều kiện cùng với các bất đẳng thức đã được, chứng minh m < A < M trong đó m, M là các số nguyên

- Bước 2: Trong khoảng từ m đến M, tìm các giá trị nguyên

- Bước 3: Với mỗi giá trị nguyên ấy, tìm giá trị của biến x

- Bước 4: Kết hợp với điều kiện đề bài, loại bỏ những giá trị không phù hợp rồi kết luận

II. Bài tập ví dụ tìm giá trị của x để biểu thức nhận giá trị nguyên

Bài 1: Tìm các giá trị nguyên của biến số x để biểu thức đã cho cũng có giá trị nguyên

a,\frac{2}{{x - 1}}                                   b,\frac{{x - 2}}{{x - 1}}                                     c,\frac{{3\sqrt x }}{{\sqrt x  + 1}}

Lời giải:

Bài toán thuộc vào dạng 1: tìm các giá trị nguyên của x để biểu thức nhận giá trị nguyên. Cách làm cụ thể cho từng bài như sau:

a,\frac{2}{{x - 1}} có điều kiện x ≠ 1

Để \frac{2}{{x - 1}} nhận giá trị nguyên thì 2 \vdots \left( {x - 1} \right)⇔ x - 1 ∈ Ư(2) = {± 1; ± 2}

Ta có bảng:

x - 1-2-112
x-1 (thỏa mãn)0 (thỏa mãn)2 (thỏa mãn)3 (thỏa mãn)

Vậy với x ∈ {- 1; 0; 2; 3} thì biểu thức \frac{2}{{x - 1}} nhận giá trị nguyên

b, \frac{{x - 2}}{{x - 1}}có điều kiện x ≠ 1

Ta có: \frac{{x - 2}}{{x - 1}} = \frac{{x - 1 - 1}}{{x - 1}} = \frac{{x - 1}}{{x - 1}} - \frac{1}{{x - 1}} = 1 - \frac{1}{{x - 1}}

Để \frac{{x - 2}}{{x - 1}} nhận giá trị nguyên thì 1 \vdots \left( {x - 1} \right)⇔ x - 1 ∈ Ư(1) = {± 1}

Ta có bảng:

x - 1-11
x0 (thỏa mãn)2

Vậy với x ∈ {0; 2} thì biểu thức \frac{{x - 2}}{{x - 1}} nhận giá trị nguyên

c, \frac{{3\sqrt x }}{{\sqrt x  + 1}}có điều kiện là x ≥ 0

\frac{{3\sqrt x }}{{\sqrt x  + 1}} = \frac{{3\left( {\sqrt x  + 1} \right) - 3}}{{\sqrt x  + 1}} = \frac{{3\left( {\sqrt x  + 1} \right)}}{{\sqrt x  + 1}} - \frac{3}{{\sqrt x  + 1}} = 3 - \frac{3}{{\sqrt x  + 1}}

Để \frac{{3\sqrt x }}{{\sqrt x  + 1}} nhận giá trị nguyên thì 3 \vdots \left( {\sqrt x  + 1} \right) \Leftrightarrow \sqrt x  + 1 \in U\left( 3 \right) = \left\{ { \pm 1; \pm 3} \right\}

Ta có bảng:

\sqrt x  + 1-3-113
\sqrt x-4 (loại)-2 (loại)02
x0 (thỏa mãn)4 (thỏa mãn)

Vậy với x ∈ {0; 4} thì biểu thức \frac{{3\sqrt x }}{{\sqrt x  + 1}} nhận giá trị nguyên

Bài 2: Tìm giá trị của x để các biểu thức dưới đây nhận giá trị nguyên

a, \frac{{2\sqrt x }}{{x + 3}}                                             b,\frac{{2\sqrt x }}{{x + \sqrt x  + 1}}

Lời giải:

Bài toán thuộc vào dạng 2: tìm các giá trị của x để biểu thức nhận giá trị nguyên. Cách làm cụ thể cho từng bài như sau:

a, \frac{{2\sqrt x }}{{x + 3}} có điều kiện là x ≥ 0

x \ge 0 \Rightarrow \left\{ \begin{array}{l}
2\sqrt x  \ge 0\\
x + 3 \ge 3 > 0
\end{array} \right.. Suy ra ta có \frac{{2\sqrt x }}{{x + 3}} \ge 0\forall x \ge 0 (1)

Lại có \frac{{2\sqrt x }}{{x + 3}} = \frac{2}{{\sqrt x  + \dfrac{3}{{\sqrt x }}}}

Áp dụng bất đẳng thức Cauchy cho x \ge 0\sqrt x  + \frac{3}{{\sqrt x }} \ge 2.\sqrt {\sqrt x .\frac{3}{{\sqrt x }}}  = 2\sqrt 3

\Rightarrow \frac{2}{{\sqrt x  + \frac{3}{{\sqrt x }}}} \le \frac{2}{{2\sqrt 3 }} = \frac{{\sqrt 3 }}{3}(2)

Từ (1) và (2) ta có:0 \le \frac{{2\sqrt x }}{{x + 3}} \le \frac{{\sqrt 3 }}{3} mà biểu thức nhận giá trị nguyên nên \frac{{2\sqrt x }}{{x + 3}} = 0

Giải phương trình tính được x = 0

Vậy với x = 0 thì biểu thức nhận giá trị nguyên

b, \frac{{2\sqrt x }}{{x + \sqrt x  + 1}}có điều kiện là x ≥ 0

x \ge 0 \Rightarrow \left\{ \begin{array}{l}
2\sqrt x  \ge 0\\
x + \sqrt x  + 1 \ge 0
\end{array} \right.\forall x \ge 0(1)

Lại có \frac{{2\sqrt x }}{{x + \sqrt x  + 1}} = \frac{2}{{\sqrt x  + 1 + \frac{1}{{\sqrt x }}}}

Áp dụng bất đẳng thức Cauchy cho x \ge 0

\sqrt x  + \frac{1}{{\sqrt x }} \ge 2 \Rightarrow \sqrt x  + \frac{1}{{\sqrt x }} + 1 \ge 3 \Rightarrow \frac{2}{{\sqrt x  + 1 + \frac{1}{{\sqrt x }}}} \le \frac{2}{3}(2)

Từ (1) va (2) ta có 0 \le \frac{{2\sqrt x }}{{x + \sqrt x  + 1}} \le \frac{2}{3} mà biểu thức nhận giá trị nguyên nên \frac{{2\sqrt x }}{{x + 3}} = 0. Giải phương trình được x = 0

Vậy với x = 0 thì biểu thức nhận giá trị nguyên

III. Bài tập tự luyện tìm giá trị của x để biểu thức có giá trị nguyên

Bài 1: Tìm các giá trị nguyên của x để biểu thức dưới đây nhận giá trị nguyên

a,\frac{2}{{x - 1}}                                         b,\frac{{\sqrt x  - 3}}{{\sqrt x  + 1}}                                     c,\frac{{x + 5}}{x}

d,\frac{{{x^2} - 3}}{{x - 2}}                                       e, \frac{{\sqrt x  + 2}}{{\sqrt x  + 1}}                                    f,\frac{7}{{\sqrt x  + 3}}

Bài 2: Tìm các giá trị của x để biểu thức dưới đây nhận giá trị nguyên:

a,\frac{{7\sqrt x }}{{x + \sqrt x  + 2}}                             b,\frac{{15\sqrt x }}{{x + \sqrt x  + 1}}                             c,\frac{{3\sqrt x }}{{x + 5\sqrt x  + 9}}

Bài 3: Cho hai biểu thức A = \frac{{2\sqrt x }}{{3 + \sqrt x }}B = \left( {\frac{{15 - \sqrt x }}{{x - 25}} + \frac{2}{{\sqrt x  + 5}}} \right):\frac{{\sqrt x  + 3}}{{\sqrt x  - 5}}với x ≥ 0; x ≠ 25.

1) Rút gọn B.

2) Đặt P = A + B. Tìm x nguyên để P nhận giá trị nguyên.

Bài 4: Cho biểu thức P = \frac{{\sqrt x }}{{\sqrt x  - 1}} + \frac{3}{{\sqrt x  + 1}} - \frac{{6\sqrt x  - 4}}{{x - 1}}với x ≥ 0; x ≠ 1.

1) Rút gọn P.

2) Tìm x để P = -1.

3) Tìm x nguyên để P nhận giá trị nguyên.

Ngoài ra, VnDoc.com đã thành lập group chia sẻ tài liệu học tập THCS miễn phí trên Facebook: Tài liệu học tập lớp 9. Mời các bạn học sinh tham gia nhóm, để có thể nhận được những tài liệu mới nhất.

Tìm giá trị x nguyên để A nhận giá trị nguyên đã được VnDoc chia sẻ trên đây. Hy vọng với tài liệu này các em sẽ nắm chắc kiến thức cũng như chuẩn bị tốt cho kì thi quan trọng sắp tới đặc biệt là kì thi vào lớp 10. Chúc các em ôn thi tốt, nếu thấy tài liệu hữu ích, hãy chia sẻ cho các bạn cùng tham khảo nhé

-----------------

Ngoài chuyên đề tìm giá trị x nguyên để A nhận giá trị nguyên Toán lớp 9 - chuyên đề luyện thi vào lớp 10, mời các bạn học sinh tham khảo thêm các đề thi học kì 2 các môn Toán, Văn, Anh, Lý, Hóa, ... và các đề thi tuyển sinh vào lớp 10 môn Toán hay các chuyên đề luyện thi vào lớp 10 như Rút gọn biểu thức, Hàm số đồ thị, Phương trình - Hệ Phương trình, Giải bài toán bằng cách lập phương trình, hệ phương trình, Hình học,... mà chúng tôi đã sưu tầm và chọn lọc. Với bài tập về chuyên đề này giúp các bạn rèn luyện thêm kỹ năng giải đề và làm bài tốt hơn. Chúc các bạn học tập tốt!

Đặt câu hỏi về học tập, giáo dục, giải bài tập của bạn tại chuyên mục Hỏi đáp của VnDoc
Hỏi - ĐápTruy cập ngay: Hỏi - Đáp học tập
Đánh giá bài viết
40 194.065
1 Bình luận
Sắp xếp theo
  • Hương Giang Nguyễn
    Hương Giang Nguyễn

    bđt cauchy là gì v ạ 

    Thích Phản hồi 21:34 27/08
    • Nguyễn Tiến Khôi
      Nguyễn Tiến Khôi

      chắc là bất đẳng thức sosy

      Thích Phản hồi 21:03 28/08
    • Nguyễn Tiến Khôi
      Nguyễn Tiến Khôi

      cosy :)


      Thích Phản hồi 21:04 28/08
    • Moeo Con
      Moeo Con

      Cô sin nhé bạn

      Thích Phản hồi 10:25 20/11
Thi vào lớp 10 môn Toán Xem thêm