Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề kiểm tra 45 phút Chương 5 Phương trình mặt phẳng, đường thẳng, mặt cầu CTST

Mô tả thêm:

Hãy cùng thử sức kiểm tra đánh giá các kiến thức tổng quan với bài kiểm tra phút Chương 5: Phương trình mặt phẳng, đường thẳng, mặt cầu Toán 12 sách Chân trời sáng tạo các em nhé!

  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Thông hiểu

    Viết phương trình mặt phẳng

    Trong không gian với hệ tọa độ Oxyz, viết phương trình mặt phẳng (P) chứa điểm M(1;3; - 2), cắt các tia Ox,Oy,Oz lần lượt tại A;B;C (khác O) sao cho \frac{OA}{1} = \frac{OB}{2} =
\frac{OZ}{4}?

    Giả sử A(a;0;0),B(0;b;0),C(0;0;c) với a,b,c > 0.

    Phương trình mặt phẳng (P) là \frac{x}{a}
+ \frac{y}{b} + \frac{z}{c} = 1. Theo giả thiết ta có:

    \left\{ \begin{matrix}\dfrac{a}{1} = \dfrac{b}{2} = \dfrac{c}{3} \\\frac{1}{a} + \dfrac{3}{b} - \dfrac{2}{c} = 1 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}a = 2 \\b = 4 \\c = 8 \\\end{matrix} ight.

    Vậy phương trình mặt phẳng (P)4x + 2y + z - 8 = 0.

  • Câu 2: Thông hiểu

    Tìm tham số m thỏa mãn yêu cầu

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d_{1}:\left\{ \begin{matrix}
x = - 1 + t \\
y = - \sqrt{2}t \\
z = 2 + t \\
\end{matrix} \right.d_{2}:\left\{ \begin{matrix}
x = 2 + t \\
y = 1 + \sqrt{2}t \\
z = 2 + mt \\
\end{matrix} \right..Tìm giá trị của tham số m để hai đường thẳng hợp với nhau một góc bằng 60^{0}?

    Đường thẳng d_{1} có VTCP \overrightarrow{u_{1}} = \left( 1; - \sqrt{2};1
\right), d_{2} có VTCP \overrightarrow{u_{2}} = \left( 1;\sqrt{2};m
\right).

    Do đó

    \cos60^{0} = \cos\left( d_{1};d_{2}
\right) \Leftrightarrow \frac{1}{2} = \left| \cos\left(
\overrightarrow{u_{1}};\overrightarrow{u_{2}} \right)
\right|

    \Leftrightarrow \frac{1}{2} =
\frac{\left| \overrightarrow{u_{1}}.\overrightarrow{u_{2}}
\right|}{\left| \overrightarrow{u_{1}} \right|\left|
\overrightarrow{u_{2}} \right|} \Leftrightarrow \frac{1}{2} = \frac{|m -
1|}{2\sqrt{m^{2} + 3}} \Leftrightarrow m = - 1.

  • Câu 3: Nhận biết

    Chọn mặt phẳng thích hợp

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d đi qua điểm M(3;3; - 2) và có vectơ chỉ phương \overrightarrow{u} = (1;3;1). Viết phương trình đường thẳng d?

    Đường thẳng d đi qua điểm M(3;3; - 2) và có vectơ chỉ phương \overrightarrow{u} = (1;3;1) là:

    d:\frac{x - 3}{1} = \frac{y - 3}{3} =
\frac{z + 2}{1}

  • Câu 4: Thông hiểu

    Chọn đáp án đúng

    Cho các điểm I( - 1;0;0) và đường thẳng d:\frac{x - 2}{1} = \frac{y -
1}{2} = \frac{z - 1}{1}. Phương trình mặt cầu (S) có tâm I và tiếp xúc d là:

    Đường thẳngdđi qua I(2;1;1)và có một vectơ chỉ phương:

    \overrightarrow{u} = (1;\ 2;\ 1)
\Rightarrow d(I;d) = \frac{\left| \left\lbrack
\overrightarrow{u},\overrightarrow{MI} \right\rbrack \right|}{\left|
\overrightarrow{u} \right|} = \sqrt{5}

    Phương trình mặt cầu là: (x + 1)^{2} +
y^{2} + z^{2} = 5.

  • Câu 5: Thông hiểu

    Tìm phương trình mặt cầu (S)

    Viết phương trình mặt cầu (S) tâm I( - 2,1, - 1) qua A(4,3, - 2).

    Ta có:

    M(x,y,z) \in (S) \Rightarrow IM^{2} =
IA^{2}

    \Leftrightarrow (x + 2)^{2} + (y -
1)^{2} + (z + 1)^{2} = (4 + 2)^{2} + (3 - 1)^{2} + ( - 2 +
1)^{2}

    \Leftrightarrow x^{2} + y^{2} + 4x - 2y
+ 2z - 35 = 0

  • Câu 6: Nhận biết

    Tính góc giữa hai đường thẳng

    Trong không gian Oxyz, góc giữa hai đường thẳng \Delta_{1}:\left\{
\begin{matrix}
x = 1 - 2t \\
y = - 1 + t \\
z = 2 - 3t \\
\end{matrix} \right.\Delta_{2}:\frac{x - 2}{1} = \frac{x + 1}{- 1} =
\frac{z - 2}{- 2} xấp xỉ bằng

    Ta có:

    \cos\left( \Delta_{1},\Delta_{2} ight)
=
\frac{\overrightarrow{u_{\Delta_{1}}}.\overrightarrow{u_{\Delta_{2}}}}{\left|
\overrightarrow{u_{\Delta_{1}}} ight|.\left|
\overrightarrow{u_{\Delta_{2}}} ight|}= \left| \frac{- 2.1 + 1.( - 1)
+ ( - 3).( - 2)}{\sqrt{( - 2)^{2} + 1^{2} + ( - 3)^{2}}.\sqrt{1^{2} + (
- 1)^{2} + ( - 2)^{2}}} ight|

    = \left| \frac{3}{\sqrt{14}.\sqrt{6}}
ight| = \frac{\sqrt{21}}{14}

    \Rightarrow \left( \Delta_{1},\Delta_{2}
ight) \approx 70,9^{0}.

  • Câu 7: Nhận biết

    Chọn mệnh đề đúng

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng (d):\frac{x - 1}{2} = \frac{y + 1}{- 3} = \frac{z
- 5}{4} và mặt phẳng (P):x - 3y +
2z - 5 = 0. Mệnh đề nào sau đây đúng?

    Ta có: d có vectơ chỉ phương là \overrightarrow{u} = (2; - 3;4), (P) có véc-tơ pháp tuyến là \overrightarrow{n} = (1; - 3;2).

    Do \overrightarrow{u} không cùng phương \overrightarrow{n} nên d cắt (P).

    Mặt khác \overrightarrow{u}.\overrightarrow{n} = 19 eq
0 nên d không vuông góc (P).

    Vậy d cắt nhưng không vuông góc với (P).

  • Câu 8: Thông hiểu

    Viết phương trình mặt phẳng

    Trong không gian Oxyz, phương trình của mặt phẳng (P) đi qua điểm B(2;1; - 3), đồng thời vuông góc với hai mặt phẳng (Q):x + y + 3z = 0,(R):2x
- y + z = 0 là:

    Ta có \left\{ \begin{matrix}
\overrightarrow{n_{1}} = (1;1;3) \\
\overrightarrow{n_{2}} = (2; - 1;1) \\
\end{matrix} ight. lần lượt là vectơ pháp tuyến của các mặt phẳng (Q),(R).

    Do mặt phẳng (P) vuông góc với hai mặt phẳng (Q),(R) nên \left\lbrack
\overrightarrow{n_{1}},\overrightarrow{n_{2}} ightbrack = (4;5; -
3) là một vectơ pháp tuyến của (P).

    Từ đó suy ra mặt phẳng (P) có phương trình 4x + 5y - 3z - 22 =
0.

  • Câu 9: Nhận biết

    Tính góc giữa hai mặt phẳng

    Trong không gian Oxyz cho hai mặt phẳng (P):x + z + 4 = 0,(Q):x - 2y + 2z
+ 4 = 0. Góc giữa hai mặt phẳng (P);(Q) bằng:

    Ta có: (P):x + z + 4 = 0 có 1 vectơ pháp tuyến là \overrightarrow{n_{1}} =
(1;0;1)

    (Q):x - 2y + 2z + 4 = 0 có 1 vectơ pháp tuyến là \overrightarrow{n_{2}} =
(1; - 2;2)

    Khi đó:

    \cos\left( (P);(Q) ight) = \cos\left(
\overrightarrow{n_{1}};\overrightarrow{n_{2}} ight)= \frac{\left|
\overrightarrow{n_{1}}.\overrightarrow{n_{2}} ight|}{\left|
\overrightarrow{n_{1}} ight|.\left| \overrightarrow{n_{2}} ight|} =
\frac{1}{\sqrt{2}}

    \Rightarrow \left( (P);(Q) ight) =
45^{0}

  • Câu 10: Nhận biết

    Tìm tọa độ hình chiếu của A

    Trong không gian Oxyz, tìm tọa độ hình chiếu vuông góc của điểm A(1; 2; 5) trên trục Ox?

    Hình chiếu vuông góc của điểm A(1;2;5) trên trục Ox có tọa độ là (1;0;0).

  • Câu 11: Nhận biết

    Tính góc giữa đường thẳng và mặt phẳng

    Trong không gian tọa độ Oxyz, cho mặt phẳng (P):4x + 3y - z + 1 =
0 và đường thẳng d:\frac{x - 1}{4}
= \frac{y - 6}{3} = \frac{z + 4}{1}, sin của góc giữa đường thẳng d và mặt phẳng (P) bằng:

    Mặt phẳng (P):4x + 3y - z + 1 =
0 có một vectơ pháp tuyến là \overrightarrow{n} = (4;3; - 1)

    Đường thẳng d:\frac{x - 1}{4} = \frac{y -
6}{3} = \frac{z + 4}{1} có một vectơ chỉ phương là \overrightarrow{u} = (4;3;1)

    Gọi α là góc giữa đường thẳng d và mặt phẳng (P):

    \sin\alpha = \left| \cos\alpha ight| =
\frac{\left| \overrightarrow{u}.\overrightarrow{n} ight|}{\left|
\overrightarrow{u} ight|.\left| \overrightarrow{n} ight|} =
\frac{12}{13}

  • Câu 12: Thông hiểu

    Viết phương trình tổng quát của đường thẳng

    Viết phương trình tổng quát của đường thẳng (D) qua A(2,
- 2,1) và song song với đường thẳng (d):x = 2 - 4m;y = 3 + 2m;z = m - 5\left(
m\mathbb{\in R} \right).

    Ta có:

    (D)//(d) \Rightarrow Một vecto chỉ phương của (D):\overrightarrow{a} = ( -
4,2,1)

    Phương trình chính tắc của (D):\frac{x -
2}{- 4} = \frac{y + 2}{2} = z - 1

    \Rightarrow \left\{ \begin{matrix}
x + 2y + 2 = 0 \\
x + 4z - 6 = 0 \\
\end{matrix} \right.\  \vee \left\{ \begin{matrix}
x + 2y + 2 = 0 \\
y - 2z + 4 = 0 \\
\end{matrix} \right.

  • Câu 13: Vận dụng

    Tính diện tích mặt cầu (S)

    Cho hình hợp chữ nhật ABCD.EFGH có A(0,0,0);\ \ \ B(4,0,0);\ \ \ D(0,6,0);\ \ \
E(0,0,2). Tính diện tích mặt cầu (S) ngoại tiếp hình hợp chữ nhật.

    Mặt cầu (S) ngoại tiếp hình hợp chữ nhật có tâm là trung điểm chung của 4 đường chéo bằng nhau của hình hộp và có đường chéo bằng đường chéo. (Học sinh tự vẽ hình)

    AG^{2} = AC^{2} + AE^{2} = AB^{2} +
AD^{2} + AE^{2}= 16 + 36 + 4 = 56

    R = \frac{AG}{2} \Rightarrow R^{2} =
\frac{AG^{2}}{4} = \frac{56}{4} = 14 \Rightarrow S = 4\pi R^{2} = 56\piđvdt

  • Câu 14: Nhận biết

    Phương trình tổng quát

    Phương trình tổng quát của mặt phẳng đi qua A(2,-1,3),  B (3, 1, 2) và song song với vectơ \overrightarrow a  = \left( {3, - 1, - 4} ight) là:

    Theo đề bài, ta có: \overrightarrow {AB}  = \left( {1,2, - 1} ight);\left[ {\overrightarrow {AB} \overrightarrow {,a} } ight] = \overrightarrow n  = \left( { - 9,1, - 7} ight)

    Chọn \overrightarrow n  = \left( {9, - 1,7} ight) làm 1 vectơ pháp tuyến.

    Phương trình mặt phẳng cần tìm có dạng : 9x - y + 7z + D = 0

    Mà mp lại qua A nên 9.2 - ( - 1) + 7.3 + D = 0 \Leftrightarrow D =  - 40

    Phương trình cần tìm là: 9x - y + 7z - 40 = 0.

  • Câu 15: Nhận biết

    Viết PT mp đi qua 3 điểm

    Viết phương trình tổng quát của mặt phẳng (P) qua ba điểm A\left( {\,2,\,\,0,\,\,3\,} ight);\,\,\,B\left( {\,4,\,\, - 3,\,\,2\,} ight);\,\,\,C\left( {\,0,\,\,2,\,\,5\,} ight)

    Theo đề bài, ta có cặp vecto chỉ phương của \left( P ight):\overrightarrow {AB}  = \left( {2, - 3, - 1} ight);\overrightarrow {AC}  = \left( { - 2,2,2} ight)

    Từ đó, ta suy ra vecto pháp tuyến của (P) là tích có hướng của 2 VTCP của

    \left( P ight):\overrightarrow n  = \left( { - 4, - 2, - 2} ight) =  - 2\left( {2,1,1} ight)

    Mp (P) đi qua A (2,0,3) và nhận vecto có tọa độ (2,1,1) làm 1 VTPT có phương trình là:

    \Rightarrow \left( P ight):\left( {x - 2} ight)2 + y.1 + \left( {z - 3} ight).1 = 0

    \Leftrightarrow 2x + y + z - 7 = 0

  • Câu 16: Nhận biết

    Xác định phương trình mặt phẳng

    Trong không gian Oxyz, cho điểm A(1;1; - 1). Phương trình mặt phẳng (P) đi qua A và chứa trục Ox là:

    Mặt phẳng (P) có VTPT \overrightarrow{n}(0;1;1) và đi qua điểm A(1;1; - 1).

    Suy ra phương trình (P):y + z =
0.

  • Câu 17: Vận dụng cao

    Tính bán kính mặt cầu

    Trong không gian Oxyz, cho ba điểm A(2;0;0),B(0;4;0),C(0;0;6), điểm M thay đổi trên mặt phẳng (ABC), N là điểm trên tia OM sao cho OM.ON = 12. Biết khi M thay đổi thì điểm N luôn nằm trên mặt cầu cố định. Tính bán kính mặt cầu đó

    Giả sử N(x;y;z) \Rightarrow ON =
\sqrt{x^{2} + y^{2} + z^{2}}.

    Do O, M, N thẳng hàng và N thuộc tia ON nên suy ra:

    OM.ON = 12 \Leftrightarrow\overrightarrow{OM} = \frac{12}{x^{2} + y^{2} +z^2}.\overrightarrow{ON}

    Do N \in (ABC) \Rightarrow 6x + 3y + 2z =
x^{2} + y^{2} + z^{2}

    \Leftrightarrow (x - 3)^{2} + \left( y -\frac{3}{2} \right)^2 + (z - 1)^{2} = \frac{49}{4}

    Vậy N thuộc mặt cầu cố định bán kính R = \frac{7}{2}.

  • Câu 18: Nhận biết

    Viết phương trình đường thẳng d

    Trong không gian Oxyz, cho đường thẳng d:\frac{x - 1}{- 1} = \frac{y + 1}{2}
= \frac{z - 2}{- 1}. Đường thẳng đi qua điểm M(2;1; - 1) và song song với đường thẳng \overrightarrow{u} = (1; - 2;1)có phương trình là:

    Vì đường thẳng song song với đường thẳng \left\{ \begin{matrix}
1 + t = 1 + at' \\
2 - 2t = 0 + t' \\
3 + t = - 1 + 2t' \\
\end{matrix} \right. nên nó có vectơ chỉ phương là \overrightarrow{u} = ( - 1;2; - 1) hoặc \overrightarrow{u} = (1; - 2;1) nên loại phương án \frac{x + 1}{2} = \frac{y -
2}{1} = \frac{z + 1}{- 1}\frac{x - 2}{1} = \frac{y - 1}{- 1} = \frac{z +
1}{2}.

    Vì điểm M(2;\ 1;\  - 1)thuộc đường thẳng \frac{x}{1} = \frac{y - 5}{- 2}
= \frac{z + 3}{1} nên chọn phương án \frac{x}{1} = \frac{y - 5}{- 2} = \frac{z +
3}{1}.

    Vậy phương trình của đường thẳng là \frac{x}{1} = \frac{y - 5}{- 2} = \frac{z +
3}{1}.

  • Câu 19: Thông hiểu

    Tính giá trị biểu thức

    Trong không gian với hệ tọa độ Oxyz, cho điểm M( - 4;0;0)và đường thẳng\Delta:\left\{ \begin{matrix}
x = 1 - t \\
y = - 2 + 3t \\
z = - 2t \\
\end{matrix} \right.. Gọi H(a;b;c) là hình chiếu của M lên \Delta. Tính a+b+c.

    Gọi H là hình chiếu của M lên \Deltanên tọa độ của H có dạng H(1 - t; - 2 + 3t; - 2t)\overrightarrow{MH}\bot\overrightarrow{u_{\Delta}}

    \overrightarrow{MH}.\overrightarrow{u_{\Delta}} =
0 \Leftrightarrow 14t - 11 = 0 \Leftrightarrow t =
\frac{11}{14}

    \Rightarrow
H(\frac{3}{14};\frac{5}{14};\frac{- 22}{14}) \Rightarrow a + b + c = -
1

  • Câu 20: Nhận biết

    Chọn đáp án thích hợp

    Trong không gianOxyz, cho hai đường thẳng \Delta_{1}:\frac{x - 1}{2} =
\frac{y - 2}{- 3} = \frac{z - 3}{1}\Delta_{2}:\frac{x + 3}{3} = \frac{y - 2}{1} =
\frac{z + 1}{- 2}. Tính cosin góc giữa hai đường thẳng \Delta_{1};\Delta_{2}?

    Véc tơ chỉ phương của \Delta_{1}\overrightarrow{u_{1}} = (2; -
3;1)

    Véc tơ chỉ phương của \Delta_{2}\overrightarrow{u_{2}} = (3;1; -
2)

    \cos\left( \Delta_{1};\Delta_{2} \right)
= \cos\left( \overrightarrow{u_{1}};\overrightarrow{u_{2}} \right) =
\frac{\left| \overrightarrow{u_{1}}.\overrightarrow{u_{2}}
\right|}{\left| \overrightarrow{u_{1}} \right|\left|
\overrightarrow{u_{2}} \right|} = \frac{1}{14}.

  • Câu 21: Nhận biết

    Tìm điều kiện để hai mặt phẳng song song

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (P):3x - my - z + 7 = 0,(Q):6x + 5y - 2z - 4 =
0. Xác định m để hai mặt phẳng (P)(Q) song song với nhau?

    Hai mặt phẳng đã cho song song với nhau khi và chỉ khi

    Tập xác định \frac{3}{6} = \frac{- m}{5}
= \frac{- 1}{- 2} eq \frac{7}{- 4}

    Vậy m = - \frac{5}{2} thì hai mặt phẳng (P);(Q) song song với nhau.

  • Câu 22: Thông hiểu

    Xét sự đúng sai của các khẳng định

    Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):x - 2y + 3 = 0.

    a) Vectơ \overrightarrow{n} = (1;\  - 2;\
3) là một vectơ pháp tuyến của mặt phẳng (P). Sai||Đúng

    b) Điểm A(1;\  - 1;\ 0) thuộc mặt phẳng (P). Sai||Đúng

    c) Khoảng cách từ điểm B(2;\ 1;\
2) đến (P) bằng \frac{3}{\sqrt{5}}. Đúng||Sai

    d) Mặt phẳng (Q) qua C(1;\ 1;\ 0), D( - 2;\ 1;\ 1) và vuông góc với mặt phẳng (P) có phương trình (Q):2x + y + 6z - 3 = 0. Đúng||Sai

    Đáp án là:

    Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):x - 2y + 3 = 0.

    a) Vectơ \overrightarrow{n} = (1;\  - 2;\
3) là một vectơ pháp tuyến của mặt phẳng (P). Sai||Đúng

    b) Điểm A(1;\  - 1;\ 0) thuộc mặt phẳng (P). Sai||Đúng

    c) Khoảng cách từ điểm B(2;\ 1;\
2) đến (P) bằng \frac{3}{\sqrt{5}}. Đúng||Sai

    d) Mặt phẳng (Q) qua C(1;\ 1;\ 0), D( - 2;\ 1;\ 1) và vuông góc với mặt phẳng (P) có phương trình (Q):2x + y + 6z - 3 = 0. Đúng||Sai

    a) Sai: Vectơ pháp tuyến của (P)\overrightarrow{n_{1}} = (1;\  - 2;\
0). Ta thấy \overrightarrow{n} không cùng phương với \overrightarrow{n_{1}} nên \overrightarrow{n} không là vectơ pháp tuyến của (P).

    b) Sai: Do 1 - 2( - 1) + 3 = 6 \neq
0 nên A(1;\  - 1;\ 0) không thuộc mặt phẳng (P).

    c) Đúng: Ta có d\left( B,\ (P) \right) =
\frac{|2 - 2.1 + 3|}{\sqrt{1 + ( - 2)^{2}}} =
\frac{3}{\sqrt{5}}.

    d) Đúng: Ta có (Q) chứa C,\ D nên \overrightarrow{CD} = ( - 3;\ 0;\ 1) là một vectơ chỉ phương của (Q).

    Lại có (Q) vuông góc với (P) nên \overrightarrow{n_{1}} = (1;\  - 2;\ 0) là một vectơ chỉ phương của (Q).

    Khi đó \left\lbrack \overrightarrow{CD};\
\overrightarrow{n_{1}} \right\rbrack = (2;\ 1;\ 6) là một vectơ pháp tuyến của (Q). Vậy (Q):2x + y + 6z - 3 = 0.

  • Câu 23: Thông hiểu

    Xác định số mặt phẳng thỏa mãn yêu cầu

    Trong không gian với hệ trục tọa độ Oxyz, có bao nhiêu mặt phẳng song song với mặt phẳng (P):\ \ x + y + z - 6 =
0 và tiếp xúc với mặt cầu (S):x^{2}
+ y^{2} + z^{2} = 12?

    +) Mặt phẳng (Q) song song với mặt phẳng (P) có dạng: x + y + z + D = 0\ \ (D \neq - 6).

    +) Do mặt phẳng (Q)tiếp xúc với mặt cầu (S):x^{2} + y^{2} + z^{2} =
12 nên d(I;(Q)) = R với Ilà tâm cầu, R là bán kính mặt cầu.

    Tìm được D = 6 hoặc D = - 6(loại) Vậy có 1 mặt phẳng thỏa mãn.

  • Câu 24: Nhận biết

    Tìm điểm thuộc mặt phẳng

    Trong không gian với hệ toạ độ Oxyz. Điểm nào sau đây thuộc mặt phẳng (P) - 2x + y - 5 = 0

    Phương pháp tự luận

    Thay tọa độ các điểm vào phương trình mặt phẳng, nếu điểm nào làm cho vế trái bằng 0 thì đó là điểm thuộc mặt phẳng.

    Phương pháp trắc nghiệm

    Nhập phương trình mặt phẳng (P) vào máy tính dạng sau: - 2X + Y + 0A - 5 = 0, sau đó dùng hàm CALC và nhập tọa độ (x;y;z)của các điểm vào. Nếu bằng 0 thì điểm đó thuộc mặt phẳng.

  • Câu 25: Thông hiểu

    Chọn phương án đúng

    Trong không gian với hệ trục tọa độ Oxyz, cho điểm G(1;4;3). Viết phương trình mặt phẳng cắt các trục Ox,Oy,Oz lần lượt tại A,B,C sao cho G là trọng tâm tứ diện OABC?

    +) Do A,B,C lần lượt thuộc các trục Ox,Oy,Oznên A(a;0;0),B(0;b;0),C(0;0;c).

    +) Do G là trọng tâm tứ diện OABC nên \left\{ \begin{matrix}
x_{G} = \frac{x_{O} + x_{A} + x_{B} + x_{C}}{4} \\
y_{G} = \frac{y_{O} + y_{A} + y_{B} + y_{C}}{4} \\
z_{G} = \frac{y_{O} + y_{A} + y_{B} + y_{C}}{4} \\
\end{matrix} \right.

    suy ra a = 4,b = 16,c = 12.

    +) Vậy phương trình đoạn chắn của mặt phẳng (ABC) là: \frac{x}{4} + \frac{y}{16} + \frac{z}{12} =
1.

  • Câu 26: Vận dụng

    Viết phương trình mặt cầu

    Cho hai mặt phẳng (P), (Q) có phương trình (P):x - 2y + z - 1 = 0(Q):2x + y - z + 3 = 0. Mặt cầu có tâm nằm trên mặt phẳng (P) và tiếp xúc với mặt phẳng (Q) tại điểm M, biết rằng M thuộc mặt phẳng (Oxy) và có hoành độ x_{M} = 1, có phương trình là:

    M \in (Oxy) và có hoành độ bằng 1 nên M(1;y;0).

    Lại có, mặt cầu tiếp xúc với mặt phẳng (Q) nên M \in
(Q) \Rightarrow M(1; -
5;0).

    Gọi I(a;b;c) là tâm của mặt cầu (S) cần tìm.

    Ta có (S) tiếp xúc với mp (Q) tại M nên IM\bot(Q).

    Mặt phẳng (Q) có vectơ pháp tuyến \overrightarrow{n} = (2;1; -
1).

    Ta có: IM\bot(Q)\Leftrightarrow
\overrightarrow{MI} = t\overrightarrow{n},\ \left( t\mathbb{\in R}
\right) \Leftrightarrow \left\{ \begin{matrix}
a = 1 + 2t \\
b = -5 + t \\
c = - t \\
\end{matrix} \right.

    I \in (P) \Leftrightarrow 1 + 2t - 2( - 5
+ t) - t - 1 = 0 \Leftrightarrow t = 10 \Rightarrow I(21;5; -
10).

    Bán kính mặt cầu R = d\left( I;(Q)
\right) = 10\sqrt{6}.

    Vậy phương trình mặt cầu (S):(x - 21)^{2}+ (y - 5)^{2} + (z + 10)^{2} = 600.

  • Câu 27: Vận dụng

    Ghi đáp án vào ô trống

    Trong không gian với hệ tọa độ Oxyz, cho các điểm A(0; - 2; - 1),B( - 2; - 4;3),C(1;3; -1). Biết điểm M(x;y;z) nằm trên mặt phẳng (Oxy) sao cho \left| \overrightarrow{MA} + \overrightarrow{MB} +3\overrightarrow{MC} ight| đạt giá trị nhỏ nhất. Tìm tọa độ điểm M?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Trong không gian với hệ tọa độ Oxyz, cho các điểm A(0; - 2; - 1),B( - 2; - 4;3),C(1;3; -1). Biết điểm M(x;y;z) nằm trên mặt phẳng (Oxy) sao cho \left| \overrightarrow{MA} + \overrightarrow{MB} +3\overrightarrow{MC} ight| đạt giá trị nhỏ nhất. Tìm tọa độ điểm M?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 28: Vận dụng

    Chọn kết luận đúng

    Cho hình chóp S.ABCD có ABCD là hình vuông cạnh a, SA⊥ (ABCD) và SA = a. Gọi E và F lần lượt là trung điểm của SB, SD. Côsin của góc hợp bới hai mặt phẳng (AEF) và (ABCD) là

    Chọn hệ trục tọa độ Oxyz sao cho A≡ O, B∈Ox, D∈Oy, S∈Oz.

    \Rightarrow
B(a;0;0),D(0;a;0),S(0;0;a)

    \Rightarrow E\left(
\frac{a}{2};0;\frac{a}{2} ight),F\left( 0;\frac{a}{2};\frac{a}{2}
ight)

    \Rightarrow \overrightarrow{AE} = \left(
\frac{a}{2};0;\frac{a}{2} ight);\overrightarrow{AF} = \left(
0;\frac{a}{2};\frac{a}{2} ight)

    Vectơ pháp tuyến của mp(AEF) là \overrightarrow{n_{1}} = \left\lbrack
\overrightarrow{AB};\overrightarrow{AF} ightbrack = \left( \frac{-
a}{4};\frac{- a}{4};\frac{a}{4} ight)

    \Rightarrow \overrightarrow{n_{1}} =
(1;1; - 1)

    Vectơ pháp tuyến của mp(ABCD) là: \overrightarrow{n_{2}} = \overrightarrow{AS} =
(0;0;a)

    \Rightarrow \overrightarrow{n_{2}} =
(0;0;1)

    Vậy côsin góc giữa 2 mặt phẳng (AEF) và (ABCD) là:

    \cos\left( (AEF);(ABCD) ight) =
\frac{\left| \overrightarrow{n_{1}}.\overrightarrow{n_{2}}
ight|}{\left| \overrightarrow{n_{1}} ight|.\left|
\overrightarrow{n_{2}} ight|} = \frac{1}{\sqrt{3}} =
\frac{\sqrt{3}}{3}

  • Câu 29: Nhận biết

    Độ dài AB

    Cho mặt cầu S\left( {O;R} ight) và một điểm A, biết OA = 2R. Qua A kẻ một tiếp tuyến tiếp xúc với (S) tại B. Khi đó độ dài đoạn AB bằng:

    Vì AB tiếp xúc với (S) tại B nên AB \bot OB.

    Suy ra AB = \sqrt {O{A^2} - O{B^2}}  = \sqrt {4{R^2} - {R^2}}  = R\sqrt 3 .

  • Câu 30: Thông hiểu

    Chọn đáp án đúng

    Cho điểm A(1; - 2;3) và đường thẳng d có phương trình \frac{x + 1}{2} = \frac{y - 2}{1} = \frac{z + 3}{-
1}. Phương trình mặt cầu tâm A, tiếp xúc với d là:

    Ta có:

    d(A,d) = \frac{\left| \left\lbrack
\overrightarrow{BA},\overrightarrow{a} \right\rbrack \right|}{\left|
\overrightarrow{a} \right|} = \frac{\sqrt{4 + 196 + 100}}{\sqrt{4 + 1 +
1}} = 5\sqrt{2}.

    Trong đó B( - 1;2; - 3) \in
d

    Phương trình mặt cầu tâm A(1; -
2;3), bán kính R =
5\sqrt{2}

    (S):(x–1)^{2} + (y + 2)^{2} + (z–3)^{2} = 50.

  • Câu 31: Vận dụng

    Viết phương trình đường thẳng d

    Trong không gian với hệ tọa độ  Oxyz,  gọi d đi qua A( -
1;0; - 1), cắt \Delta_{1}:\frac{x -
1}{2} = \frac{y - 2}{1} = \frac{z + 2}{- 1}, sao cho góc giữa d\Delta_{2}:\frac{x - 3}{- 1} = \frac{y - 2}{2} =
\frac{z + 3}{2} là nhỏ nhất. Phương trình đường thẳng d

    Gọi M = d \cap \Delta_{1} \Rightarrow M(1
+ 2t;2 + t; - 2 - t)

    d có vectơ chỉ phương \overrightarrow{a_{d}} = \overrightarrow{AM} = (2t
+ 2;t + 2; - 1 - t)

    \Delta_{2} có vectơ chỉ phương \overrightarrow{a_{2}} = ( -
1;2;2)

    \cos\left( d;\Delta_{2} ight) =
\frac{2}{3}\sqrt{\frac{t^{2}}{6t^{2} + 14t + 9}}

    Xét hàm số f(t) = \frac{t^{2}}{6t^{2} +
14t + 9}, ta suy ra được \min f(t)
= f(0) = 0 \Leftrightarrow t = 0

    Do đó \min\left\lbrack \cos(\Delta,d)
ightbrack = 0 \Leftrightarrow t = 0 \Rightarrow \overrightarrow{AM}
= (2;2 - 1)

    Vậy phương trình đường thẳng d\frac{x + 1}{2} = \frac{y}{2} = \frac{z +
1}{- 1}

  • Câu 32: Vận dụng cao

    Viết PT mp vuông góc chung

    Cho điểm M\left( { - 3,2, - 1} ight) và hai mặt phẳng \left( \alpha  ight):x + 3y - 5z + 3 = 0,\left( \beta  ight):2x - y - 2z - 5 = 0.

    Gọi (P) là mặt phẳng chứa điểm M , vuông góc với cả hai mặt phẳng (\alpha)(\beta) . Phương trình mặt phẳng (P):

     Theo đề bài, ta có:

    \left( \alpha  ight):x + 3y - 5z + 3 = 0 có vectơ pháp tuyến \overrightarrow a  = \left( {1,3, - 5} ight)

    \left( \beta  ight):2x - y - 2z - 5 = 0 có vectơ pháp tuyến \overrightarrow b  = \left( {2, - 1, - 2} ight)

    Suy ra tích có hướng giữa 2 vecto là \left[ {\overrightarrow a ,\overrightarrow b } ight] = \overrightarrow n  = \left( {1, - 8, - 7} ight)

    Ta chọn \vec{n} làm vectơ pháp tuyến cho mặt phẳng (P)

    Phương trình (P) có dạng x - 8y - 7z + D = 0

    Mặt khác, ta có M \in \left( \alpha  ight) \Leftrightarrow  - 3 - 16 + 7 + D = 0 \Leftrightarrow D = 12

    Vậy phương trình cần tìm là: (P): x - 8y - 7z + 12 = 0

  • Câu 33: Nhận biết

    Tính góc giữa hai đường thẳng

    Tính góc của hai đường thẳng (D):\frac{x
- 1}{2} = \frac{y + 3}{4} = \frac{z + 2}{4}

    (d):x = 3 + 2t;y = 2t - 4; z = 2  \left( t\mathbb{\in R} \right).

    (D)(d) có vectơ chỉ phương \overrightarrow{a} = (2,4,4);\overrightarrow{b} =
(2,2,0)

    \Rightarrow \cos\alpha = \frac{|2.2 +
4.2 + 4.0|}{6.2\sqrt{2}} = \frac{\sqrt{2}}{2} \Rightarrow \alpha =
45^{0}

  • Câu 34: Thông hiểu

    Viết phương trình đường thẳng

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d':\frac{{x - 1}}{2} = \frac{{y + 3}}{1} = \frac{z}{2}. Phương trình đường thẳng  \Delta  đi qua điểm A(2;-1;-3) vuông góc với trục Oz và d là

    Oz có vectơ chỉ phương \overrightarrow k  = \left( {0;0;1} ight)

    d có vectơ chỉ phương \overrightarrow {{a_d}}  = \left( {2;1; - 2} ight)

     \Delta  đi qua điểm A và có vectơ chỉ phương là \overrightarrow {{a_\Delta }}  = \left[ {\overrightarrow k ;\overrightarrow {{a_d}} } ight] = \left( { - 1;2;0} ight)

    Vậy phương của \Delta\left\{ \begin{matrix}
x = 2 - t \\
y = - 1 + 2t \\
y = - 3 \\
\end{matrix} ight.

  • Câu 35: Vận dụng

    Chọn đáp án đúng

    Trong không gian với hệ toạ độ Oxyz, cho hai đường thẳng d_{1}:\frac{x - 3}{1} = \frac{y + 3}{- 1} =\frac{z - 5}{2},d_{2}:\frac{x - 4}{- 3} = \frac{y - 1}{2} = \frac{z +2}{2} và mặt phẳng (P):2x + 3y - 5z
+ 1 = 0. Đường thẳng vuông góc với (P), cắt d_{1}d_{2} có phương trình là:

    Gọi A, B lần lượt là các giao điểm của đường thẳng d với các đường thẳng d_{1}d_{2}.

    Khi đó, tọa độ của A, B có dạng A(3 + t;
- 3 - t;5 + 2t),B(4 - 3s;1 + 2s; - 2 + 2s)

    \Rightarrow \overrightarrow{AB} = (1 - 3s
- t;4 + 2s + t; - 7 + 2s - 2t)

    Vì đường thẳng d vuông góc với mặt phẳng (P) nên vectơ \overrightarrow{AB} cùng phương với vectơ pháp tuyến \overrightarrow{n} = (2;3; -
5) của mặt phẳng (P).

    Do đó, ta có \frac{1 - 3s - t}{2} =
\frac{4 + 2s + t}{3} = \frac{- 7 + 2s - 2t}{- 5}

    Suy ra s = 0 và t = −1.

    Do đó, A(2; −2; 3) và B(4; 1; −2).

    Đường thẳng d đi qua A và có nhận vectơ \overrightarrow{n} làm vectơ chỉ phương nên có phương trình: \frac{x - 2}{2} =
\frac{y + 2}{3} = \frac{z - 3}{- 5}.

  • Câu 36: Vận dụng cao

    Xác định số đường thẳng

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng \left( d_{1} \right):\frac{x - 1}{1} = \frac{y +
1}{- 2} = \frac{z + 1}{1}, \left(
d_{2} \right):\frac{x}{1} = \frac{y}{- 2} = \frac{z - 1}{1}, \left( d_{3} \right):\frac{x - 1}{2} =
\frac{y + 1}{1} = \frac{z - 1}{1}, \left( d_{4} \right):\frac{x}{1} = \frac{y - 1}{-
1} = \frac{z}{- 1}. Số đường thẳng trong không gian cắt cả đường thẳng trên là

    \left( d_{1} \right) đi qua điểm M_{1}(3; - 1; - 1) và có VTCP \overrightarrow{u_{1}} = (1; - 2;1).

    \left( d_{2} \right) đi qua điểm M_{2}(0;0;1) và có VTCP \overrightarrow{u_{2}} = (1; - 2;1).

    \overrightarrow{M_{1}M_{2}} = ( -
3;1;2).

    \left\lbrack
\overrightarrow{u_{1}};\overrightarrow{u_{2}} \right\rbrack =
\overrightarrow{0}\left\lbrack
\overrightarrow{u_{1}};\overrightarrow{M_{1}M_{2}} \right\rbrack = ( -
5; - 5; - 5) \neq \overrightarrow{0} nên \left( d_{1} \right) song song với \left( d_{2} \right).

    Gọi (P) là mặt phẳng chứa hai đường thẳng \left( d_{1} \right)\left( d_{2} \right).

    (P) đi qua điểm M_{2}(0;0;1) và có \overrightarrow{n_{P}} = \left\lbrack
\overrightarrow{u_{1}};\overrightarrow{M_{1}M_{2}} \right\rbrack = ( -
5; - 5; - 5) hay \overrightarrow{n}
= (1;1;1) có phương trình 1(x - 1)
+ 1(y - 0) + 1(z - 1) = 0 \Leftrightarrow x + y + z - 1 =
0.

    Gọi A = \left( d_{3} \right) \cap
(P). Xét hệ phương trình \left\{
\begin{matrix}
x = 1 + 2t \\
y = - 1 + t \\
z = 1 + t \\
x + y + z - 1 = 0 \\
\end{matrix} \right.

    \Leftrightarrow \left\{ \begin{matrix}
x = 1 \\
y = - 1 \\
z = 1 \\
t = 0 \\
\end{matrix} \right.\  \Rightarrow A(1; - 1;1).

    Gọi B = \left( d_{4} \right) \cap
(P). Xét hệ phương trình \left\{
\begin{matrix}
x = t' \\
y = 1 - t' \\
z = - t' \\
x + y + z - 1 = 0 \\
\end{matrix} \right.\  \Leftrightarrow \left\{ \begin{matrix}
x = 0 \\
y = 1 \\
z = 0 \\
t' = 0 \\
\end{matrix} \right.\  \Rightarrow B(0;1;0).

    \overrightarrow{BA} = (1; -
2;1) cùng phương với \overrightarrow{u_{1}} nên (d) không thỏa mãn.

  • Câu 37: Thông hiểu

    Xét tính đúng sai của các nhận định

    Trong không gian Oxyz, cho đường thẳng \Delta:\left\{ \begin{matrix}
x = 1 - t \\
y = 3 + t \\
z = 4
\end{matrix} \right.\ ;\left( t\mathbb{\in R} \right) và mặt phẳng (P):x - 2y + 2z - 3 = 0.

    a) Vectơ \overrightarrow{n} = (1; -
2;2) là một vectơ pháp tuyến của (P). Đúng||Sai

    b) Điểm M(0;4;4) thuộc \Delta. Đúng||Sai

    c) Góc giữa \Delta(P) bằng 60^{0}. Sai||Đúng

    d) Đường thẳng d đi qua điểm M(0;4;4), song song với (P) và tạo với \Delta một góc 45^{0} có phương trình là \frac{x - 2}{- 2} = \frac{y - 3}{1} = \frac{z -
2}{2}. Đúng||Sai

    Đáp án là:

    Trong không gian Oxyz, cho đường thẳng \Delta:\left\{ \begin{matrix}
x = 1 - t \\
y = 3 + t \\
z = 4
\end{matrix} \right.\ ;\left( t\mathbb{\in R} \right) và mặt phẳng (P):x - 2y + 2z - 3 = 0.

    a) Vectơ \overrightarrow{n} = (1; -
2;2) là một vectơ pháp tuyến của (P). Đúng||Sai

    b) Điểm M(0;4;4) thuộc \Delta. Đúng||Sai

    c) Góc giữa \Delta(P) bằng 60^{0}. Sai||Đúng

    d) Đường thẳng d đi qua điểm M(0;4;4), song song với (P) và tạo với \Delta một góc 45^{0} có phương trình là \frac{x - 2}{- 2} = \frac{y - 3}{1} = \frac{z -
2}{2}. Đúng||Sai

    a) Đúng

    b) Đúng

    c) Sai

    d) Đúng

    Phương án a) đúng: Từ phương trình của (P):x - 2y + 2z - 3 = 0 ta có \overrightarrow{n} = (1; - 2;2) là một vectơ pháp tuyến của (P).

    Phương án b) đúng: Từ phương trình của \Delta:\left\{ \begin{matrix}
x = 1 - t \\
y = 3 + t \\
z = 4
\end{matrix} \right. cho t =
1 ta được \left\{ \begin{matrix}
x = 0 \\
y = 4 \\
z = 4
\end{matrix} \right..

    Do đó M(0;4;4) \in \Delta.

    Phương án c) sai:

    Ta có \sin\left( \Delta;(P) \right) =\frac{\left| ( - 1).1 + 1.( - 2) + 0.2 \right|}{\sqrt{( - 1)^{2} + 1^{2}+ 1^{2}}.\sqrt{1^2 + ( - 2)^{2} + 2^{2}}} =\frac{1}{\sqrt{2}}. Do đó \left(
\Delta;(P) \right) = 45^{0}

    Phương án d) đúng: Gọi \overrightarrow{u}
= (a;b;c) (với a^{2} + b^{2} +
c^{2} > 0) là một VTCP của d.

    Do d//(P) nên \overrightarrow{u}\bot\overrightarrow{n}
\Rightarrow \overrightarrow{u}.\overrightarrow{n} = 0

    \Rightarrow a - 2b + 2c = 0 \Rightarrow
2c = 2b - a(*)

    Hơn nữa \left( d;(P) \right) =
45^{0} nên \cos\left( d;(P) \right)
= \frac{1}{\sqrt{2}} \Leftrightarrow \frac{| - a +
b|}{\sqrt{2}.\sqrt{a^{2} + b^{2} + c^{2}}} = \frac{1}{\sqrt{2}}
\Leftrightarrow |b - a| = \sqrt{a^{2} + b^{2} + c^{2}}

    \Leftrightarrow (b - a)^{2} = a^{2} +
b^{2} + c^{2} \Leftrightarrow c^{2} = - 2ab \Leftrightarrow (2c)^{2} = -
8ab

    Thay (*) vào ta được

    \Leftrightarrow (2b - a)^2 = - 8ab\Leftrightarrow (2b + a)^{2} = 0 \Leftrightarrow a = - 2b.

    Thay vào (*) ta được c = 2b.

    Do đó \overrightarrow{u} = ( -
2b;b;2b) (với b \neq
0).

    Suy ra \overrightarrow{u_{1}} =
\frac{1}{b}\overrightarrow{u} = ( - 2;1;2) cũng là một VTCP của d.

    Hơn nữa d đi qua điểm M(0;4;4) nên d có phương trình là \frac{x}{- 2} =
\frac{y - 4}{1} = \frac{z - 4}{2}.

    Do đó ta có N(2;3;2) \in d nên \frac{x - 2}{- 2} = \frac{y - 3}{1} =\frac{z- 2}{2} cũng là phương trình của d.

    (Có thể kiểm tra tính đúng, sai của d) bằng cách sử dụng phương trình \frac{x - 2}{- 2} = \frac{y - 3}{1} =\frac{z - 2}{2 } để kiểm tra thỏa mãn giả thiết M(0;4;4) \in d;d//(P)\left( d;(P) \right) = 45^{0}).

  • Câu 38: Nhận biết

    Tìm phương trình mặt cầu

    Cho hai điểm A(1;0; - 3)B(3;2;1). Phương trình mặt cầu đường kính AB là:

    Ta có \overrightarrow{AB} = (2;2;4)
\Rightarrow AB = 2\sqrt{6}. Mặt cầu đường kính AB có tâm I là trung điểm AB nên I(2;1; - 1), bán kính R = \frac{AB}{2} = \sqrt{6}.

    Vậy đáp án cần tìm là: x^{2} + y^{2} +
z^{2} - 4x - 2y + 2z = 0..

  • Câu 39: Nhận biết

    Tìm phương trình chính tắc của đường thẳng

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d:\left\{ \begin{gathered}
  x = 1 - 2t \hfill \\
  y = t \hfill \\
  z =  - 3 + 2t \hfill \\ 
\end{gathered}  \right. . Phương trình chính tắc của đường thẳng \Delta đi qua điểm A(3; 1; -1)  và song song với d là

    d có vectơ chỉ phương \overrightarrow {{a_d}}  = \left( { - 2;1;2} ight)

    \Delta song song với d nên \Delta có vectơ chỉ phương \overrightarrow{a_{\Delta}} =
\overrightarrow{a_{d}} = ( - 2;1;2)

     \Delta  đi qua điểm A và có vectơ chỉ phương  \overrightarrow{a_{\Delta}} 

    Vậy phương trình chính tắc của \Delta là \frac{x - 3}{- 2} = \frac{y - 1}{1} =
\frac{z + 1}{2}.

  • Câu 40: Nhận biết

    Chọn phương trình mặt cầu

    Mặt cầu (S) có tâm A(1; -2; 2) và bán kính R = 8. Tìm phương trình mặt cầu (S).

    Phương trình mặt cầu tâm I(a;b;c) bán kính R có dạng: (x - a)^{2} + (y - b)^{2} + (z - c)^{2} =
R^{2}

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 5 Phương trình mặt phẳng, đường thẳng, mặt cầu CTST Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo