Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169

Đề thi giữa kì 1 Toán 12 Chân trời sáng tạo Đề 2

Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm
Mô tả thêm:

Mời các bạn học cùng thử sức với đề Đề thi giữa học kì 1 môn Toán lớp 12 sách Chân trời sáng tạo nha!

  • Thời gian làm: 90 phút
  • Số câu hỏi: 22 câu
  • Số điểm tối đa: 22 điểm
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
  • Câu 1: Nhận biết

    Xác định hàm số thỏa mãn yêu cầu

    Trong các hàm số sau, hàm số nào nghịch biến trên từng khoảng xác định?

    Xét hàm số y = \frac{2x + 1}{x -
3} ta có:

    Điều kiện xác định D\mathbb{=
R}\backslash\left\{ 3 ight\}

    Lại có: y' = \frac{- 7}{(x - 3)^{2}}
< 0;\forall x \in D nên hàm số y
= \frac{2x + 1}{x - 3} nghịch biến trên từng khoảng xác định của nó.

  • Câu 2: Nhận biết

    Chọn mệnh đề đúng

    Cho hàm số y =
f(x) có đạo hàm f'(x) = (x -
1)^{2}(x + 2)(3 - x). Mệnh đề nào sau đây đúng?

    Xét f'(x) = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 1 \\
x = - 2 \\
x = 3 \\
\end{matrix} ight. ta có bảng xét dấu f'(x) như sau:

    Dựa vào bảng xét dấu ta thấy hàm số nghịch biến trên các khoảng ( - \infty; - 2);(3; + \infty), hàm số đồng biến trên khoảng ( - 2;3).

  • Câu 3: Thông hiểu

    Chọn đáp án đúng

    Cho hàm số y =
f(x) có đạo hàm f'(x) xác định và liên tục trên \mathbb{R}. Hình vẽ sau đây là đồ thị của hàm số y = f'(x):

    Hàm số g(x) = f\left( x - x^{2}
ight) nghịch biến trên khoảng:

    Ta có:

    g'(x) = f'\left( x - x^{2}
ight).(1 - 2x)

    g'(x) = 0 \Leftrightarrow
f'\left( x - x^{2} ight).(1 - 2x) = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
f'\left( x - x^{2} ight) = 0 \\
1 - 2x = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x - x^{2} = 1 \\
x - x^{2} = 2 \\
1 - 2x = 0 \\
\end{matrix} ight.\  \Leftrightarrow x = \frac{1}{2}

    Với x = 0 ta có: g'(0) = f'\left( 0 - 0^{2} ight).(1 -
2.0) = 2 > 0 ta có bảng xét dấu của g'(x) như sau:

    Suy ra hàm số g(x) nghịch biến trên khoảng \left( \frac{1}{2}; + \infty
ight).

  • Câu 4: Nhận biết

    Chọn khẳng định đúng

    Cho hàm số y = x^{4} - x^{3} +
3. Khẳng định nào sau đây đúng?

    Ta có: y' = 4x^{3} - 3x^{2} = 0\Leftrightarrow \left\lbrack \begin{matrix}x = 0 \\x = \dfrac{3}{4} \\\end{matrix} ight.

    Ta có bảng xét dấu như sau:

    Vậy hàm số có đúng một cực trị.

  • Câu 5: Nhận biết

    Tính giá trị của biểu thức

    Cho hàm số y = f(x) liên tục trên đoạn \lbrack - 1;4brack và có đồ thị như hình vẽ:

    Giả sử M,m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn \lbrack - 1;4brack. Khi đó giá trị của biểu thức S = M + m bằng bao nhiêu?

    Từ đồ thị hàm số y = f(x) liên tục trên \lbrack - 1;4brack

    \Rightarrow \left\{ \begin{matrix}
M = 3 \\
m = - 1 \\
\end{matrix} ight.\  \Rightarrow S = M + m = 2

  • Câu 6: Nhận biết

    Xác định đường tiệm cận đứng của hàm số

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Đồ thị hàm số có đường tiệm cận đứng là:

    Từ bảng biến thiên ta có:

    \lim_{x ightarrow - 1^{-}}f(x) = +
\infty;\lim_{x ightarrow - 1^{+}}f(x) = - \infty

    Suy ra đồ thị hàm số có tiệm cận đứng là đường thẳng x = - 1

  • Câu 7: Thông hiểu

    Xác định số tiệm cận của đồ thị hàm số

    Số tiệm cận của đồ thị hàm số y =
\frac{(2x - 1)\sqrt{x^{2} + 1}}{x^{2} - 1} là:

    Ta có:

    \lim_{x ightarrow + \infty}y = \lim_{xightarrow + \infty}\dfrac{\left( 2x^{2} - x ight)\sqrt{1 +\dfrac{1}{x^{2}}}}{x^{2} - 1}= \lim_{x ightarrow + \infty}\dfrac{\left(2 - \dfrac{1}{x} ight)\sqrt{1 + \dfrac{1}{x^{2}}}}{1 - \dfrac{1}{x^{2}}}= 2

    \lim_{x ightarrow - \infty}y = \lim_{x
ightarrow - \infty}\frac{\left( - 2x^{2} + x ight)\sqrt{1 +
\frac{1}{x^{2}}}}{x^{2} - 1} = \lim_{x ightarrow - \infty}\frac{\left(
- 2 + \frac{1}{x} ight)\sqrt{1 + \frac{1}{x^{2}}}}{1 -
\frac{1}{x^{2}}} = - 2

    Suy ra y = \pm 2 là tiệm cận ngang.

    \lim_{x ightarrow 1^{\pm}}y = \lim_{x
ightarrow 1^{\pm}}\frac{(2x - 1)\sqrt{x^{2} + 1}}{x^{2} - 1} = \pm
\infty suy ra x = 1 là tiệm cận đứng.

    \lim_{x ightarrow ( - 1)^{\pm}}y =
\lim_{x ightarrow ( - 1)^{\pm}}\frac{(2x - 1)\sqrt{x^{2} + 1}}{x^{2} -
1} = \pm \infty suy ra x = -
1 là tiệm cận đứng.

    Vậy đồ thị hàm số có tất cả 4 đường tiệm cận.

  • Câu 8: Nhận biết

    Chọn hàm số thích hợp với hình vẽ

    Đồ thị hàm số nào dưới đây có dạng như đường cong trong hình vẽ:

    Đồ thị hàm số bậc 4 có hệ số a >0 và có ba điểm cực trị nên ab <0.

    Suy ra hàm số tương ứng với đồ thị đã cho là y = x^{4} - 2x^{2}.

  • Câu 9: Thông hiểu

    Hàm số đã cho là hàm số nào

    Cho hàm số y = \frac{{ax + b}}{{cx + d}} có bảng biến thiên như hình vẽ. Hỏi hàm số đã cho là hàm số nào?

    Hàm số đã cho là hàm số nào

    Dựa vào bảng biến thiên ta thấy:

    Đồ thị hàm số nhận các đường thẳng x = 2 và tiệm cận ngang y = 1

    => Loại đáp án C và D

    Hàm số đã cho nghịch biến trên mỗi khoảng xác định

    Xét hàm số y = \frac{{x - 3}}{{x - 2}} \Rightarrow y' = \frac{1}{{{{\left( {x - 2} ight)}^2}}}

    => Hàm số đồng biến trên mỗi khoảng xác định nên ta loại đáp án A

  • Câu 10: Nhận biết

    Chọn mệnh đề đúng

    Trong các mệnh đề sau, mệnh đề nào đúng?

    Nếu giá của ba vectơ cùng song song với một mặt phẳng thì ba vectơ đó đồng phẳng.

  • Câu 11: Nhận biết

    Chọn phân tích đúng

    Cho tứ diện OABC. Gọi G là trọng tâm của tam giác ABC.Phân tích nào sau đây là đúng?

    Ta có: G là trọng tâm tam giác ABC khi \overrightarrow{OG} = \frac{1}{3}\left(
\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC}
ight)

  • Câu 12: Nhận biết

    Xác định tính đúng sai của từng phương án

    Cho hàm số y = f(x) xác định, liên tục trên R và có bảng biến thiên như hình vẽ dưới đây:

    Xét tính đúng sai của các khẳng định sau:

    a) Hàm số đồng biến trên khoảng (−2; 5). Sai|| Đúng

    b) Hàm số đạt cực đại tại điểm x = −2. Đúng||Sai

    c) Hàm số có giá trị nhỏ nhất bằng −2. Sai|| Đúng

    d) Hàm số có giá trị lớn nhất bằng 5. Đúng||Sai

    Đáp án là:

    Cho hàm số y = f(x) xác định, liên tục trên R và có bảng biến thiên như hình vẽ dưới đây:

    Xét tính đúng sai của các khẳng định sau:

    a) Hàm số đồng biến trên khoảng (−2; 5). Sai|| Đúng

    b) Hàm số đạt cực đại tại điểm x = −2. Đúng||Sai

    c) Hàm số có giá trị nhỏ nhất bằng −2. Sai|| Đúng

    d) Hàm số có giá trị lớn nhất bằng 5. Đúng||Sai

    Hàm số y = f(x) không có giá trị nhỏ nhất nên phát biểu “Hàm số y =
f(x) có giá trị nhỏ nhất bằng −2” là phát biểu sai.

  • Câu 13: Thông hiểu

    Xác định tính đúng sai của từng phương án

    Cho hàm số y = f(x) có: \lim_{x ightarrow 3^{-}}f(x) = 1;\lim_{xightarrow 3^{+}}f(x) = + \infty;\lim_{x ightarrow - \infty}f(x) =1;\lim_{x ightarrow + \infty}f(x) = + \infty

    Xét tính đúng sai của các khẳng định sau:

    a) Đồ thị của hàm số y = f(x) có tiệm cận ngang là đường thẳng y =
1. Đúng||Sai

    b) Đồ thị của hàm số y = f(x) có tiệm cận đứng là đường thẳng x =
3. Đúng||Sai

    c) Đồ thị của hàm số y = f(x) không có tiệm cận ngang. Sai|| Đúng

    d) Đồ thị của hàm số y = f(x) không có tiệm cận đứng. Sai|| Đúng

    Đáp án là:

    Cho hàm số y = f(x) có: \lim_{x ightarrow 3^{-}}f(x) = 1;\lim_{xightarrow 3^{+}}f(x) = + \infty;\lim_{x ightarrow - \infty}f(x) =1;\lim_{x ightarrow + \infty}f(x) = + \infty

    Xét tính đúng sai của các khẳng định sau:

    a) Đồ thị của hàm số y = f(x) có tiệm cận ngang là đường thẳng y =
1. Đúng||Sai

    b) Đồ thị của hàm số y = f(x) có tiệm cận đứng là đường thẳng x =
3. Đúng||Sai

    c) Đồ thị của hàm số y = f(x) không có tiệm cận ngang. Sai|| Đúng

    d) Đồ thị của hàm số y = f(x) không có tiệm cận đứng. Sai|| Đúng

    a) Do \lim_{x ightarrow - \infty}f(x) =
1 nên y = 1 là đường tiệm cận ngang của đồ thị hàm số. (*)

    b) Do \lim_{x ightarrow 3^{+}}f(x) = +
\infty nên x = 3 là đường tiệm cận đứng của đồ thị hàm số. (**)

    c) Từ (*) suy ra khẳng định này sai.

    d) Từ (**) suy ra khẳng định này sai.

  • Câu 14: Thông hiểu

    Xác định tính đúng sai của từng phương án

    Cho hàm số y = \frac{ax^{2} + bx + c}{ex
+ f} có đồ thị (C) như hình vẽ:

    Xét tính đúng sai của các khẳng định sau:

    a) Hàm số đồng biến trên (−∞; −1). Sai||Đúng

    b) Hàm số đạt cực đại tại x = −2. Sai||Đúng

    c) Giá trị nhỏ nhất của hàm số trên (−∞; −1)\frac{3}{2}. Đúng||Sai

    d) Điểm cực tiểu của hàm số là x = −2. Đúng||Sai

    Đáp án là:

    Cho hàm số y = \frac{ax^{2} + bx + c}{ex
+ f} có đồ thị (C) như hình vẽ:

    Xét tính đúng sai của các khẳng định sau:

    a) Hàm số đồng biến trên (−∞; −1). Sai||Đúng

    b) Hàm số đạt cực đại tại x = −2. Sai||Đúng

    c) Giá trị nhỏ nhất của hàm số trên (−∞; −1)\frac{3}{2}. Đúng||Sai

    d) Điểm cực tiểu của hàm số là x = −2. Đúng||Sai

    a) Sai. Hàm số đồng biến trên (−2; −1), (−1; 0) và nghịch biến trên (−∞; −2), (0; +∞).

    b) Sai. Hàm số đạt cực tiểu tại x = −2.

    c) Đúng.

    d) Đúng.

  • Câu 15: Vận dụng

    Xác định tính đúng sai của từng phương án

    Cho tứ diện ABCD. Gọi M;N;P;Q;R;S;G lần lượt là trung điểm các đoạn thẳng AB;CD;AC;BD;AD;BC;MN.

    Xét tính đúng sai của các khẳng định sau.

    a) \overrightarrow{MR} =
\overrightarrow{SN}. Sai||Đúng

    b) \overrightarrow{GA} +
\overrightarrow{GB} + \overrightarrow{GC} + \overrightarrow{GD} =
\overrightarrow{0}. Đúng||Sai

    c) 2\overrightarrow{PQ} =
\overrightarrow{AB} + \overrightarrow{AC} +
\overrightarrow{AD}. Sai||Đúng

    d) \left| \overrightarrow{IA} +
\overrightarrow{IB} + \overrightarrow{IC} + \overrightarrow{ID}
ight| nhỏ nhất khi và chỉ khi điểm I trùng với điểm G. Đúng||Sai

    Đáp án là:

    Cho tứ diện ABCD. Gọi M;N;P;Q;R;S;G lần lượt là trung điểm các đoạn thẳng AB;CD;AC;BD;AD;BC;MN.

    Xét tính đúng sai của các khẳng định sau.

    a) \overrightarrow{MR} =
\overrightarrow{SN}. Sai||Đúng

    b) \overrightarrow{GA} +
\overrightarrow{GB} + \overrightarrow{GC} + \overrightarrow{GD} =
\overrightarrow{0}. Đúng||Sai

    c) 2\overrightarrow{PQ} =
\overrightarrow{AB} + \overrightarrow{AC} +
\overrightarrow{AD}. Sai||Đúng

    d) \left| \overrightarrow{IA} +
\overrightarrow{IB} + \overrightarrow{IC} + \overrightarrow{ID}
ight| nhỏ nhất khi và chỉ khi điểm I trùng với điểm G. Đúng||Sai

    Hình vẽ minh họa

    a) Đúng: \left. \ \begin{matrix}\overrightarrow{MR} = \dfrac{1}{2}\overrightarrow{BD} \\\overrightarrow{SN} = \dfrac{1}{2}\overrightarrow{BD} \\\end{matrix} ight\} \Rightarrow \overrightarrow{MR} =\overrightarrow{SN}.

    b) Đúng: Vi M là trung điểm của AB nên \overrightarrow{GA} + \overrightarrow{GB} =
2\overrightarrow{GM}

    N là trung điểm của CD nên \overrightarrow{GC} + \overrightarrow{GD} =
2\overrightarrow{GN}

    G là trung điểm của MN nên \overrightarrow{GM} + \overrightarrow{GN} =
\overrightarrow{0}

    Do đó: \overrightarrow{GA} +
\overrightarrow{GB} + \overrightarrow{GC} + \overrightarrow{GD} =
2(\overrightarrow{GM} + \overrightarrow{GN}) = 2.\overrightarrow{0} =
\overrightarrow{0}

    c) Sai: \overrightarrow{PQ} =\overrightarrow{AQ} - \overrightarrow{AP} =\frac{1}{2}(\overrightarrow{AB} + \overrightarrow{AD}) -\frac{1}{2}\overrightarrow{AC}\Leftrightarrow 2\overrightarrow{PQ} =\overrightarrow{AB} - \overrightarrow{AC} +\overrightarrow{AD}

    d) Đúng

    Ta có: \overrightarrow{IA} +
\overrightarrow{IB} + \overrightarrow{IC} + \overrightarrow{ID} =
4\overrightarrow{IG} + (\overrightarrow{GA} + \overrightarrow{GB} +
\overrightarrow{GC} + \overrightarrow{GD}) =
4\overrightarrow{IG}.

    \Rightarrow |\overrightarrow{IA} +
\overrightarrow{IB} + \overrightarrow{IC} + \overrightarrow{ID}| =
|4\overrightarrow{IG}| = 4IG.

    Do đó: |\overrightarrow{IA} +
\overrightarrow{IB} + \overrightarrow{IC} +
\overrightarrow{ID}| nhỏ nhất khi IG = 0 \Leftrightarrow I \equiv G 

  • Câu 16: Thông hiểu

    Ghi đáp án vào ô trống

    Có bao nhiêu giá trị nguyên của tham số m để hàm số y
= \frac{mx - 3}{2x - m} đồng biến trên từng khoảng xác định?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Có bao nhiêu giá trị nguyên của tham số m để hàm số y
= \frac{mx - 3}{2x - m} đồng biến trên từng khoảng xác định?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 17: Vận dụng

    Ghi đáp án vào ô trống

    Cho hàm số y = f(x) = \left| x^{3} -3x^{2} + m ight| biết m \in\lbrack - 4;4brack. Có thể có bao nhiêu giá trị nguyên của tham số m để hàm số đã cho có đúng ba điểm cực trị?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = f(x) = \left| x^{3} -3x^{2} + m ight| biết m \in\lbrack - 4;4brack. Có thể có bao nhiêu giá trị nguyên của tham số m để hàm số đã cho có đúng ba điểm cực trị?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 18: Vận dụng

    Ghi đáp án vào ô trống

    Để uốn 4m thanh kim loại thành hình như sau:

    Gọi r bán kính của nửa đường tròn. Tìm r(m) để diện tích tạo thành đạt giá trị lớn nhất?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Để uốn 4m thanh kim loại thành hình như sau:

    Gọi r bán kính của nửa đường tròn. Tìm r(m) để diện tích tạo thành đạt giá trị lớn nhất?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 19: Vận dụng

    Ghi đáp án vào ô trống

    Có bao nhiêu giá trị nguyên của tham số m để đồ thị hàm số y = \frac{\sqrt{1 - x}}{x^{2} + 4x + m} có đúng ba đường tiệm cận?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Có bao nhiêu giá trị nguyên của tham số m để đồ thị hàm số y = \frac{\sqrt{1 - x}}{x^{2} + 4x + m} có đúng ba đường tiệm cận?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 20: Vận dụng

    Ghi đáp án vào ô trống

    Gọi M;N lần lượt là trung điểm của các cạnh AC;BD của tứ diện ABCD. Gọi I là trung điểm của đoạn MN. Tìm giá trị thực của k thỏa mãn đẳng thức vectơ \overrightarrow{IA} + (2k - 1)\overrightarrow{IB}+ k\overrightarrow{IC} + \overrightarrow{ID} =\overrightarrow{0}?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Gọi M;N lần lượt là trung điểm của các cạnh AC;BD của tứ diện ABCD. Gọi I là trung điểm của đoạn MN. Tìm giá trị thực của k thỏa mãn đẳng thức vectơ \overrightarrow{IA} + (2k - 1)\overrightarrow{IB}+ k\overrightarrow{IC} + \overrightarrow{ID} =\overrightarrow{0}?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 21: Vận dụng cao

    Ghi đáp án vào ô trống

    Có bao nhiêu giá trị nguyên của m \in\lbrack - 10;10brack để hàm số y= \left| x^{4} + 2mx^{3} + (3 - 3m)x^{2} - 2mx + 3m - 4 ight|7 điểm cực trị?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Có bao nhiêu giá trị nguyên của m \in\lbrack - 10;10brack để hàm số y= \left| x^{4} + 2mx^{3} + (3 - 3m)x^{2} - 2mx + 3m - 4 ight|7 điểm cực trị?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 22: Thông hiểu

    Tìm m thỏa mãn yêu cầu bài toán

    Cho hàm số y =
f(x) = \frac{mx - 8}{2x - m} (với m là tham số). Tìm tất cả các giá trị của tham số m để hàm số đồng biến trên từng khoảng xác định?

    Tập xác định x eq
\frac{m}{2}

    Ta có: y' = \frac{- m^{2} + 16}{(2x -
m)^{2}}.

    Để hàm số đồng biến trên khoảng xác định thì y' > 0 \Leftrightarrow \frac{- m^{2} +
16}{(2x - m)^{2}} > 0

    \Leftrightarrow - m^{2} + 16 > 0
\Leftrightarrow - 4 < m < 4

    Vậy đáp án cần tìm là: - 4 < m <
4.

Chúc mừng Bạn đã hoàn thành bài!

Đề thi giữa kì 1 Toán 12 Chân trời sáng tạo Đề 2 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo