Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề kiểm tra 45 phút Chương 1 Ứng dụng đạo hàm để khảo sát hàm số CTST

Mô tả thêm:

Hãy cùng thử sức kiểm tra đánh giá các kiến thức tổng quan với bài kiểm tra phút Chương 1: Ứng dụng đạo hàm để khảo sát hàm số Toán 12 sách Chân trời sáng tạo các em nhé!

  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Thông hiểu

    Giá trị nhỏ nhất của hàm số

    Giá trị nhỏ nhất của hàm số y = 2{\cos ^3}x - \frac{9}{2}{\cos ^2}x + 3\cos x + \frac{1}{2} là:

    Đặt t = \cos x;t \in \left[ { - 1;1} ight]

    Khi đó hàm số trở thành:

    f\left( t ight) = 2{t^3} - \frac{9}{2}{t^2} + 3t + \frac{1}{2}

    Xét hàm số f\left( t ight) = 2{t^3} - \frac{9}{2}{t^2} + 3t + \frac{1}{2} trên đoạn \left[ { - 1;1} ight] ta có:

    f'\left( t ight) = 8{t^2} - 9t + 3 > 0;\forall t \in \left[ { - 1;1} ight]

    => Hàm số f(t) đồng biến trên \left( { - 1;1} ight)

    => \mathop {\min f\left( t ight)}\limits_{\left[ { - 1;1} ight]}  = f\left( { - 1} ight) = 1

  • Câu 2: Vận dụng cao

    Tìm m để hàm số có 4 tiệm cận

    Cho hàm số y = f(x) là hàm số bậc 2. Đồ thị hàm số y = f’(x) như hình vẽ dưới đây và f(-1) < 20

    Tìm m để hàm số có 4 tiệm cận

    Đồ thị hàm số g\left( x ight) = \frac{{f\left( x ight) - 20}}{{f\left( x ight) - m}} (m là tham số thực) có bốn tiệm cận khi và chỉ khi:

     Điều kiện f\left( x ight) e m

    Từ đồ thị hàm số f’(x) ta có bảng biến thiên hàm số f(x) là:

    Tìm m để hàm số có 4 tiệm cận

    Nếu m = 20 thì đồ thị hàm số không có đủ bốn tiệm cận

    Nếu m e 20 thì \mathop {\lim }\limits_{x \to  \pm \infty } \frac{{f\left( x ight) - 20}}{{f\left( x ight) - m}} = 1 => y = 1 là tiệm cận ngang của đồ thị hàm số

    Ta có phương trình f(x) = 20 có một nghiệm x = a > 3 vì f(-1) < 20

    => Đồ thị hàm số g(x) có bốn tiệm cận khi phương trình f(x) = m có ba nghiệm phân biệt khác a

    => f(3) < m < f(-1)

  • Câu 3: Vận dụng cao

    Xác định khoảng đồng biến của hàm số

    Cho f(x) mà đồ thị hàm số y = f’(x) như hình vẽ.

    Hàm số y = f\left( {x - 1} ight) + {x^2} - 2x đồng biến trên khoảng nào trong các đáp án dưới đây?

    Ta có: y = f\left( {x - 1} ight) + {x^2} - 2x

    => y' = f'\left( {x - 1} ight) + 2x - 2

    Hàm số đồng biến khi y' \geqslant 0 \Leftrightarrow f'\left( {x - 1} ight) + 2\left( {x - 1} ight) \geqslant 0\left( * ight)

    Đặt t = x – 1 thì (*) trở thành

    f'\left( t ight) + 2t \geqslant 0 \Leftrightarrow f'\left( t ight) \geqslant  - 2t

    Quan sát đồ thị hàm số y = f’(t) và y = -2t trên cùng một hệ tọa độ như hình vẽ

    Xác định khoảng đồng biến của hàm số

    Khi đó ta thấy với t \in \left( {0;1} ight) thì độ thì hàm số y = f’(t) luôn nằm trên đường thẳng y = -2t

    => f'\left( t ight) + 2t > 0,\forall t \in \left( {1;2} ight)

    Do đó với \forall x \in \left( {1;2} ight) thì hàm số y = f\left( {x - 1} ight) + {x^2} - 2x đồng biến.

  • Câu 4: Thông hiểu

    Xác định số nghiệm tối đa

    Cho đồ thị hàm số y = f(x) như sau:

    Hỏi phương trình 2f(x) = m có tối đa bao nhiêu nghiệm thực?

    Phương trình 2f(x) = m \Leftrightarrow
f(x) = \frac{m}{2} là phương trình hoành độ giao điểm của đồ thị hàm số y = f(x) và đường thẳng y = \frac{m}{2}

    Số giao điểm của hai đường bằng số nghiệm của phương trình f(x) = \frac{m}{2}.

    Dựa vào đồ thị hàm số ta thấy đường thẳng y = \frac{m}{2} cắt đồ thị tại nhiều nhất 5 điểm.

    Vậy phương trình có tối đa 5 nghiệm.

  • Câu 5: Thông hiểu

    Số điểm cực đại của hàm số

    Cho hàm số f(x) có bảng xét dấu đạo hàm f’(x) như sau:

    Số điểm cực đại của hàm số

    Hàm số f(x) có bao nhiêu điểm cực đại?

    Dựa vào bảng xét dấu đạo hàm f’(x) ta thấy đạo hàm f’(x) đổi dấu từ dương sang âm 2 lần nên f(x) có 2 điểm cực đại.

  • Câu 6: Vận dụng

    Xét tính đúng sai của các nhận định

    Một cơ sở sản xuất khăn mặt đang bán mỗi chiếc khăn với giá 30.000 đồng một chiếc và mỗi tháng cơ sở bán được trung bình 3000 chiếc khăn. Cơ sở sản xuất đang có kế hoạch tăng giá bán để có lợi nhận tốt hơn. Sau khi tham khảo thị trường, người quản lý thấy rằng nếu từ mức giá 30.000 đồng mà cứ tăng giá thêm 1000 đồng thì mỗi tháng sẽ bán ít hơn 100 chiếc. Biết vốn sản xuất một chiếc khăn không thay đổi là 18.000.

    a) Nếu cơ sở bán mỗi chiếc khăn với giá 37000 thì số tiền lãi sau 1 tháng là 44. Sai||Đúng

    b) Sau khi cơ sở tăng giá mỗi chiếc khăn thêm x thì tổng số lợi nhuận một tháng của cơ sở được tính theo công thứcf(x) = - 100x^{2}
+ 1800x + 36000. Đúng||Sai

    c) Để đạt lợi nhuận lớn nhất thì số khăn bán ra giảm 800 chiếc. Sai||Đúng

    d) Để đạt lợi nhuận lớn nhất thì mỗi chiếc khăn cần bán với giá 39000 đồng. Đúng||Sai

    Đáp án là:

    Một cơ sở sản xuất khăn mặt đang bán mỗi chiếc khăn với giá 30.000 đồng một chiếc và mỗi tháng cơ sở bán được trung bình 3000 chiếc khăn. Cơ sở sản xuất đang có kế hoạch tăng giá bán để có lợi nhận tốt hơn. Sau khi tham khảo thị trường, người quản lý thấy rằng nếu từ mức giá 30.000 đồng mà cứ tăng giá thêm 1000 đồng thì mỗi tháng sẽ bán ít hơn 100 chiếc. Biết vốn sản xuất một chiếc khăn không thay đổi là 18.000.

    a) Nếu cơ sở bán mỗi chiếc khăn với giá 37000 thì số tiền lãi sau 1 tháng là 44. Sai||Đúng

    b) Sau khi cơ sở tăng giá mỗi chiếc khăn thêm x thì tổng số lợi nhuận một tháng của cơ sở được tính theo công thứcf(x) = - 100x^{2}
+ 1800x + 36000. Đúng||Sai

    c) Để đạt lợi nhuận lớn nhất thì số khăn bán ra giảm 800 chiếc. Sai||Đúng

    d) Để đạt lợi nhuận lớn nhất thì mỗi chiếc khăn cần bán với giá 39000 đồng. Đúng||Sai

    a) Sai

    b) Đúng

    c) Sai

    d) Đúng

    Gọi số tiền cần tăng giá mỗi chiếc khăn là x .

    Vì cứ tăng giá thêm 1 thì số khăn bán ra giảm 100 chiếc nên tăng x thì số khăn bán ra giảm 100x chiếc.

    Do đó tổng số khăn bán ra mỗi tháng là: 3000 - 100x chiếc.

    Lúc đầu bán với giá 30, mỗi chiếc khăn có lãi 12. Sau khi tăng giá, mỗi chiếc khăn thu được số lãi là: 12 +
x.

    Do đó tổng số lợi nhuận một tháng thu được sau khi tăng giá là:

    f(x) = (3000 - 100x)(12 +
x).

    Xét hàm số f(x) = (3000 - 100x)(12 +
x) trên (0; + \infty).

    Ta có:f(x) = - 100x^{2} + 1800x +
36000.

    f'(x) = - 200x + 1800

    f'(x) = 0 \Leftrightarrow - 200x +
1800 = 0 \Leftrightarrow x = 9

    Lập bảng biến thiên của hàm số f(x) trên (0;\  + \infty) ta thấy hàm số đạt giá trị lớn nhất khix = 9

    hư vậy, để thu được lợi nhuận cao nhất thì cơ sở sản xuất cần tăng giá bán mỗi chiếc khăn là 9.000 đồng, tức là mỗi chiếc khăn bán với giá mới là39.000 đồng.

  • Câu 7: Thông hiểu

    Tìm các tiệm cận của đồ thị hàm số

    Đồ thị hàm số y = \frac{\sqrt{x^{2} - 3x
- 10}}{x - 2} có bao nhiêu đường tiệm cận?

    Điều kiện xác định \left\{ \begin{matrix}
x^{2} - 3x - 10 \geq 0 \\
x - 2 eq 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
\left\lbrack \begin{matrix}
x \leq - 2 \\
x \geq 5 \\
\end{matrix} ight.\  \\
x eq 2 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x \leq - 2 \\
x \geq 5 \\
\end{matrix} ight.

    Vậy D = ( - \infty; - 2brack \cup
\lbrack 5; + \infty)

    Xét \lim_{x ightarrow +\infty}\dfrac{\sqrt{x^{2} - 3x - 10}}{x - 2} = \lim_{x ightarrow +\infty}\dfrac{x\sqrt{1 - \dfrac{3}{x} - \dfrac{10}{x^{2}}}}{x - 2}=\lim_{x ightarrow + \infty}\dfrac{\sqrt{1 - \dfrac{3}{x} -\dfrac{10}{x^{2}}}}{1 - \dfrac{2}{x}} = 1

    Vậy y = 1 là tiệm cận ngang của đồ thị hàm số.

    Xét \lim_{x ightarrow -\infty}\dfrac{\sqrt{x^{2} - 3x - 10}}{x - 2} = \lim_{x ightarrow -\infty}\dfrac{- x\sqrt{1 - \dfrac{3}{x} - \dfrac{10}{x^{2}}}}{x - 2}=\lim_{x ightarrow + \infty}\dfrac{- \sqrt{1 - \dfrac{3}{x} -\dfrac{10}{x^{2}}}}{1 - \dfrac{2}{x}} = - 1

    Vậy y = - 1 là tiệm cận ngang của đồ thị hàm số.

    \lim_{x ightarrow
2^{+}}\frac{\sqrt{x^{2} - 3x - 10}}{x - 2};\lim_{x ightarrow
2^{-}}\frac{\sqrt{x^{2} - 3x - 10}}{x - 2} không tồn tại nên đồ thị hàm số đã cho không có tiệm cận đứng.

    Vậy đồ thị hàm số có 2 tiệm cận.

  • Câu 8: Nhận biết

    Chọn đáp án đúng:

    Cho hàm số bậc ba y = ax^{3} + bx^{2} + cx + d (aeq 0) có đồ thị như hình vẽ. Mệnh đề nào dưới đây đúng?

    Trắc nghiệm Toán 12 bài 4 

  • Câu 9: Vận dụng

    Tìm m để đồ thị hàm số có 2 tiệm cận ngang

    Tìm tất cả các giá trị thực của tham số m sao cho đồ thị của hàm số y = \frac{x + 1}{\sqrt{mx^{2} + 1}} có hai tiệm cận ngang.

    Khi m > 0, ta có:

    \lim_{x ightarrow + \infty}\frac{x +
1}{\sqrt{mx^{2} + 1}} = \lim_{x ightarrow + \infty}\frac{1 +
\frac{1}{x}}{\sqrt{m + \frac{1}{x^{2}}}} = \frac{1}{\sqrt{m}}ightarrow y = \frac{1}{\sqrt{m}} là TCN ;

    \lim_{x ightarrow - \infty}y = \lim_{x
ightarrow - \infty}\frac{x\left( 1 + \frac{1}{x} ight)}{|x|\sqrt{m +
\frac{1}{x^{2}}}} = \frac{- 1 - \frac{1}{x}}{\sqrt{m + \frac{1}{x^{2}}}}
= - \frac{1}{\sqrt{m}}ightarrow y = - \frac{1}{\sqrt{m}} là TCN.

    Với m = 0 suy y = \frac{x + 1}{1} suy ra đồ thị hàm số không có tiệm cận.

    Với m < 0 thì hàm số có TXĐ là một đoạn nên đồ thị hàm số không có TCN.

    Vậy với m > 0 thì đồ thị hàm số có hai tiệm cận ngang.

  • Câu 10: Nhận biết

    Tìm khẳng định đúng

    Cho hàm số y = f(x)\lim_{x ightarrow - \infty}f(x) = - 1\lim_{x ightarrow 1^{+}}f(x) = +
\infty. Khẳng định nào sau đây là khẳng định đúng?

    Theo định nghĩa về tiệm cận, ta có:

    \lim_{x ightarrow - \infty}f(x) = - 1\
\ \overset{}{ightarrow}\ \ y = - 1 là TCN.

    \lim_{x ightarrow \ 1^{+}}f(x) = +
\infty\ \ \overset{}{ightarrow}\ \ x = 1 là TCĐ.

  • Câu 11: Nhận biết

    Tìm số điểm cực trị của hàm số

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Số điểm cực trị của đồ thị hàm số là:

    Dựa vào bảng biến thiên ta thấy hàm số có 3 điểm cực trị.

  • Câu 12: Nhận biết

    Tìm GTNN của hàm số

    Trên đoạn \lbrack 0;1brack hàm số y = \sqrt{4 - 3x} có giá trị nhỏ nhất bằng bao nhiêu?

    Tập xác định D = \left( -
\infty;\frac{4}{3} ightbrack

    Ta có: y' = \frac{- 3}{2\sqrt{4 -
3x}} < 0;\forall x < \frac{4}{3}

    Trên đoạn \lbrack 0;1brack hàm số đã cho nghịch biến

    \Rightarrow \min_{\lbrack 0;1brack}y =
y(1) = 1

  • Câu 13: Vận dụng

    Ghi đáp án vào ô trống

    Cho hàm số y = f(x) = x^{3} - mx^{2} -m^{2}x + 8 với m là tham số. Có bao nhiêu giá trị nguyên của tham số m để hàm số có điểm cực tiểu nằm hoàn toàn phía trên trục hoành?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = f(x) = x^{3} - mx^{2} -m^{2}x + 8 với m là tham số. Có bao nhiêu giá trị nguyên của tham số m để hàm số có điểm cực tiểu nằm hoàn toàn phía trên trục hoành?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 14: Nhận biết

    Đồ thị hàm số tương ứng với hàm số nào

    Cho hình vẽ:

    Đồ thị hàm số tương ứng với hàm số nào

    Đồ thị hàm số tương ứng với hàm số nào sau đây?

    Đồ thị hàm số đi qua điểm (1; 3) chỉ có hàm số y = \frac{1}{2}{x^3} - 3{x^2} + \frac{9}{2}x + 1 thỏa mãn.

  • Câu 15: Thông hiểu

    Tìm các số thực dương của tham số m

    Có bao nhiêu số thực dương m để giá trị lớn nhất của hàm số y = x^{3} - 3x +
1 trên đoạn \lbrack m + 1;m +
2brack bằng 53?

    Ta có: y' = 3x^{2} - 3 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = - 1 \\
\end{matrix} ight.

    Ta có bảng biến thiên:

    Dựa vào bảng biến thiên thì để giá trị lớn nhất của hàm số y = x^{3} - 3x + 1 trên đoạn \lbrack m + 1;m + 2brack bằng 53 thì m + 1
> 1 \Leftrightarrow m > 0.

    Khi đó \max_{\lbrack m + 1;m +
2brack}f(x) = f(m + 2) = (x + 2)^{3} - 3(m + 2) + 1 = 53

    \Leftrightarrow m^{3} + 6m^{2} + 9m - 50
= 0 \Leftrightarrow m = 2

    Khi đó chỉ có duy nhất một giá trị của tham số m thỏa mãn yêu cầu đề bài.

  • Câu 16: Nhận biết

    Chọn đáp án đúng

    Cho hàm số y = f(x) liên tục trên \lbrack - 1;5brack và có đồ thị như hình vẽ:

    Xác định hiệu số giữa giá trị lớn nhất và giá trị nhỏ nhất của hàm số đã cho trên đoạn \lbrack -
1;5brack?

    Từ đồ thị hàm số ta có: \max_{\lbrack -
1;5brack}y = 3;\min_{\lbrack - 1;5brack}y = - 2

    Khi đó \max_{\lbrack - 1;5brack}y -
\min_{\lbrack - 1;5brack}y = 5.

  • Câu 17: Vận dụng

    Xác định tính đúng sai của từng phương án

    Một công ty A có 120 căn hộ cho thuê. Biết rằng nếu cho thuê mỗi căn hộ với giá 3 000 000 đồng thì mỗi tháng mọi căn hộ đều có người thuê và cứ tăng thêm giá cho thuê mỗi căn hộ 100 nghìn đồng một tháng thì sẽ có 3 căn hộ bị bỏ trống. Gọi x (trăm nghìn) là số tiền tăng thêm.

    a) Số căn hộ còn lại sau khi tăng giá là 120 - 3x. Đúng||Sai

    b) Giá một căn hộ sau khi tăng là 30 -
x (trăm nghìn). Sai||Đúng

    c) Tổng số tiền công ty thu được là S(x)
= - 3x^{2} + 30x + 3600 (trăm nghìn). Đúng||Sai

    d) Công ty thu được nhiều tiền nhất khi giá thuê mỗi căn hộ là 4 (triệu đồng).Sai||Đúng

    Đáp án là:

    Một công ty A có 120 căn hộ cho thuê. Biết rằng nếu cho thuê mỗi căn hộ với giá 3 000 000 đồng thì mỗi tháng mọi căn hộ đều có người thuê và cứ tăng thêm giá cho thuê mỗi căn hộ 100 nghìn đồng một tháng thì sẽ có 3 căn hộ bị bỏ trống. Gọi x (trăm nghìn) là số tiền tăng thêm.

    a) Số căn hộ còn lại sau khi tăng giá là 120 - 3x. Đúng||Sai

    b) Giá một căn hộ sau khi tăng là 30 -
x (trăm nghìn). Sai||Đúng

    c) Tổng số tiền công ty thu được là S(x)
= - 3x^{2} + 30x + 3600 (trăm nghìn). Đúng||Sai

    d) Công ty thu được nhiều tiền nhất khi giá thuê mỗi căn hộ là 4 (triệu đồng).Sai||Đúng

    a) Đúng. Số căn hộ bị bỏ trống là 3x. Suy ra Số căn hộ còn lại sau khi tăng giá là 120 - 3x.

    b) Sai. Giá một căn hộ sau khi tăng là 30
+ x (trăm ngìn).

    c) Đúng. Tổng số tiền công ty thu được là

    S(x) = (120 - 3x)(30 + x) = - 3x^{2} + 30x +
3600.

    d) Sai. Ta có S'(x) = - 6x +
30.

    Phương trình S'(x) = 0
\Leftrightarrow - 6x + 30 = 0 \Leftrightarrow x = 5.

    Bảng biến thiên

    Từ bảng biến thiên suy ra, công ty sẽ thu được nhiều tiền nhất khi giá căn hộ là 3,5 (triệu đồng).

  • Câu 18: Nhận biết

    Xác định phương trình các đường tiệm cận

    Cho hàm số y = f(x) có đồ thị như sau:

    Đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số lần lượt là:

    Dựa vào đồ thị hàm số ta thấy đồ thị đã cho có đường tiệm cận đứng là x = 1 và đường tiệm cận ngang là y = 1.

  • Câu 19: Thông hiểu

    Tìm m để hàm số có ba đường tiệm cận

    Số các giá trị nguyên của tham số m để đồ thị hàm số y = \frac{1}{x^{2} - 2mx + 2m^{2} - 4m -
12} có ba đường tiệm cận bằng:

    Ta có:

    \lim_{x ightarrow \pm \infty}f(x) =
\lim_{x ightarrow \pm \infty}\frac{1}{x^{2} - 2mx + 2m^{2} - 4m - 12}
= 0 nên y = 0 là tiệm cận ngang của đồ thị hàm số

    Theo yêu cầu bài toán ta suy ra x^{2} -
2mx + 2m^{2} - 4m - 12 = 0 có hai nghiệm phân biệt

    \Leftrightarrow \Delta' > 0
\Leftrightarrow m^{2} - \left( 2m^{2} - m - 12 ight) >
0

    \Leftrightarrow - m^{2} + 4m + 12 > 0
\Leftrightarrow - 2 < m < 6

    m\mathbb{\in Z \Rightarrow}m \in
\left\{ - 1;0;1;2;3;4;5 ight\}

    Vậy có 7 giá trị nguyên của tham số m thỏa mãn yêu cầu đề bài.

  • Câu 20: Nhận biết

    Chọn câu đúng

    Cho hàm số y = f(x) xác định, liên tục trên \mathbb{R} và có bảng biến thiên như sau:

    Chọn câu đúng

    Khẳng định nào sau đây là đúng?

    Từ bảng biến thiên, ta dễ dàng thấy được A, B, D sai, C đúng

  • Câu 21: Nhận biết

    Chọn đáp án thích hợp

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Xác định hàm số y = f(x)?

    Từ bảng biến thiên ta suy ra hàm số cần tìm là hàm số bậc ba

    \lim_{x ightarrow + \infty}f(x) = +
\infty nên đáp án là y = x^{3} -
3x^{2} + 1.

  • Câu 22: Thông hiểu

    Chọn đáp án đúng

    Cho hàm số y =
f(x) có bảng biến thiên như sau:

    Hàm số g(x) = \frac{1}{f(x)} đồng biến trên khoảng nào sau đây?

    Ta có: g'(x) = -
\frac{f'(x)}{\left\lbrack f(x) ightbrack^{2}} >
0

    \Leftrightarrow \left\{ \begin{matrix}
f'(x) < 0 \\
f(x) eq 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x < - 1 \\
1 < x < 3 \\
x eq \left\{ - 2;0;3 ight\} \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x < - 2 \\
- 2 < x < - 1 \\
1 < x < 3 \\
\end{matrix} ight.

    Vậy hàm số g(x) = \frac{1}{f(x)} đồng biến trên các khoảng ( - \infty; - 2),(
- 2; - 1),(1;3)

    Suy ra hàm số g(x) =
\frac{1}{f(x)} đồng biến trên khoảng (1;2).

  • Câu 23: Nhận biết

    Xác định hàm số đồng biến trên D

    Tìm hàm số luôn đồng biến trên từng khoảng xác định?

    Xét hàm số y = \frac{- x - 8}{x +
3}

    Tập xác định D\mathbb{=
R}\backslash\left\{ - 3 ight\}. Ta có: y' = \frac{5}{\left( x + 3^{2} ight)} >
0;\forall x eq 3

    Vậy hàm số đồng biến trên các khoảng ( -
\infty; - 3),( - 3; + \infty).

  • Câu 24: Nhận biết

    Cho bảng biến thiên sau:

    Trắc nghiệm Toán 12 Kết nối tri thức bài 1

    Khẳng định sai là:

  • Câu 25: Thông hiểu

    Tìm giá trị nhỏ nhất của hàm số trên khoảng

    Với giá trị nào của x thì hàm số y = x^{2} + \frac{1}{x} đạt giá trị nhỏ nhất trên khoảng (0; +
\infty)?

    TXD: D\mathbb{= R}\backslash\left\{ 0
ight\}.

    y' = 2x - \frac{1}{x^{2}}, y' = 0 \Leftrightarrow x =
\frac{1}{\sqrt[3]{2}}.

    Dựa vào BBT thì x =
\frac{1}{\sqrt[3]{2}} hàm số đạt giá trị nhỏ nhất trên (0; + \infty).

  • Câu 26: Vận dụng

    Xác định giá trị nhỏ nhất của biểu thức P

    Xác định giá trị nhỏ nhất của biểu thức P = 4\left( {{m^2} + {n^2}} ight) - m - n, biết y = {\left( {x + m} ight)^3} + {\left( {x + n} ight)^3} - {x^3} với m,n là tham số và hàm số đồng biến trên \left( { - \infty ; + \infty } ight).

    Ta có:

    \begin{matrix}  y' = 3{\left( {x + m} ight)^2} + 3{\left( {x + n} ight)^2} - 3{x^2} \hfill \\   = 3\left[ {{x^2} + 2\left( {m + n} ight)x + {m^2} + {n^2}} ight] \hfill \\ \end{matrix}

    Hàm số đã cho đồng biến trên \mathbb{R}

    \begin{matrix} y' \geqslant 0;\forall x \in \mathbb{R} \hfill \\   \Leftrightarrow \Delta ' = {\left( {m + n} ight)^2} - {m^2} - {n^2} \leqslant 0 \hfill \\   \Rightarrow mn \leqslant 0 \hfill \\ \end{matrix}

    Ta lại có:

    \begin{matrix}  P = 4\left( {{m^2} + {n^2}} ight) - \left( {m + n} ight) \hfill \\   = 4{\left( {m + n} ight)^2} - 8mn - \left( {m + n} ight) \hfill \\   \geqslant 4{\left( {m + n} ight)^2} - \left( {m + n} ight) \hfill \\   = 4{\left( {m + n} ight)^2} - 2.2\left( {m + n} ight).\dfrac{1}{4} + \dfrac{1}{{16}} - \dfrac{1}{{16}} \hfill \\   = {\left[ {2\left( {m + n} ight) - \dfrac{1}{4}} ight]^2} - \dfrac{1}{{16}} \geqslant  - \dfrac{1}{{16}} \hfill \\   \Rightarrow {P_{\min }} =  - \dfrac{1}{{16}} \hfill \\ \end{matrix}

  • Câu 27: Nhận biết

    Xác định số cực trị của hàm số

    Cho hàm số y = f(x) có đồ thị như hình vẽ:

    Đồ thị hàm số y = f(x) có mấy điểm cực trị?

    Từ đồ thị suy ra đồ thị có điểm một điểm cực tiểu và một điểm cực đại.

  • Câu 28: Thông hiểu

    Tìm phương án đúng

    Hỏi có tất cả bao nhiêu giá trị nguyên của tham số m để hàm số hàm số y = \frac{1}{3}\left( m^{2} - m \right)x^{3} +
2mx^{2} + 3x - 2 đồng biến trên khoảng ( - \infty;\  + \infty)?

    Ta có:

    y' = \left( m^{2} - m ight)x^{2} +
4mx + 3

    Hàm số đã cho đồng biến trên khoảng ( -
\infty;\  + \infty) \Leftrightarrow y' \geq 0 với \forall x\mathbb{\in R}.

    + Với m = 0 ta có y' = 3 > 0 với \forall x\mathbb{\in R \Rightarrow} Hàm số đồng biến trên khoảng ( - \infty;\  +
\infty).

    + Với m = 1 ta có y' = 4x + 3 > 0 \Leftrightarrow x > -
\frac{3}{4} \Rightarrow m =
1 không thảo mãn.

    + Với \left\{ \begin{matrix}
m eq 1 \\
m eq 0 \\
\end{matrix} ight. ta có y'
\geq 0 với \forall x\mathbb{\in R
\Leftrightarrow}\left\{ \begin{matrix}
m^{2} - m > 0 \\
\Delta' = m^{2} + 3m \leq 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
\left\lbrack \begin{matrix}
m > 1 \\
m < 0 \\
\end{matrix} ight.\  \\
- 3 \leq m \leq 0 \\
\end{matrix} ight.\  \Leftrightarrow - 3 \leq m < 0.

    Tổng hợp các trường hợp ta được - 3 \leq
m \leq 0.

    m\mathbb{\in Z \Rightarrow}m \in \left\{
- 3;\  - 2;\ \  - 1;\ 0 ight\}.

    Vậy có 4 giá trị nguyên của m thỏa mãn bài ra.

  • Câu 29: Thông hiểu

    Tìm số điểm cực đại của hàm số

    Cho hàm số y = f(x) có đạo hàm f'(x) = (x + 2)^{2}(x - 1)^{3}\left(
x^{2} - 4 ight)\left( x^{2} - 1 ight) với mọi x\mathbb{\in R}. Xác định số điểm cực đại của hàm số đã cho?

    Ta có: f'(x) = (x + 2)^{2}(x -
1)^{3}\left( x^{2} - 4 ight)\left( x^{2} - 1 ight) = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = \pm 2 \\
x = \pm 1 \\
\end{matrix} ight. . Ta có bảng xét dấu:

    Quan sát bảng xét dấu ta có: f'(x) đổi dấu từ dương sang âm tại x = - 1.

    Vậy hàm số có một điểm cực đại tại x = -
1.

  • Câu 30: Vận dụng

    Chọn mệnh đề đúng

    Cho hàm số f(x), bảng xét dấu của f'(x) như sau:

    Hàm số y = f(5 - 2x) đồng biến trên khoảng nào dưới đây?

    Ta có y' = f'(5 - 2x) = -
2f'(5 - 2x).

    y^{'} = 0 \Leftrightarrow -
2f^{'(5 - 2x)} = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
5 - 2x = - 3 \\
5 - 2x = - 1 \\
5 - 2x = 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = 4 \\
x = 3 \\
x = 2 \\
\end{matrix} ight..

    f'(5 - 2x) < 0 \Leftrightarrow
\left\lbrack \begin{matrix}
5 - 2x < - 3 \\
- 1 < 5 - 2x < 1 \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
x > 4 \\
2 < x < 3 \\
\end{matrix} ight.

    f'(5 - 2x) > 0 \Leftrightarrow
\left\lbrack \begin{matrix}
5 - 2x > 1 \\
- 3 < 5 - 2x < - 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x < 2 \\
3 < x < 4 \\
\end{matrix} ight..

    Bảng biến thiên

    Dựa vào bảng biến thiên hàm số y = f(5 -
2x) đồng biến trên khoảng (4\ ;\
5).

  • Câu 31: Nhận biết

    Chọn hàm số thích hợp với hình vẽ

    Đồ thị hàm số nào dưới đây có dạng như đường cong trong hình vẽ:

    Đồ thị hàm số bậc 4 có hệ số a >0 và có ba điểm cực trị nên ab <0.

    Suy ra hàm số tương ứng với đồ thị đã cho là y = x^{4} - 2x^{2}.

  • Câu 32: Thông hiểu

    Chọn đáp án đúng

    Tìm tất cả các giá trị thực của tham số m để hàm số y= \dfrac{2\cot x + 1}{\cot x + m} đồng biến trên khoảng \left( \frac{\pi}{4};\frac{\pi}{2}
ight)?

    Điều kiện xác định \cot x eq -
m

    Ta có: y' = \dfrac{-\dfrac{2}{\sin^{2}x}\left( \cot x + m ight) + \dfrac{1}{\sin^{2}}(2\cot x +1)}{\left( \cot x + m ight)^{2}}

    = \dfrac{1 - 2m}{\sin^{2}x.\left( \cot x +m ight)^{2}}

    Hàm số đồng biến trên khoảng \left(
\frac{\pi}{4};\frac{\pi}{2} ight) khi và chỉ khi

    \left\{ \begin{matrix}
y' > 0 \\
- m otin (0;1) \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
1 - 2m > 0 \\
\left\lbrack \begin{matrix}
m \leq - 1 \\
m \geq 0 \\
\end{matrix} ight.\  \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
m \leq - 1 \\
m \geq 0 \\
\end{matrix} ight.\  \Leftrightarrow m \in ( - \infty; - 1brack \cup
\left\lbrack 0;\frac{1}{2} ight)

    Vậy đáp án cần tìm là m \in ( - \infty; -
1brack \cup \left\lbrack 0;\frac{1}{2} ight).

  • Câu 33: Thông hiểu

    Tìm giá trị tham số m thỏa mãn yêu cầu

    Có bao nhiêu giá trị nguyên của tham số m để đồ thị của hàm số y = x^{3} - (2m - 1)x^{2} + \left( 2m^{2} + 2m - 4
ight)x - 2m^{2} + 4 có hai điểm cực trị nằm về hai phía của trục hoành?

    Xét phương trình hoành độ giao điểm

    x^{3} - (2m - 1)x^{2} + \left( 2m^{2} +
2m - 4 ight)x - 2m^{2} + 4 = 0(*)

    \Leftrightarrow (x - 1)\left( x^{2} -
2mx + 2m^{2} - 4 ight) = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x - 1 = 0 \\
x^{2} - 2mx + 2m^{2} - 4 = 0(**) \\
\end{matrix} ight.

    Đồ thị của hàm số y = x^{3} - (2m -
1)x^{2} + \left( 2m^{2} + 2m - 4 ight)x - 2m^{2} + 4 có hai điểm cực trị nằm về hai phía của trục hoành khi và chỉ khi phương trình (*) có ba nghiệm phân biệt hay phương trình (**) có 2 nghiệm phân biệt khác 1

    \Leftrightarrow \left\{ \begin{gathered}
  \Delta  > 0 \hfill \\
  f\left( 1 ight) e 0 \hfill \\ 
\end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}
  {m^2} - \left( {2{m^2} - 4} ight) > 0 \hfill \\
  2{m^2} - 2m - 3 e 0 \hfill \\ 
\end{gathered}  ight.\Leftrightarrow \left\{ \begin{gathered}
   - 2 < m < 2 \hfill \\
  m e \frac{{1 \pm \sqrt 7 }}{2} \hfill \\ 
\end{gathered}  ight.

    m\mathbb{\in Z} suy ra m \in \left\{ - 1;0;1 ight\}

    Vậy có 3 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.

  • Câu 34: Nhận biết

    Chọn câu đúng

    Cho hàm số y = f(x)\lim_{x ightarrow \pm \infty}f(x) = 1\lim_{x ightarrow 2^{-}}f(x) = \lim_{x
ightarrow 2^{+}}f(x) = 10. Khẳng định nào sau đây là đúng?

    Theo định nghĩa về tiệm cận, ta có:

    \lim_{x ightarrow \pm \infty}f(x) = 1\
\ \overset{}{ightarrow}\ \ y = 1 là TCN.

    \lim_{x ightarrow 2^{+}}f(x) = \lim_{x
ightarrow 2^{-}}f(x) = 10\ \ \overset{}{ightarrow}\ \ x = 0 không phải là TCĐ.

  • Câu 35: Thông hiểu

    Xác định tính đúng sai của từng phương án

    Cho hàm số y = f(x) = \frac{\sqrt{x^{2} -
x + 2}}{x - 1}. Xét tính đúng sai của các khẳng định sau:

    a) Tập xác định của hàm số là \mathbb{R}\backslash\left\{ 1 ight\}. Đúng||Sai

    b) Đồ thị hàm số có các đường tiệm cận ngang là y = 1,\ y = - 1. Đúng||Sai

    c) Đồ thị hàm số đã cho có tất cả 2 đường tiệm cận. Sai||Đúng

    d) Các đường tiệm cận của đồ thị cùng với trục Oy tạo thành 1 đa giác có diện tích bằng 1. Sai||Đúng

    Đáp án là:

    Cho hàm số y = f(x) = \frac{\sqrt{x^{2} -
x + 2}}{x - 1}. Xét tính đúng sai của các khẳng định sau:

    a) Tập xác định của hàm số là \mathbb{R}\backslash\left\{ 1 ight\}. Đúng||Sai

    b) Đồ thị hàm số có các đường tiệm cận ngang là y = 1,\ y = - 1. Đúng||Sai

    c) Đồ thị hàm số đã cho có tất cả 2 đường tiệm cận. Sai||Đúng

    d) Các đường tiệm cận của đồ thị cùng với trục Oy tạo thành 1 đa giác có diện tích bằng 1. Sai||Đúng

    a) Điều kiện xác định của hàm số \left\{
\begin{matrix}
x^{2} - x + 2 > 0;\forall x \\
x - 1 eq 0 \\
\end{matrix} ight.\  \Leftrightarrow x eq 1.

    Vậy tập xác định của hàm số là \mathbb{R}\backslash\left\{ 1
ight\}.

    b) Ta có: \lim_{x ightarrow -
\infty}f(x) = - 1 nên y = −1 là đường tiệm cận ngang.

    \lim_{x ightarrow + \infty}f(x) =
1 nên y = 1 là đường tiệm cận ngang.

    c) Do \lim_{x ightarrow 1^{+}}f(x) = +
\infty nên x = 1 là đường tiệm cận đứng.

    Vậy đồ thị hàm số có tất cả 3 đường tiệm cận (2 TCN và 1 TCĐ).

    d) Minh họa miền giới hạn của các đường tiệm cận và trục Oy như sau:


    Miền giới hạn là hình chữ nhật có diện tích là S = 2.1 = 2

  • Câu 36: Thông hiểu

    Chọn phương án thích hợp

    Số giao điểm của đồ thị hàm số y = x^{3}
+ 3x^{2} và đồ thị hàm số y =
3x^{2} + 3x

    Phương trình hoành độ giao điểm của hai đồ thị đã cho là:

    x^{3} + 3x^{2} = 3x^{2} + 3x
\Leftrightarrow x^{3} - 3x = 0

    \Leftrightarrow x\left( x^{2} - 3 ight)
= 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = \sqrt{3} \\
x = - \sqrt{3} \\
\end{matrix} ight..

    Hai đồ thị đã cho cắt nhau tại 3 điểm.

  • Câu 37: Vận dụng cao

    Chọn đáp án đúng

    Có bao nhiêu giá trị nguyên dương của tham số m để hàm số y
= \left| 3x^{4} - 4x^{3} - 12x^{2} + m ight|5 điểm cực trị?

    Tập xác định D\mathbb{= R}

    Ta có: \left( \left| f(x) ight|
ight)' = \left( \sqrt{f^{2}(x)} ight)' =
\frac{2f(x).f'(x)}{2\sqrt{f^{2}(x)}} =
\frac{f(x).f'(x)}{\sqrt{f^{2}(x)}}

    \Rightarrow y' = \frac{\left(
12x^{3} - 12x^{2} - 24x ight)\left( 3x^{4} - 4x^{3} - 12x^{2} + m
ight)}{\left| 3x^{4} - 4x^{3} - 12x^{2} + m ight|}

    Xét phương trình

    \left( 12x^{3} - 12x^{2} - 24x
ight)\left( 3x^{4} - 4x^{3} - 12x^{2} + m ight) = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
12x^{3} - 12x^{2} - 24x = 0 \\
3x^{4} - 4x^{3} - 12x^{2} + m = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = 0 \\
x = - 1 \\
x = 2 \\
3x^{4} - 4x^{3} - 12x^{2} = - m\ \ (*) \\
\end{matrix} ight.

    Xét hàm số 3x^{4} - 4x^{3} - 12x^{2} =
g(x) trên \mathbb{R} ta có: g'(x) = 12x^{3} - 12x^{2} -
24xg'(x) = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = - 1 \\
x = 2 \\
\end{matrix} ight.

    Ta có bảng biến thiên của g(x) như sau:

    Hàm số đã cho có 5 điểm cực trị khi và chỉ khi tổng số nghiệm bội lẻ của y' = 0 và số điểm tới hạn của y' là 5 điểm. Do đó ta cần có các trường hợp sau:

    TH1: Phương trình (*) có hai nghiệm phân biệt khác \left\{ - 1;0;2 ight\}

    \Leftrightarrow \left\lbrack
\begin{matrix}
- m > 0 \\
- 32 < - m < - 5 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
m < 0 \\
5 < m < 32 \\
\end{matrix} ight. trong trường hợp này có 26 số nguyên dương.

    TH2: Phương trình (*) có 3 nghiệm trong đó có một nghiệm kép trùng với một trong các nghiệm \left\{ - 1;0;2
ight\}

    \Leftrightarrow \left\lbrack
\begin{matrix}
- m = 0 \\
- m = - 5 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
m = 0 \\
m = 5 \\
\end{matrix} ight. trường hợp này có một số nguyên dương.

    Vậy có tất cả 27 số nguyên dương thỏa mãn yêu cầu bài toán.

  • Câu 38: Nhận biết

    Chọn phương án thích hợp

    Cho hàm số y = f(x) có bảng biến thiên như sau

    Hàm số đạt cực đại tại điểm

    Dựa vào bảng biến thiên ta thấy y' đối dấu từ ( + ) sang (-) tại x = 2.

    Nên hàm số đạt cực đại tại điểm x =
2.

  • Câu 39: Vận dụng cao

    Tính GTNN của biểu thức

    Cho hai số thực a, b dương thỏa mãn 2\left( {{a^2} + {b^2}} ight) + ab = \left( {a + b} ight)\left( {ab + 2} ight). Giá trị nhỏ nhất của biểu thức T = 4\left( {\frac{{{a^3}}}{{{b^3}}} + \frac{{{b^3}}}{{{a^3}}}} ight) - 9\left( {\frac{{{a^2}}}{{{b^2}}} + \frac{{{b^2}}}{{{a^2}}}} ight) bằng:

    Ta có:

    2\left( {\frac{a}{b} + \frac{b}{a}} ight) + 1 = \left( {a + b} ight)\left( {1 + \frac{2}{{ab}}} ight) = a + b + \frac{2}{a} + \frac{2}{b}

    \geqslant 2\sqrt {2\left( {a + b} ight)\left( {\frac{1}{a} + \frac{1}{b}} ight)}  = 2\sqrt {2\left( {2 + \frac{a}{b} + \frac{b}{a}} ight)}

    Đặt t = \frac{a}{b} + \frac{b}{a} \Rightarrow t \geqslant \frac{5}{2}

    \Rightarrow P = 4\left( {{t^3} - 3t} ight) - 9\left( {{t^2} - 2} ight) = 4{t^3} - 9{t^2} - 12t + 18 = f\left( t ight)

    \begin{matrix}  f'\left( t ight) = 12{t^2} - 18t - 12 > 0,\forall t > \dfrac{5}{2} \hfill \\   \Rightarrow f\left( t ight) \geqslant f\left( {\dfrac{5}{2}} ight) =  - \dfrac{{23}}{4} \hfill \\ \end{matrix}

  • Câu 40: Nhận biết

    Chọn đáp án thích hợp

    Cho hàm số có bảng biến thiên như sau

    Hàm số đã cho nghịch biến trên khoảng nào dưới đây?

    Dựa vào bảng biến thiên ta thấy trên khoảng (0;2) thì f'(x) < 0.

    Vậy hàm số nghịch biến trên khoảng (0;2).

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 1 Ứng dụng đạo hàm để khảo sát hàm số CTST Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo