Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề kiểm tra 45 phút Chương 5 Phương trình mặt phẳng, đường thẳng, mặt cầu CTST

Mô tả thêm:

Hãy cùng thử sức kiểm tra đánh giá các kiến thức tổng quan với bài kiểm tra phút Chương 5: Phương trình mặt phẳng, đường thẳng, mặt cầu Toán 12 sách Chân trời sáng tạo các em nhé!

  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Thông hiểu

    Tính diện tích tam giác

    Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC với A(1;1;1),B(4;3;2),C(5;2;1). Diện tích của tam giác ABC là:

    Ta có: \overrightarrow{AB} =
(3;2;1),\overrightarrow{AC} = (4;1;0)

    \Rightarrow \left\lbrack
\overrightarrow{AB},\overrightarrow{AC} ightbrack = ( - 1;4; -
5)

    Diện tích tam giác ABC

    S = \frac{1}{2}\left| \left\lbrack
\overrightarrow{AB},\overrightarrow{AC} ightbrack ight| =
\frac{1}{2}\sqrt{( - 1)^{2} + 4^{2} + ( - 5)^{2}} =
\frac{\sqrt{42}}{2}

  • Câu 2: Thông hiểu

    Xác định phương trình mặt cầu

    Trong không gian với hệ tọa độ Oxyz, mặt cầu (S) qua bốn điểm A(3;3;0),B(3;0;3),C(0;3;3),D(3;3;3). Phương trình mặt cầu (S) là:

    Gọi phương trình mặt cầu (S):x^{2} +
y^{2} + z^{2} - 2ax - 2by - 2cz + d = 0a^{2} + b^{2} + c^{2} - d > 0

    Vì mặt cầu đi qua bốn điểm đã cho nên ta có hệ phương trình

    \left\{ \begin{matrix}18 - 6a - 6b + d = 0 \\18 - 6a - 6c + d = 0 \\18 - 6b - 6c + d = 0 \\27 - 6a - 6b - 6c + d = 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}a = \dfrac{3}{2} \\b = \dfrac{3}{2} \\c = \dfrac{3}{2} \\d = 0 \\\end{matrix} ight.. Suy ra tâm mặt cầu I\left( \frac{3}{2};\frac{3}{2};\frac{3}{2}
ight) và bán kính R = \sqrt{a^{2}
+ b^{2} + c^{2} - d} = \frac{3\sqrt{3}}{2}

    Vậy phương trình mặt cầu cần tìm là: \left( x - \frac{3}{2} ight)^{2} + \left( y -
\frac{3}{2} ight)^{2} + \left( z - \frac{3}{2} ight)^{2} =
\frac{27}{4}

  • Câu 3: Thông hiểu

    Chọn phương án thích hợp

    Cho d:\left\{ \begin{matrix}
x = 1 + t \\
y = - 3 - t \\
z = 2 + 2t \\
\end{matrix} \right.\ ,\ \ d':\frac{x}{3} = \frac{y - 3}{- 1} =
\frac{z - 1}{1}. Khi đó khoảng cách giữa dd'

    Ta có A(1; - 3;2) \in d,\ \ B(0;3;1) \in
d'\overrightarrow{u}(1; -
1;2),\ \overrightarrow{u'}(3; - 1;1) lần lượt là vectơ chỉ phương của d,\ d'

    Ta có:

    d(d,d') = \frac{\left| \left\lbrack
\overrightarrow{u},\overrightarrow{u'}
\right\rbrack.\overrightarrow{AB} \right|}{\left| \left\lbrack
\overrightarrow{u},\overrightarrow{u'} \right\rbrack \right|} =
\frac{27}{\sqrt{30}} = \frac{9\sqrt{30}}{10}

  • Câu 4: Nhận biết

    Tìm điểm thuộc đường thẳng

    Trong không gian với hệ tọa độ Oxyz, cho phương trình đường thẳng \Delta:\left\{ \begin{matrix}
x = 1 + 2t \\
y = - 1 + 3t \\
z = 2 - t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight). Trong các điểm có tọa độ dưới đây, điểm nào thuộc đường thẳng \Delta?

    Thay tọa độ các điểm và phương trình đường thẳng ∆, ta thấy:

    \left\{ \begin{matrix}
- 1 = 1 + 2t \\
- 4 = - 1 + 3t \\
3 = 2 - t \\
\end{matrix} ight.\  \Leftrightarrow t = - 1 \Rightarrow M( - 1; -
4;3) \in \Delta.

  • Câu 5: Vận dụng

    Chọn đáp án đúng

    Cho hai điểm A(2, - 3, - 1);\ \ \ B( -
4,5, - 3). Tìm tập hợp các điểm M(x,y,z) thỏa mãn \frac{MA}{MB} = \frac{\sqrt{3}}{2}

    Theo bài ra ta có:

    2MA = \sqrt{3}MB \Leftrightarrow 4MA^{2}
= 3MB^{2}

    \Leftrightarrow 4\left\lbrack (2 -
x)^{2} + ( - 3 - y)^{2} + ( - 1 - z)^{2} \right\rbrack

    = 3\left\lbrack ( - 4 - x)^{2} + (5 -
y)^{2} + ( - 3 - z)^{2} \right\rbrack

    Mặt cầu x^{2} + y^{2} + z^{2} - 40x - 54y
- 10z - 94 = 0

  • Câu 6: Vận dụng

    Tính góc giữa hai mặt phẳng

    Cho hình lập phương ABCD.A'B'C'D' có tâm O. Gọi I là tâm của hình vuông A'B'C'D' và điểm M \in OI sao cho MO = \frac{1}{2}MI (tham khảo hình vẽ).

    Khi đó cosin của góc tạo bởi hai mặt phẳng (MC’D′) và (MAB) bằng

    Không mất tính tổng quát ta đặt cạnh của khối lập phương là 1.

    Chọn hệ trục tọa độ sao cho A′(0;0;0), B′(1;0;0), D′(0;1;0) và A(0;0;1) (như hình vẽ)

    Khi đó ta có: M\left(
\frac{1}{2};\frac{1}{2};\frac{1}{3} ight)

    Khi đó \left\{ \begin{matrix}\overrightarrow{AB} = (1;0;0) \\\overrightarrow{MA} = \left( \dfrac{1}{2};\dfrac{1}{2}; - \dfrac{2}{3}ight) \\\end{matrix} ight.\  \Rightarrow \left\lbrack\overrightarrow{AB};\overrightarrow{MA} ightbrack = \left( 0; -\dfrac{2}{3};\dfrac{1}{2} ight)

    \Rightarrow \overrightarrow{n_{1}} = (0;
- 4;3) là VTPT của mặt phẳng (MAB)

    Lại có: \left\{ \begin{matrix}\overrightarrow{D'C'} = (1;0;0) \\\overrightarrow{MD'} = \left( \dfrac{1}{2}; - \dfrac{1}{2};\dfrac{1}{3}ight) \\\end{matrix} ight.\Rightarrow \left\lbrack\overrightarrow{D'C'};\overrightarrow{MD'} ightbrack =\left( 0;\frac{1}{3}; - \frac{1}{2} ight)

    \Rightarrow \overrightarrow{n_{2}} =
(0;2; - 3) là VTPT của mặt phẳng (MC’D’)

    Cosin của góc tạo bởi hai mặt phẳng (MC’D′) và (MAB) bằng:

    \cos\left(
\overrightarrow{n_{1}};\overrightarrow{n_{2}} ight) = \frac{\left|
\overrightarrow{n_{1}}.\overrightarrow{n_{2}} ight|}{\left|
\overrightarrow{n_{1}} ight|.\left| \overrightarrow{n_{2}}
ight|}

    = \frac{\left| 0.0 - 4.2 + 3.( - 3)
ight|}{\sqrt{0^{2} + ( - 4)^{2} + 3^{2}}.\sqrt{0^{2} + 2^{2} + ( -
3)^{2}}} = \frac{17\sqrt{13}}{65}

  • Câu 7: Thông hiểu

    Chọn đáp án đúng

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SAB là tam giác đều và (SAB) vuông góc với (ABCD). Tính cosϕ với ϕ là góc tạo bởi (SAC)(SCD)

    Hình vẽ minh họa

    Gọi O M, lần lượt là trung điểm của AB; CD.

    Vì SAB là tam giác đều và (SAB) vuông góc với (ABCD) nên SO ⊥ (ABCD).

    Xét hệ trục OxyzO(0;0;0),M(1;0;0),A\left( 0;\frac{1}{2};0
ight),S\left( 0;0;\frac{\sqrt{3}}{2} ight)

    Suy ra C\left( 1; - \frac{1}{2};0
ight),D\left( 1;\frac{1}{2};0 ight)

    Suy ra \left\{ \begin{matrix}\overrightarrow{SA} = \left( 0;\dfrac{1}{2};\dfrac{- \sqrt{3}}{2}ight);\overrightarrow{AC} = (1; - 1;0) \\\overrightarrow{SC} = \left( 1;\dfrac{- 1}{2};\dfrac{- \sqrt{3}}{2}ight);\overrightarrow{CD} = (0;1;0) \\\end{matrix} ight.

    Mặt phẳng (SAC) có vectơ pháp tuyến \overrightarrow{n} = \left\lbrack
\overrightarrow{SA};\overrightarrow{AC} ightbrack = \left( -
\frac{\sqrt{3}}{2}; - \frac{\sqrt{3}}{2}; - \frac{1}{2}
ight)

    Mặt phẳng (SAD) có vectơ pháp tuyến \overrightarrow{n_{1}} = \left\lbrack
\overrightarrow{SC};\overrightarrow{CD} ightbrack = \left(
\frac{\sqrt{3}}{2};0;1 ight)

    \cos\varphi = \frac{\left|
\overrightarrow{n}.\overrightarrow{n_{1}} ight|}{\left|
\overrightarrow{n} ight|\left| \overrightarrow{n_{1}} ight|} =
\frac{5}{7}

  • Câu 8: Vận dụng cao

    Viết phương trình đường thẳng

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng \left( d_{1} \right):\left\{ \begin{matrix}
x = t \\
y = 4 - t \\
z = - 1 + 2t \\
\end{matrix} \right., \left(
d_{2} \right):\frac{x}{2} = \frac{y - 2}{1} = \frac{z}{1}, \left( d_{3} \right):\frac{x + 1}{5} =
\frac{y - 1}{2} = \frac{z + 1}{1}. Viết phương trình đường thẳng \left( d_{3} \right):\frac{x + 1}{5} =
\frac{y - 1}{2} = \frac{z + 1}{1} cắt ba đường thẳng \left( d_{1} \right);\left( d_{2} \right);\left(
d_{3} \right) lần lượt tại các điểm A;B;C sao choAB = BC.

    Ta có: A \in \left( d_{1} \right)
\Rightarrow A(a;4 - a; - 1 + 2a).

    B \in \left( d_{2} \right) \Rightarrow
B(2b;2 + b;b).

    C \in \left( d_{3} \right) \Rightarrow C(
- 1 + 5c;1 + 2c; - 1 + c).

    B là trung điểm của AC nên \left\{ \begin{matrix}2b = \dfrac{a - 1 + 5c}{2} \\2 + b = \dfrac{4 - a + 1 + 2c}{2} \\b = \dfrac{- 1 + 2a - 1 + c}{2} \\\end{matrix} \right.

    \Leftrightarrow \left\{ \begin{matrix}
a - 4b + 5c = 1 \\
- a - 2b + 2c = - 1 \\
2a - 2b + c = 2 \\
\end{matrix} \right.\  \Leftrightarrow \left\{ \begin{matrix}
a = 1 \\
b = 0 \\
c = 0 \\
\end{matrix} \right..

    \Rightarrow
A(1;3;1),B(0;2;0).

    (d) đi qua điểm B(0;2;0) và có VTCP \overrightarrow{BA} = (1;1;1) có phương trình \frac{x}{1} = \frac{y - 2}{1} =
\frac{z}{1}.

  • Câu 9: Nhận biết

    Chọn đáp án đúng

    Trong không gian với hệ tọa độ Oxyz cho đường thẳng d:\left\{ \begin{matrix}
x = 1 - t \\
y = 2 + 2t \\
z = 3 + t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight) và mặt phẳng (P):x - y + 3 = 0. Tính số đo góc giữa đường thẳng d và mặt phẳng (P).

    Đường thẳng d có vectơ chỉ phương là \overrightarrow{u} = ( - 1;2;1)

    Mặt phẳng (P) có vectơ pháp tuyến là \overrightarrow{n} = (1; - 1;0)

    Gọi α là góc giữa đường thẳng d và mặt phẳng (P) .

    Khi đó ta có:

    \sin\alpha = \frac{\left|
\overrightarrow{u}.\overrightarrow{n} ight|}{\left| \overrightarrow{u}
ight|.\left| \overrightarrow{n} ight|} = \frac{\left| - 1.1 + 2.( -
1) + 1.0 ight|}{\sqrt{( - 1)^{2} + 2^{2} + 1^{2}}.\sqrt{1^{2} + ( -
1)^{2} + 0^{2}}} = \frac{\sqrt{3}}{2}

    \Rightarrow \alpha = 60^{0}

  • Câu 10: Thông hiểu

    Chọn đáp án đúng

    Trong không gian Oxyz, viết phương trình mặt phẳng (P) biết (P) đi qua hai điểm M(0; - 1;0),N( - 1;1;1) và vuông góc với mặt phẳng (Oxz).

    Ta có \overrightarrow{MN} = ( -
1;2;1)(Oxz) có một vectơ pháp tuyến là \overrightarrow{j}\  =
(0;1;0)

    Mặt phẳng (P) có một vectơ pháp tuyến là \overrightarrow{n} = \left\lbrack
\overrightarrow{MN};\overrightarrow{j} ightbrack = ( - 1;0; -
1)

    Do đó, (P) có phương trình là - 1(x - 0) + 0(y + 1) - 1(z - 0) = 0
\Leftrightarrow x + z = 0.

  • Câu 11: Nhận biết

    Viết phương trình chính tắc của đường thẳng

    Trong không gian với hệ tọa độ 2\sqrt{3}cho đường thẳng d có phương trình tham số \left\{ \begin{matrix}
x = 2 + t \\
y = - 3t \\
z = - 1 + 5t \\
\end{matrix} \right.. Phương trình chính tắc của đường thẳng d là?

    Cách 1:

    \Delta đi qua điểm A(2;0; - 1) và có vectơ chỉ phương \overrightarrow{a_{d}} = (1; - 3;5)

    Vậy phương trình chính tắc của Oxyz\Delta

    Cách 2:

    A( - 2;2;1)

    Vậy phương trình chính tắc của B\frac{x - 2}{1} = \frac{y}{- 3} = \frac{z
+ 1}{5}

  • Câu 12: Vận dụng

    Tìm giá trị nhỏ nhất của biểu thức

    Trong không gian với hệ tọa độ Oxyz, cho ba mặt phẳng (P):x - 2y + z - 1 = 0;(Q):x - 2y + z + 8 =0;(R):x - 2y + z - 4 = 0. Một đường thẳng d thay đổi cắt ba mặt (P),(Q),(R) lần lượt tại A,B,C. Tìm giá trị nhỏ nhất của T = AB^{2} + \frac{144}{AC^{2}}.

    Dễ dàng nhận thấy (P)//(Q)//(R).

    Kẻ đường thẳng qua B vuông góc với cả 3 mặt phẳng (P),(Q),(R) cắt (P) tại H và cắt (Q) tại K.

    Ta có BH = d\left( (Q),(P) ight) = 9;HK
= d\left( (P),(R) ight) = 3

    Khi đó ta có:

    T = AB^{2} + \frac{144}{AC^{2}} \geq
2\sqrt{AB^{2}.\frac{144}{AC^{2}}} = 24.\frac{AB}{AC} = 24.\frac{BH}{HK}
= 24.\frac{9}{3} = 72

    Vậy T_{\min} = 72.

  • Câu 13: Vận dụng

    Viết phương trình tham số của đường thẳng

    Trong không gian với hệ tọa độ Oxyz cho hai đường thẳng d_{1}:\frac{x - 1}{2} = \frac{y + 1}{1} =
\frac{z}{1} , d_{2}:\frac{x - 1}{1}
= \frac{y - 2}{2} = \frac{z}{1} và mặt phẳng (P):x + y - 2z + 3 = 0. Gọi \Delta là đường thẳng song song với (P) và cắt d_{1},\ d_{2} lần lượt tại hai điểm A,B sao cho AB = \sqrt{29}. Phương trình tham số của đường thẳng \Delta

    Ta có:

    A \in d_{1} \Rightarrow A(1 + 2a; - 1 +
a;a)

    B \in d_{2} \Rightarrow B(1 + b;2 +
2b;b)

    \Delta có vectơ chỉ phương \overrightarrow{AB} = (b - 2a;3 + 2b - a;b -
a)

    (P) có vectơ pháp tuyến \overrightarrow{n_{P}} = (1;1; - 2)

    \Delta//(P) nên \overrightarrow{AB}\bot\overrightarrow{n_{P}}
\Leftrightarrow b = a - 3.Khi đó \overrightarrow{AB} = ( - a - 3;a - 3; -
3)

    Theo đề bài: AB = \sqrt{29}
\Leftrightarrow \left\lbrack \begin{matrix}
a = 1 \\
a = - 1 \\
\end{matrix} ight.

    \Rightarrow \left\lbrack \begin{matrix}
A(3;0;1),\overrightarrow{AB} = ( - 4; - 2; - 3) \\
A( - 1; - 2; - 1),\overrightarrow{AB} = ( - 2; - 4; - 3) \\
\end{matrix} ight.

    Vậy phương trình đường thẳng  \Delta  là \left\{
\begin{matrix}
x = 3 + 4t \\
y = 2t \\
z = 1 + 3t \\
\end{matrix} ight.\left\{
\begin{matrix}
x = - 1 + 2t \\
y = - 2 + 4t \\
z = - 1 + 3t \\
\end{matrix} ight.

  • Câu 14: Nhận biết

    Chọn đáp án thích hợp

    Trong không gian Oxyz, phương trình nào sau đây là phương trình của mặt phẳng?

    Phương trình tổng quát của mặt phẳng là: 2x - 3y + 4z - 2024 = 0.

  • Câu 15: Thông hiểu

    Viết phương trình mặt phẳng

    Trong không gian Oxyz, phương trình của mặt phẳng (P) đi qua điểm B(2;1; - 3), đồng thời vuông góc với hai mặt phẳng (Q):x + y + 3z = 0,(R):2x
- y + z = 0 là:

    Ta có \left\{ \begin{matrix}
\overrightarrow{n_{1}} = (1;1;3) \\
\overrightarrow{n_{2}} = (2; - 1;1) \\
\end{matrix} ight. lần lượt là vectơ pháp tuyến của các mặt phẳng (Q),(R).

    Do mặt phẳng (P) vuông góc với hai mặt phẳng (Q),(R) nên \left\lbrack
\overrightarrow{n_{1}},\overrightarrow{n_{2}} ightbrack = (4;5; -
3) là một vectơ pháp tuyến của (P).

    Từ đó suy ra mặt phẳng (P) có phương trình 4x + 5y - 3z - 22 =
0.

  • Câu 16: Nhận biết

    Tìm phương trình chính tắc của đườngthẳng

    Trong không gian với hệ tọa độ  Oxyz, cho mặt phẳng \left( P \right):2x - y + z - 3 = 0. Phương trình chính tắc của của đường thẳng \Delta đi qua điểm M\left( { - 2;1;1} \right) và vuông góc với (P) là

    (P) có vectơ pháp tuyến \overrightarrow {{n_{\left( P ight)}}}  = \left( {2; - 1;1} ight)

    Vì  \Delta  vuông góc với (P) nên d có vectơ chỉ phương \overrightarrow{a_{\Delta}} =
\overrightarrow{n_{P}} = (2; - 1;1)

     \Delta  đi qua điểm M( - 2;1;1) và có vectơ chỉ phương \overrightarrow {{a_\Delta }}

    Vậy phương trình chính tắc của \Delta là \frac{x + 2}{2} = \frac{y - 1}{- 1} =
\frac{z - 1}{1}.

  • Câu 17: Thông hiểu

    Chọn đáp án đúng

    Cho mặt phẳng (P):2x + y - z + 5 =
0 và các điểm A(0;0;4),\
B(2;0;0). Phương trình mặt cầu đi qua O,\ A,\ B và tiếp xúc với mặt phẳng (P) là:

    Gọi (S) có tâm I(a;b;c) và bán kính R.

    Phương mặt cầu (S) có dạng: x^{2} + y^{2} + z^{2} - 2ax - 2by - 2cz + d
= 0

    (S) qua 3 điểm O,\ A,\ B, ta có hệ phương trình:

    \left\{ \begin{matrix}
d = 0 \\
- 8c + d = - 16 \\
- 4a + d = - 4 \\
\frac{|2a + b - c + 5|}{\sqrt{4 + 1 + 1}} = R \\
\end{matrix} \right. \Leftrightarrow \left\{ \begin{matrix}
d = 0 \\
c = 2 \\
a = 1 \\
(2 + b - 2 + 5)^{2} = 6\left( 1^{2} + b^{2} + 2^{2} - 0 \right) \\
\end{matrix} \right.

    \Leftrightarrow \left\{ \begin{matrix}
d = 0 \\
c = 2 \\
a = 1 \\
5b^{2} - 10b + 5 = 0 \\
\end{matrix} \right.\  \Leftrightarrow \left\{ \begin{matrix}
a = 1 \\
b = 1 \\
c = 2 \\
d = 0 \\
\end{matrix} \right.\ .

    Vậy (S): (x - 1)^{2} + (y -
1)^{2} + (z - 2)^{2} = 6.

  • Câu 18: Thông hiểu

    Ghi đáp án vào ô trống

    Cho hai mặt phẳng (P):2x - y + 2z - 3 =
0(Q):x + my + z - 1 =
0. Tìm tham số m để hai mặt phẳng (P)(Q) vuông góc với nhau.

    Đáp án: 4

    Đáp án là:

    Cho hai mặt phẳng (P):2x - y + 2z - 3 =
0(Q):x + my + z - 1 =
0. Tìm tham số m để hai mặt phẳng (P)(Q) vuông góc với nhau.

    Đáp án: 4

    Ta có: \overrightarrow{n_{P}} = (2; -1;2);\overrightarrow{n_{Q}} = (1;m;1)

    Để hai mặt phẳng (P)(Q)vuông góc với nhau thì \overrightarrow{n_{P}}\bot\overrightarrow{n_{Q}}.

    \Leftrightarrow 2.1 - 1.m + 2.1 = 0
\Leftrightarrow m = 4.

  • Câu 19: Nhận biết

    Viết phương trình mặt phẳng trung trực

    Trong không gian với hệ tọa độ Oxyz, cho M(1; - 1;2),N(3;1; - 4). Viết phương trình mặt phẳng trung trực của MN.

    Mặt phẳng trung trực MN nhận \frac{1}{2}\overrightarrow{MN} = (1;1; -
3) làm vectơ pháp tuyến và đi qua trung điểm I(2;0; - 1) của MN nên ta có phương trình mặt phẳng MN là: x + y
- 3z - 5 = 0.

  • Câu 20: Nhận biết

    Xác định phương trình mặt cầu (S)

    Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; - 2;7),B( - 3;8; - 1). Mặt cầu đường kính AB có phương trình là:

    Gọi I là trung điểm của AB khi đó I(
- 1;3;3) là tâm mặt cầu (S).

    Bán kính R = IA = \sqrt{(1 + 1)^{2} + ( -
2 - 3)^{2} + (7 - 3)^{2}} = \sqrt{45}

    Vậy phương trình mặt cầu cần tìm là: (x +
1)^{2} + (y - 3)^{2} + (z - 3)^{2} = 45.

  • Câu 21: Nhận biết

    Tìm vectơ chỉ phương của đường thẳng

    Trong không gian với hệ tọa độ Oxyz, vectơ \overrightarrow{u} = (1;2; - 5) là vectơ chỉ phương của đường thẳng nào sau đây?

    Đường thẳng d:\left\{ \begin{matrix}
x = 6 - t \\
y = - 1 - 2t \\
z = 5t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight) có một vectơ chỉ phương là \overrightarrow{v} = ( -
1; - 2;5) cùng phương với vectơ \overrightarrow{u} = (1;2; - 5). Vậy \overrightarrow{u} = (1;2; - 5) là một vectơ chỉ phương của đường thẳng \left\{ \begin{matrix}
x = 6 - t \\
y = - 1 - 2t \\
z = 5t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)

  • Câu 22: Nhận biết

    Tính góc giữa hai mặt phẳng

    Trong không gian Oxyz cho hai mặt phẳng (P):8x - 4y - 8z - 11 =0,(Q):\sqrt{2}x - \sqrt{2}y + 7 = 0. Góc giữa hai mặt phẳng (P);(Q) bằng:

    Ta có: (P):8x - 4y - 8z - 11 = 0 có 1 vectơ pháp tuyến là \overrightarrow{n_{1}} = (8; - 4; -
8)

    (Q):\sqrt{2}x - \sqrt{2}y + 7 =
0 có 1 vectơ pháp tuyến là \overrightarrow{n_{2}} = \left( \sqrt{2}; -
\sqrt{2};0 ight)

    Khi đó:

    \cos\left( (P);(Q) ight) = \cos\left(
\overrightarrow{n_{1}};\overrightarrow{n_{2}} ight)

    = \frac{\left| 8.\sqrt{2} + 4.\sqrt{2} -
8.0 ight|}{\sqrt{8^{2} + ( - 4)^{2} + ( - 8)^{2}}.\sqrt{\left(
\sqrt{2} ight)^{2} + \left( - \sqrt{2} ight)^{2} + 0}} =
\frac{1}{\sqrt{2}}

    \Rightarrow \left( (P);(Q) ight) =
45^{0}

  • Câu 23: Nhận biết

    Tính đường kính mặt cầu

    Cho các điểm A(1;3;1)B(3;2;2). Mặt cầu đi qua hai điểm A, B và tâm thuộc trục Oz có đường kính là:

    Gọi I(0;0;t) trên OzIA = IB \Rightarrow t = 3 \Rightarrow
I(0;0;3)

    \Rightarrow R = IA = \sqrt{14}
\Rightarrow đường kính là: 2\sqrt{14}.

  • Câu 24: Thông hiểu

    Chọn đáp án đúng

    Trong không gian với hệ trục tọa độ Oxyz, cho điểm H(2; - 1; - 2) là hình chiếu vuông góc của gốc tọa độ O xuống mặt phẳng (P), số đo góc giữa mặt phẳng (P) và mặt phẳng (Q):x - y - 11 = 0 bằng bao nhiêu?

    H(2; - 1; - 2) là hình chiếu vuông góc của gốc tọa độ O xuống mặt phẳng (P) nên mặt phẳng (P) có vectơ pháp tuyến \overrightarrow{n_{(P)}} = \overrightarrow{OH} =
(2; - 1; - 2).

    Mặt phẳng (Q) có vectơ pháp tuyến \overrightarrow{n_{(Q)}} = (1; -
1;0).

    Gọi \varphi là số đo góc giữa mặt phẳng (P) và mặt phẳng (Q), ta có:

    \cos\varphi = \frac{\left|
\overrightarrow{n_{(P)}}.\overrightarrow{n_{(Q)}} ight|}{\left|
\overrightarrow{n_{(P)}} ight|.\left| \overrightarrow{n_{(Q)}}
ight|}

    = \frac{\left| 2.1 + ( - 1).( - 1) + ( -
2).0 ight|}{\sqrt{2^{2} + ( - 1)^{2} + ( - 2)^{2}}.\sqrt{1^{2} + ( -
1)^{2} + 0^{2}}} = \frac{\sqrt{2}}{2}

    \Rightarrow \varphi =
45^{0}

  • Câu 25: Vận dụng

    Tính tỉ số thể tích

    Trong không gian Oxyz, cho mặt phẳng (P): 2x + y − 2z + 10 = 0 và mặt cầu (S):(x - 1)^{2} + (y - 2)^{2} + (z - 3)^{2} =
25 cắt nhau theo giao tuyến đường tròn (C). Gọi V_{1} là thể tích khối cầu (S), V_{2} là thể tích khối nón (N) có đỉnh là giao điểm của đường thẳng đi qua tâm mặt cầu (S) và vuông góc với mặt phẳng (P), đáy là đường tròn (C). Biết độ dài đường cao khối nón (N) lớn hơn bán kính của khối cầu (S). Tính tỉ số \frac{V_{1}}{V_{2}}?

    Hình vẽ minh họa

    Mặt cầu (S) có tâm I(2; 1; 3) và bán kính R = 5, khoảng cách từ tâm I đến mặt phẳng (P) là:

    d = d\left( I;(P) ight) = \frac{|4 + 1
- 6 + 10|}{3} = 3

    Bán kính đường tròn (C) là: r = \sqrt{R^{2} - d^{2}} = 4

    Thể tích khối cầu (S) là: V_{1} =
\frac{4}{3}\pi R^{3} = \frac{500\pi}{3}

    Chiều cao hình nón là h = R + d = 8.

    Thể tích khối nón làV_{2} = \frac{1}{3}\pi r^{2}h =
\frac{128\pi}{3}

    Vậy \frac{V_{1}}{V_{2}} =
\frac{125}{32}.

  • Câu 26: Nhận biết

    Tính góc giữa hai mặt phẳng

    Trong không gian Oxyz cho hai mặt phẳng (P):x + z + 4 = 0,(Q):x - 2y + 2z
+ 4 = 0. Góc giữa hai mặt phẳng (P);(Q) bằng:

    Ta có: (P):x + z + 4 = 0 có 1 vectơ pháp tuyến là \overrightarrow{n_{1}} =
(1;0;1)

    (Q):x - 2y + 2z + 4 = 0 có 1 vectơ pháp tuyến là \overrightarrow{n_{2}} =
(1; - 2;2)

    Khi đó:

    \cos\left( (P);(Q) ight) = \cos\left(
\overrightarrow{n_{1}};\overrightarrow{n_{2}} ight)= \frac{\left|
\overrightarrow{n_{1}}.\overrightarrow{n_{2}} ight|}{\left|
\overrightarrow{n_{1}} ight|.\left| \overrightarrow{n_{2}} ight|} =
\frac{1}{\sqrt{2}}

    \Rightarrow \left( (P);(Q) ight) =
45^{0}

  • Câu 27: Vận dụng cao

    Tính khoảng cách lớn nhất

    Trong không gian Oxyz, , cho hai mặt cầu (S_1), (S_2) có phương trình lần lượt là (x − 2)^2 + (y − 1)^2 + (z − 1)^2 = 16(x − 2)^2 + (y − 1)^2 + (z − 5)^2 = 4. Gọi (P) là mặt phẳng thay đổi tiếp xúc với cả hai mặt cầu (S_1), (S_2). Tính khoảng cách lớn nhất từ gốc tọa độ O đến mặt phẳng (P).

    Hình vẽ minh họa

    Mặt cầu (S1) có tâm I(2; 1; 1) và bán kính R_1 = 4.

    Mặt cầu (S2) có tâm J(2; 1; 5) và bán kính R_2 = 2.

    Gọi A, B lần lượt là hai tiếp điểm của (S1), (S2) với mặt phẳng (P).

    Gọi M là giao điểm của IJ với mặt phẳng (P). Ta có:

    \frac{MI}{MJ} = \frac{IA}{IB} =
2

    Suy ra J là trung điểm của IM, do đó M(2; 1; 9).

    Gọi véc-tơ pháp tuyến của mặt phẳng (P) là \overrightarrow{n} = (a;b;c),\left( a^{2} + b^{2}
+ c^{2} > 0 ight) khi đó phương trình của mặt phẳng (P) là

    a(x − 2) + b(y − 1) + c(z − 9) = 0

    Ta có:

    d\left( I;(P) ight) = 4
\Leftrightarrow \frac{|8c|}{\sqrt{a^{2} + b^{2} + c}} = 4

    \Leftrightarrow \frac{|c|}{\sqrt{a^{2} +
b^{2} + c}} = \frac{1}{2} \Leftrightarrow a^{2} + b^{2} =
3c^{2}

    \Leftrightarrow \left( \frac{a}{c}
ight)^{2} + \left( \frac{b}{c} ight)^{2} = 3\ \ \ (1)

    Mặt khác d\left( O;(P) ight) =
\frac{|2a + b + 9c|}{\sqrt{a^{2} + b^{2} + c^{2}}} = \frac{|2a + b +
9c|}{2c} = \frac{1}{2}\left| \frac{2a}{c} + \frac{b}{c} + 9 ight|\ \ \
(2)

    Áp dụng bất đẳng thức Bunhiacopxki ta có

    \left( \frac{2a}{c} + \frac{b}{c}
ight)^{2} \leq \left( 2^{2} + 1^{2} ight)\left\lbrack \left(
\frac{a}{c} ight)^{2} + \left( \frac{b}{c} ight)^{2} ightbrack\
\ \ (3)

    Từ (1) và (3) ta có: \left( \frac{2a}{c}
+ \frac{b}{c} ight)^{2} \leq 15 \Leftrightarrow - \sqrt{15} \leq
\frac{2a}{c} + \frac{b}{c} \leq \sqrt{15}\ \ (4)

    Từ (2) và (4) suy ra:

    \frac{9 - \sqrt{15}}{2} \leq d\left(
O;(P) ight) \leq \frac{9 + \sqrt{15}}{2}

    Vậy khoảng cách lớn nhất từ gốc tọa độ O đến mặt phẳng (P) bằng \frac{9 + \sqrt{15}}{2}.

  • Câu 28: Nhận biết

    Tìm điều kiện để hai mặt phẳng song song

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (P):3x - my - z + 7 = 0,(Q):6x + 5y - 2z - 4 =
0. Xác định m để hai mặt phẳng (P)(Q) song song với nhau?

    Hai mặt phẳng đã cho song song với nhau khi và chỉ khi

    Tập xác định \frac{3}{6} = \frac{- m}{5}
= \frac{- 1}{- 2} eq \frac{7}{- 4}

    Vậy m = - \frac{5}{2} thì hai mặt phẳng (P);(Q) song song với nhau.

  • Câu 29: Nhận biết

    Chọn đáp án đúng

    Trong không gian với hệ tọa độ Oxyz cho đường thẳng d:\frac{{x + 2}}{2} = \frac{{y - 1}}{{ - 1}} = \frac{{z - 3}}{3}. Đường thẳng d đi qua điểm M và có vectơ chỉ phương \overrightarrow{a_{d}} có tọa độ là:

    A(2;3;3) đi qua điểm \overrightarrow{AB} = (0; - 1; - 1) và có vectơ chỉ phương \Delta

  • Câu 30: Nhận biết

    Xác định tọa độ điểm thuộc mặt cầu

    Mặt cầu (S):\ x^{2} + y^{2} + z^{2} - 2x
+ 10y + 3z + 1 = 0 đi qua điểm có tọa độ nào sau đây?

    Lần lượt thay tọa độ các điểm vào phương trình mặt cầu. Tọa độ điểm nào thỏa mãn phương trình thì điểm đó thuộc mặt cầu.

    Kiểm tra đáp án thu được kết quả là: điểm (4; - 1;0). thuộc mặt cầu đã cho.

  • Câu 31: Nhận biết

    Mệnh đề đúng

    Câu nào sau đây đúng? Trong không gian Oxyz:

     A sai và có thể (P) và (Q) trùng nhau

    B sai, vì mỗi mặt phẳng có vô số vecto pháp tuyến. Suy ra D sai.

    C đúng vì 1 mặt phẳng được xác định nếu biết một điểm và một VTPT của nó.

  • Câu 32: Nhận biết

    Tìm góc giữa hai đường thẳng

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng

    \Delta:\left\{ \begin{matrix}
x = t \\
y = 5 - 2t \\
z = 14 - 3t \\
\end{matrix} \right.\Delta':\left\{ \begin{matrix}
x = 1 - 4t \\
y = 2 + t \\
z = - 1 + 5t \\
\end{matrix} \right.. Xác định góc giữa hai đường thẳng \Delta\Delta'.

    Đường thẳng \Delta có VTCP \overrightarrow{u} = (1; - 2; - 3), \Delta' có VTCP \overrightarrow{u'} = ( - 4;1;5).

    Gọi \varphi là góc giữa hai đường thẳng \Delta\Delta'.

    Ta có \cos\varphi = \left| \cos\left(
\overrightarrow{u},\overrightarrow{u'} \right) \right|

    =
\frac{\left| 1.( - 4) + ( - 2).1 + ( - 3).5 \right|}{\sqrt{1^{2} + ( -
2)^{2} + ( - 3)^{2}}.\sqrt{( - 4)^{2} + 1^{2} + 5^{2}}} =
\frac{\sqrt{3}}{2}

    \rightarrow \varphi = 30^{0}.

  • Câu 33: Nhận biết

    Tính góc giữa đường thẳng và mặt phẳng

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P):x - y + 2z + 1 = 0 và đường thẳng (d):\frac{x - 1}{1} = \frac{y}{2} = \frac{z
+ 1}{- 1}. Tính góc giữa đường thẳng (d) và mặt phẳng (P).

    Ta có: \overrightarrow{u_{d}} = (1;2; -
1);\overrightarrow{n_{(P)}} = (1; - 1;2)

    Do đó: \cos\left(
\overrightarrow{u_{d}};\overrightarrow{n_{(P)}} ight) = \frac{|1 - 2 -
2|}{\sqrt{6}.\sqrt{6}} = \frac{1}{2}

    Suy ra góc giữa đường thẳng d và mặt phẳng (P) bằng 90^{0} -
60^{0} = 30^{0}.

  • Câu 34: Thông hiểu

    Tìm tập hợp các giá trị a

    Trong không gian với hệ tọa độ Oxyz, xét mặt cầu (S) có phương trình dạng x^{2} + y^{2} + z^{2} - 4x + 2y - 2az + 10a =
0. Tập hợp các giá trị thực của tham số a để (S) có chu vi 8\pi?

    Đường tròn lớn có chu vi là 8\pi nên bán kính của (S)\frac{8\pi}{2\pi} = 4

    Từ phương trình của (S) suy ra bán kính của (S)R = \sqrt{2^{2} + 1^{2} + a^{2} -
10a}

    Do đó \sqrt{2^{2} + 1^{2} + a^{2} - 10a}
= 4 \Leftrightarrow \left\lbrack \begin{matrix}
a = - 1 \\
a = 11 \\
\end{matrix} ight.

    Vậy đáp án cần tìm là: a \in \left\{ -
1;11 ight\}

  • Câu 35: Vận dụng cao

    Chọn đáp án đúng

    Một khối lập phương lớn tạo bởi 27 khối lập phương đơn vị. Một mặt phẳng vuông góc với đường chéo của khối lập phương lớn tại trung điểm của nó. Mặt phẳng này cắt ngang bao nhiêu khối lập phương đơn vị?

    Giả sử các đỉnh của khối lập phương đơn vị là (i,j,k), với i,j,k \in \left\{ 0;1;2;3 ight\} và đường chéo đang xét của khối lập phương lớn nối hai đỉnh là O(0;0;0),A(3;3;3)

    Phương trình mặt trung trực của OA là (\alpha):x + y + z - \frac{9}{2} = 0

    Mặt phẳng này cắt khối lập phương đơn vị khi và và chỉ khi các đầu mút (i,j,k)(i + 1;j + 1;k + 1) của đường chéo của khối lập phương đơn vị nằm về hai phía đối với (α).

    Do đó bài toán quy về đếm trong số 27 bộ (i,j,k), với i,j,k \in \left\{ 0;1;2 ight\}, có bao nhiêu bộ ba thỏa mãn:

    \left\{ \begin{matrix}
i + j + k - \frac{9}{2} < 0 \\
(i + 1) + (j + 1) + (k + 1) - \frac{9}{2} > 0 \\
\end{matrix} ight.\  \Leftrightarrow \frac{3}{2} < i + j + k <
\frac{9}{2}

    Các bộ ba không thỏa điều kiện (1), tức là \left\lbrack \begin{matrix}
i + j + k < \frac{3}{2} \\
i + j + k > \frac{9}{2} \\
\end{matrix} ight. là:

    (0;0;0),(0;0;1),(0;1;0),(1;0;0),(1;2;2),(2;1;2),(2;2;1),(2;2;2)

    Vậy có 27 - 8 = 19 khối lập phương đơn vị bị cắt bởi (α).

  • Câu 36: Vận dụng

    Viết PT mp chứa BC và song song AD

    Cho tứ diện ABCD có A\left( {5,1,3} ight),B\left( {1,6,2} ight),C\left( {5,0,4} ight),D\left( {4,0,6} ight). Mặt phẳng chứa BC và song song với AD có phương trình :

    Theo đề bài, từ các điểm A\left( {5,1,3} ight),B\left( {1,6,2} ight),C\left( {5,0,4} ight),D\left( {4,0,6} ight), ta tính được các vecto tương ứng là: \overrightarrow {BC}  = \left( {4, - 6,2} ight);\overrightarrow {AD}  = \left( { - 1, - 1,3} ight)

    \Rightarrow \left[ {\overrightarrow {BC} ,\overrightarrow {AD} } ight] = \left( { - 16, - 14, - 10} ight)cùng phương với \overrightarrow n  = \left( {8,7,5} ight)

    Chọn \vec{n} làm vectơ pháp tuyến cho mặt phẳng chứa BC và song song với AD.

    Phương trình (P) có dạng: 8x + 7y + 5z + D = 0

    Mặt khác, điểm B \in \left( P ight) \Leftrightarrow 8 + 42 + 10 + D = 0 \Leftrightarrow D =  - 60

    Vậy phương trình (P): 8x + 7y + 5z - 60 = 0.

  • Câu 37: Thông hiểu

    Tìm khoảng cách từ điểm đến đường thẳng

    Trong không gian Oxyz, khoảng cách từ điểm M(2; - 4; - 1) tới đường thẳng \Delta:\left\{ \begin{matrix}
x = t \\
y = 2 - t \\
z = 3 + 2t \\
\end{matrix} \right.bằng

    Đường thẳng \Delta đi qua N(0;2;3), có véc tơ chỉ phương \overrightarrow{u} = (1; - 1;2)

    \overrightarrow{MN} = ( - 2;6;4);\
\left\lbrack \overrightarrow{MN},\overrightarrow{u} \right\rbrack =
(16;8; - 4).

    d(M,\Delta) = \frac{\left| \left\lbrack
\overrightarrow{MN},\overrightarrow{u} \right\rbrack \right|}{\left|
\overrightarrow{u} \right|} = \frac{\sqrt{336}}{\sqrt{6}} =
2\sqrt{14}.

  • Câu 38: Thông hiểu

    Tìm tọa độ điểm A

    Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng d:\frac{x}{2} = \frac{y}{- 1} = \frac{z +
1}{1} và mặt phẳng (P):x - 2y - 2z
+ 5 = 0. Điểm A nào dưới đây thuộc d và thỏa mãn khoảng cách từ A đến mặt phẳng (P) bằng 3?

    Vì A ∈ (d) nên ta có tọa độ điểm A(2a; −a; a − 1).

    Khoảng cách từ A đến (P) là

    \frac{\left| 2a + 2a - 2(a - 1) + 5
ight|}{\sqrt{9}} = 3

    \Leftrightarrow |2a + 9| = 9\Leftrightarrow \left\lbrack \begin{matrix}a = 0 \\a = - \dfrac{9}{2} \\\end{matrix} ight.

    Với a = 0 \Rightarrow A(0;\ 0; -
1)

  • Câu 39: Nhận biết

    Chọn khẳng định đúng

    Trong không gian với hệ toạ độ Oxyz, cho mặt phẳng (\alpha):3x - z = 0. Tìm khẳng định đúng trong các mệnh đề sau:

    Khẳng định đúng là: “(\alpha) \supset
Oy

  • Câu 40: Thông hiểu

    Xét tính đúng sai của các nhận định

    Trong không gian Oxyz, cho đường thẳng (d):\left\{ \begin{matrix}
x = 2 - 5t \\
y = 2t \\
z = - 3
\end{matrix} \right.\ ;\left( t\mathbb{\in R} \right).

    a) Điểm M(2;2; - 3) thuộc đường thẳng (d). Sai||Đúng

    b) Khi t = - 2 đường thẳng (d) đi qua điểm A có tọa độ (12; - 4; - 3). Đúng||Sai

    c) Đường thẳng (d) nhận \overrightarrow{u} = ( - 5;2;0) là một vectơ chỉ phương. Đúng||Sai

    d) Điểm N(7; - 2;3) không nằm trên đường thẳng (d). Đúng||Sai

    Đáp án là:

    Trong không gian Oxyz, cho đường thẳng (d):\left\{ \begin{matrix}
x = 2 - 5t \\
y = 2t \\
z = - 3
\end{matrix} \right.\ ;\left( t\mathbb{\in R} \right).

    a) Điểm M(2;2; - 3) thuộc đường thẳng (d). Sai||Đúng

    b) Khi t = - 2 đường thẳng (d) đi qua điểm A có tọa độ (12; - 4; - 3). Đúng||Sai

    c) Đường thẳng (d) nhận \overrightarrow{u} = ( - 5;2;0) là một vectơ chỉ phương. Đúng||Sai

    d) Điểm N(7; - 2;3) không nằm trên đường thẳng (d). Đúng||Sai

    a) Sai

    b) Đúng

    c) Đúng

    d) Đúng

    Phương án a) sai vì:

    Thay M(2;2; - 3) vào đường thẳng (d), ta có \left\{ \begin{matrix}
2 = 2 - 5t \\
2 = 2t \\
- 3 = - 3
\end{matrix} \right.\  \Leftrightarrow \left\{ \begin{matrix}
t = 0 \\
t = 1
\end{matrix} \right.\  \Leftrightarrow M(2;2; - 3) \notin
(d)

    Phương án b) đúng vì:

    Khi thay t = - 2 vào phương trình tham số của (d), ta được:

    \left\{ \begin{matrix}
x = 2 - 5.( - 2) \\
y = 2.( - 2) \\
z = - 3
\end{matrix} \right.

    Vậy \Leftrightarrow A(12, - 4, - 3) \in
(d)

    Phương án c) đúng vì từ phương trình tham số ta có \overrightarrow{v} = ( - 5;2;0) là một vectơ chỉ phương của (d)\overrightarrow{v} = ( - 5;2;0) = - ( - 5;2;0) = -
\overrightarrow{u} do đó \overrightarrow{u} = ( - 5;2;0) cũng là một vectơ chỉ phương của đường thẳng (d).

    Phương án d) đúng vì đường thẳng (d) luôn đi qua điểm có cao độ bằng -3, ta có z_{N} = 3 \Rightarrow N \notin
(d)

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 5 Phương trình mặt phẳng, đường thẳng, mặt cầu CTST Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo