Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề kiểm tra 45 phút Chương 1 Ứng dụng đạo hàm để khảo sát hàm số CTST

Mô tả thêm:

Hãy cùng thử sức kiểm tra đánh giá các kiến thức tổng quan với bài kiểm tra phút Chương 1: Ứng dụng đạo hàm để khảo sát hàm số Toán 12 sách Chân trời sáng tạo các em nhé!

  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Vận dụng

    Tính giá trị biểu thức

    Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y= \sqrt {1 + x}  + \sqrt {1 - x}. Giá trị của M – 2m2 bằng:

    Điều kiện xác định \left\{ {\begin{array}{*{20}{c}}  {1 + x \geqslant 0} \\   {1 - x \geqslant 0} \end{array}} ight. \Leftrightarrow  - 1 \leqslant x \leqslant 1

    Xét hàm số y = \sqrt {1 + x}  + \sqrt {1 - x} trên [-1; 1] có:

    \begin{matrix}  y' = \dfrac{{ - 1}}{{2\sqrt {1 + x} }} + \dfrac{1}{{2\sqrt {1 - x} }} \hfill \\  y' = 0 \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  { - 1 \leqslant x \leqslant 1} \\   {\sqrt {1 + x}  = \sqrt {1 - x} } \end{array}} ight. \Leftrightarrow x = 0 \hfill \\ \end{matrix}

    Ta có: \left\{ {\begin{array}{*{20}{c}}  {f\left( { - 1} ight) = f\left( 1 ight) = \sqrt 2 } \\   {f\left( 0 ight) = 2} \end{array}} ight.

    Vậy \left\{ {\begin{array}{*{20}{c}}  {m = \mathop {\min }\limits_{\left[ { - 1;1} ight]} f\left( x ight) = \sqrt 2 } \\   {M = \mathop {\max }\limits_{\left[ { - 1;1} ight]} f\left( x ight) = 2} \end{array}} ight. \Rightarrow M - 2{m^2} = 2 - 2.2 =  - 2

  • Câu 2: Thông hiểu

    Tìm khoảng chứa tham số m theo yêu cầu

    Biết đường thẳng y = (3m - 1)x + 6m +
3 cắt đồ thị hàm số y = x^{3} -
3x^{2} + 1 tại ba điểm phân biệt sao cho một giao điểm cách đều hai giao điểm còn lại. Khi có m thuộc khoảng nào sau đây?

    Phương trình hoành độ giao điểm là

    (2m - 1)x + 6m + 3 = x^{3} - 3x^{2} +
1

    \Leftrightarrow x^{3} - 3x^{2} - (3m -
1)x - 6m - 2 = 0(*)

    Xét hàm số g(x) = x^{3} - 3x^{2} - (3m -
1)x - 6m - 2\left( C_{m} ight)

    g'(x) = 3x^{2} - 6x - 3m + 1
\Rightarrow g''(x) = 6x - 6

    \Rightarrow g''(x) = 0
\Leftrightarrow x = 1

    Đồ thị \left( C_{m} ight) có điểm uốn là I(1; - 9m - 3)

    Để đường thẳng y = (3m - 1)x + 6m +
3 cắt đồ thị hàm số y = x^{3} -
3x^{2} + 1 tại ba điểm phân biệt sao cho một giao điểm cách đều hai giao điểm còn lại

    \Leftrightarrow \left\{ \begin{matrix}\Delta' = ( - 3)^{2} - 3( - 3m + 1) > 0 \\I \in Ox \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}m > - \dfrac{2}{3} \\m = \dfrac{1}{3} \\\end{matrix} ight.\  \Leftrightarrow m \in ( - 1;0)

  • Câu 3: Thông hiểu

    Chọn đáp án đúng:

    Tìm m để đồ thị hàm số y = \frac{x^{2}-(2m+3)x+2(m-1) }{x-2} không có tiệm cận đứng.

  • Câu 4: Thông hiểu

    Tìm số phần tử của tập hợp S

    Gọi S là tập tất cả các giá trị nguyên của tham số m để đồ thị hàm số y = \frac{x - 3}{x^{2} - 2mx + 2m^{2} -
9} có đúng ba đường tiệm cận. Tìm số phần tử của tập hợp S?

    y = \frac{x - 3}{x^{2} - 2mx + 2m^{2} -
9} có một đường tiệm cận ngang là y
= 0

    Để có ba đường tiệm cận thì x^{2} - 2mx +
2m^{2} - 9 = 0 phải có hai nghiệm phân biệt khác 3.

    Tức là \left\{ \begin{gathered}
  \Delta ' =  - {m^2} - 2{m^2} - 9 > 0 \hfill \\
  {3^2} - 6m + 2{m^2} - 9 e 0 \hfill \\ 
\end{gathered}  ight.\Leftrightarrow \left\{ \begin{gathered}
   - 3 < m < 3 \hfill \\
  m e 0;m e 3 \hfill \\ 
\end{gathered}  ight. \Leftrightarrow S = \left\{ { \pm 2; \pm 1} ight\}

  • Câu 5: Nhận biết

    Tổng số đường tiệm cận của đồ thị hàm số

    Đồ thị hàm số y = \frac{{1 - 3x}}{{x + 2}} có các đường tiệm cận đứng và tiệm cận ngang lần lượt là:

    Ta có: \mathop {\lim }\limits_{x \to {{\left( { - 2} ight)}^ + }} \frac{{1 - 3x}}{{x + 2}} =  + \infty ;\mathop {\lim }\limits_{x \to {{\left( { - 2} ight)}^ - }} \frac{{1 - 3x}}{{x + 2}} =  - \infty => Đồ thị hàm số có tiệm cận đứng là x = -2

    Ta có: \mathop {\lim }\limits_{x \to  \pm \infty } \frac{{1 - 3x}}{{x + 2}} =  - 3 => y = -3 là tiệm cận ngang của đồ thị hàm số.

  • Câu 6: Thông hiểu

    Chọn đáp án thích hợp

    Độ giảm huyết áp của một bệnh nhân G(x) =
0,025x^{2}(30 - x) trong đó x là số miligam thuộc được tiêm cho bệnh nhân (0 < x < 30). Để bệnh nhân đó có huyết áp giảm nhiều nhất thì liều lượng thuốc cần tiêm vào là:

    Ta có: G(x) = 0,025x^{2}(30 - x)
\Rightarrow G'(x) = 1,5x - 0,075x^{2}

    \Rightarrow G'(x) = 0
\Leftrightarrow 1,5x - 0,075x^{2} = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
x = 0 \\
x = 20 \\
\end{matrix} ight.

    Ta có bảng biến thiên như sau:

    Vậy để bệnh nhân đó có huyết áp giảm nhiều nhất thì lượng thuốc cần tiêm vào là x = 20(mg).

  • Câu 7: Nhận biết

    Tìm số điểm cực trị của hàm số

    Cho hàm số có đồ thị như hình vẽ bên. Số điểm cực trị của hàm số đã cho là:

    Quan sát đồ thị của hàm số đã cho ta có:

    Hàm số có ba điểm cực trị.

  • Câu 8: Thông hiểu

    Chọn đáp án chính xác

    Cho hàm số y =
x^{3} + x^{2} + mx + 1 với m là tham số. Tìm tất cả các giá trị thực của tham số m để hàm số đã cho đồng biến trên \mathbb{R}?

    Tập xác định D\mathbb{= R}

    Ta có: y' = 3x^{2} + 2x +
m

    Hàm số đã cho đồng biến trên \mathbb{R} khi và chỉ khi y' \geq 0;\forall x\mathbb{\in R}

    Hay \Delta' \leq 0 \Leftrightarrow 1
- 3m \leq 0 \Leftrightarrow m \geq \frac{1}{3}

    Vậy giá trị tham số m thỏa mãn yêu cầu bài toán là m \geq \frac{1}{3}.

  • Câu 9: Vận dụng

    Tìm tiệm cận của đồ thị hàm số

    Số đường tiệm cận của đồ thị hàm số y =
\frac{x\left( \sqrt{x^{2} + 3} + x - 1 ight)}{x^{2} - 2x - 3} là:

    Tập xác định D\mathbb{=
R}\backslash\left\{ - 1;3 ight\}

    \lim_{x ightarrow +\infty}\left\lbrack \dfrac{x\left( \sqrt{x^{2} + 3} + x - 1ight)}{x^{2} - 2x - 3} ightbrack= \lim_{x ightarrow +\infty}\dfrac{x^{2}\left( \sqrt{1 + \dfrac{3}{x^{2}}} + 1 - \dfrac{1}{x}ight)}{x^{2}\left( 1 - \dfrac{2}{x} - \dfrac{3}{x^{2}}ight)}

    = \lim_{x ightarrow +\infty}\dfrac{\sqrt{1 + \dfrac{3}{x^{2}}} + 1 - \dfrac{1}{x}}{1 -\dfrac{2}{x} - \dfrac{3}{x^{2}}} = 2 suy ra y = 2 là tiệm cận ngang.

    \lim_{x ightarrow -\infty}\left\lbrack \dfrac{x\left( \sqrt{x^{2} + 3} + x - 1ight)}{x^{2} - 2x - 3} ightbrack= \lim_{x ightarrow -\infty}\dfrac{x^{2}\left( - \sqrt{1 + \dfrac{3}{x^{2}}} + 1 - \dfrac{1}{x}ight)}{x^{2}\left( 1 - \dfrac{2}{x} - \dfrac{3}{x^{2}}ight)}

    = \lim_{x ightarrow - \infty}\dfrac{-\sqrt{1 + \dfrac{3}{x^{2}}} + 1 - \dfrac{1}{x}}{1 - \dfrac{2}{x} -\dfrac{3}{x^{2}}} = 0 suy ra y =
0 là tiệm cận ngang.

    \lim_{x ightarrow - 1}\left\lbrack\frac{x\left( \sqrt{x^{2} + 3} + x - 1 ight)}{x^{2} - 2x - 3}ightbrack= \lim_{x ightarrow - 1}\frac{x\left( \sqrt{x^{2} + 3} +x - 1 ight)\left( \sqrt{x^{2} + 3} - x + 1 ight)}{\left( x^{2} - 2x- 3 ight)\left( \sqrt{x^{2} + 3} - x + 1 ight)}

    = \lim_{x ightarrow - 1}\frac{2x(x +
1)}{(x - 3)(x + 1)\left( \sqrt{x^{2} + 3} - x + 1 ight)}

    = \lim_{x ightarrow - 1}\frac{2x}{(x -
3)\left( \sqrt{x^{2} + 3} - x + 1 ight)} = \frac{- 2}{16} =
\frac{1}{8}

    Vậy x = - 1 không là tiệm cận đứng của đồ thị hàm số đã cho.

    \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {3^ + }} \left[ {\frac{{x\left( {\sqrt {{x^2} + 3}  + x - 1} ight)}}{{{x^2} - 2x - 3}}} ight] =  + \infty  \hfill \\
  \mathop {\lim }\limits_{x \to {3^ - }} \left[ {\frac{{x\left( {\sqrt {{x^2} + 3}  + x - 1} ight)}}{{{x^2} - 2x - 3}}} ight] =  - \infty  \hfill \\ 
\end{gathered}  ight. suy ra x =
3 là tiệm cận đứng của đồ thị hàm số đã cho

    Vậy đồ thị hàm số đã cho có 2 tiệm cận ngang và 1 tiệm cận đứng.

  • Câu 10: Nhận biết

    Chọn đáp án đúng

    Cho đồ thị hàm số y = f(x) có đồ thị như hình sau:

    Đồ thị hàm số trên có đường tiệm cận đứng là:

    Dựa vào đồ thị hàm số, đường tiệm cận đứng của đồ thị hàm số đã cho là x = - 1.

  • Câu 11: Nhận biết

    Tìm giá trị biểu thức T

    Gọi M;m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = f(x)
= \frac{2x - 1}{x + 2} trên đoạn \lbrack 0;2brack. Giá trị biểu thức T = 2m + 4M là:

    Ta có: y' = \frac{5}{(x + 2)^{2}}
> 0;\forall x eq - 2 nên hàm số đồng biến trên \lbrack 0;2brack

    \Rightarrow \left\{ \begin{matrix}\max_{\lbrack 0;2brack}y = f(2) = \dfrac{3}{4} \\\min_{\lbrack 0;2brack}y = f(0) = - \dfrac{1}{2} \\\end{matrix} ight.\  \Rightarrow T = 2m + 4M = 2.

  • Câu 12: Thông hiểu

    Chọn khẳng định đúng

    Biết giá trị lớn nhất của hàm số y =
\frac{x + m^{2}}{x - 2} trên đoạn \lbrack - 1;1brack bằng - 1. Khẳng định nào dưới đây đúng?

    Ta có: y' = \frac{- 2 - m^{2}}{(x -
2)^{2}} < 0 nên giá trị lớn nhất của hàm số y = \frac{x + m^{2}}{x - 2} trên đoạn \lbrack - 1;1brack là: f( - 1) = - 1 \Leftrightarrow \frac{m^{2} - 1}{-
3} = - 1 \Leftrightarrow m = \pm 2 \in ( - 4;3)

    Vậy đáp án cần tìm là m \in ( -
4;3).

  • Câu 13: Vận dụng

    Ghi đáp án đúng vào ô trống

    Cho hàm số y = f(x) có đạo hàm trên R và số y = f'(x) có đồ thị như hình vẽ sau. Tìm số điểm cực tiểu của hàm số g(x) = f(x)
+ \frac{1}{2}x^{2} - 2x.

    Đáp án: 2

    Đáp án là:

    Cho hàm số y = f(x) có đạo hàm trên R và số y = f'(x) có đồ thị như hình vẽ sau. Tìm số điểm cực tiểu của hàm số g(x) = f(x)
+ \frac{1}{2}x^{2} - 2x.

    Đáp án: 2

    Ta có g'(x) = f'(x) + x - 2 =
0 \Leftrightarrow f'(x) = - x +
2 \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 1 \\
x = 2 \\
\end{matrix} ight.

    Ta có bảng biến thiên:

    Từ bảng biến thiên ta có hàm số g(x) đạt cực tiểu tại x = 0x =
2. Do đó hàm số g(x)2 điểm cực tiểu.

  • Câu 14: Nhận biết

    Chọn phương án thích hợp

    Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình vẽ bên

    Trong bốn hàm số đã cho thì chỉ có hàm số y = - x^{3} + 3x + 1 (hàm số đa thức bậc ba với hệ số a < 0) có dạng đồ thị như đường cong trong hình.

  • Câu 15: Thông hiểu

    Chọn đáp án đúng

    Có bao nhiêu giá trị nguyên của tham số m để hàm số y
= \frac{x + 1}{x + 3m} nghịch biến trên khoảng (6; + \infty)?

    Tập xác định D =
\mathbb{R\backslash}\begin{pmatrix}
- 3m \\
\end{pmatrix}; y' = \frac{3m -
1}{(x + 3m)^{2}}.

    Hàm số y = \frac{x + 1}{x + 3m} nghịch biến trên khoảng (6; +
\infty) khi và chỉ khi:

    \left\{ \begin{matrix}
y' < 0 \\
(6; + \infty) \subset D \\
\end{matrix} ight. \Leftrightarrow \left\{ \begin{matrix}
3m - 1 < 0 \\
- 3m \leq 6 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
m < \frac{1}{3} \\
m \geq - 2 \\
\end{matrix} ight. \Leftrightarrow - 2 \leq m <
\frac{1}{3}.

    m\mathbb{\in Z} \Rightarrow m \in \left\{ - 2; - 1;0
ight\}.

  • Câu 16: Nhận biết

    Tìm điều kiện của tham số m

    Cho hàm số y = f(x) liên tục trên \lbrack 2;5brack và có đồ thị như hình vẽ:

    Gọi giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn \lbrack 2;5brack lần lượt là M;m. Kết luận nào sau đây đúng?

    Quan sát đồ thị ta thấy \left\{
\begin{matrix}
\max_{\lbrack 2;5brack}y = M = 4 \\
\min_{\lbrack 2;5brack}y = m = - 6 \\
\end{matrix} ight.\  \Rightarrow M - m = 10

  • Câu 17: Thông hiểu

    Chọn đáp án đúng

    Giá trị thực của tham số m để hàm số y = - x^{3} + mx^{2} + \left( m^{2} -
12 ight)x + 2 đạt cực tiểu tại điểm x = - 1 thuộc khoảng nào sau đây?

    Tập xác định D\mathbb{= R}

    Ta có: \left\{ \begin{matrix}
y' = - 3x^{2} + 2mx + m^{2} - 12 \\
y'' = - 6x + 2m \\
\end{matrix} ight.

    Để hàm số đạt cực tiểu tại x = -
1 thì

    \left\{ \begin{matrix}
y'(1) = 0 \\
y''(1) > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m^{2} - 2m - 15 = 0 \\
m > - 3 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
\left\lbrack \begin{matrix}
m = 5(tm) \\
m = - 3(ktm) \\
\end{matrix} ight.\  \\
m > - 3 \\
\end{matrix} ight.\  \Leftrightarrow m = 5

    Vậy m = 5 \in (3;6).

  • Câu 18: Nhận biết

    Xác định tiệm cận của đồ thị hàm số

    Đồ thị hàm số y = \frac{{x + 4}}{{\sqrt {{x^2} - 4} }} có bao nhiêu đường tiệm cận?

    Tập xác định: D = \mathbb{R}\backslash \left\{ { \pm 2} ight\}

    Ta có: \left\{ {\begin{array}{*{20}{c}}  {\mathop {\lim }\limits_{x \to  + \infty } y = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{x + 4}}{{\sqrt {{x^2} - 4} }} = 1} \\   {\mathop {\lim }\limits_{x \to  - \infty } y = \mathop {\lim }\limits_{x \to  - \infty } \dfrac{{x + 4}}{{\sqrt {{x^2} - 4} }} =  - 1} \end{array}} ight. => y = 1 và y = -1 là hai tiệm cận ngang của đồ thị hàm số.

    => Đồ thị hàm số có hai tiệm cận đứng là x = 2 và x = =-2

    Vậy đồ thị hàm số đã cho có 2 tiệm cận đứng là x = 2 và x = -2

  • Câu 19: Nhận biết

    Chọn khẳng định đúng

    Gọi giá trị nhỏ nhất của hàm số y =
\frac{x - 1}{x + 1} trên đoạn \lbrack 0;3brackm. Chọn khẳng định đúng?

    Tập xác định D\mathbb{=
R}\backslash\left\{ - 1 ight\}

    Ta có: y' = \frac{2}{(x + 1)^{2}}
> 0;\forall x \in D

    Suy ra hàm số đồng biến trên \lbrack
0;3brack suy ra \min_{\lbrack
0;3brack}y = f(0) = - 1 = m

  • Câu 20: Nhận biết

    Xác định số cực trị của hàm số

    Cho hàm số y = f(x) có đồ thị như hình vẽ:

    Đồ thị hàm số y = f(x) có mấy điểm cực trị?

    Từ đồ thị suy ra đồ thị có điểm một điểm cực tiểu và một điểm cực đại.

  • Câu 21: Nhận biết

    Chọn đáp án thích hợp

    Cho hàm số có bảng biến thiên như sau

    Hàm số đã cho nghịch biến trên khoảng nào dưới đây?

    Dựa vào bảng biến thiên ta thấy trên khoảng (0;2) thì f'(x) < 0.

    Vậy hàm số nghịch biến trên khoảng (0;2).

  • Câu 22: Thông hiểu

    Chọn đáp án đúng

    Cho hàm số y = - \frac{1}{3}x^{3} +
mx^{2} + (3m + 2)x + 1. Tìm tất cả giá trị của m để hàm số nghịch biến trên \mathbb{R}.

    TXĐ: D = \mathbb{R}, y' = - x^{2} + 2mx + 3m + 2.

    Hàm số nghịch biến trên \mathbb{R} khi và chỉ khi y' \leq 0, \forall x\mathbb{\in R}

    \Leftrightarrow \left\{ \begin{matrix}
a = - 1 < 0 \\
\Delta' = m^{2} + 3m + 2 \leq 0 \\
\end{matrix} ight. \Leftrightarrow - 2 \leq m \leq - 1.

  • Câu 23: Vận dụng cao

    Chọn đáp án đúng

    Cho hàm số f(x)liên tục trên \mathbb{R} có đồ thị hàm số y = f'(x) cho như hình vẽ

    Hàm số g(x) = 2f\left( |x - 1| \right) -
x^{2} + 2x + 2020 đồng biến trên khoảng nào?

    Ta có đường thẳng y = x cắt đồ thị hàm sốy = f'(x) tại các điểm x = - 1;\ \ x = 1;\ \ x = 3 như hình vẽ sau:

    Dựa vào đồ thị của hai hàm số trên ta có f'(x) > x \Leftrightarrow \left\lbrack
\begin{matrix}
x < - 1 \\
1 < x < 3 \\
\end{matrix} ight.f'(x)
< x \Leftrightarrow \left\lbrack \begin{matrix}
- 1 < x < 1 \\
x > 3 \\
\end{matrix} ight..

    + Trường hợp 1: x - 1 < 0
\Leftrightarrow x < 1, khi đó ta có g(x) = 2f(1 - x) - x^{2} + 2x + 2020.

    Ta có g'(x) = - 2f'(1 - x) + 2(1
- x).

    g'(x) > 0 \Leftrightarrow -2f'(1 - x) + 2(1 - x) > 0

    \Leftrightarrow f'(1 - x) < 1 -x\Leftrightarrow \left\lbrack \begin{matrix}
- 1 < 1 - x < 1 \\
1 - x > 3 \\
\end{matrix} ight.\Leftrightarrow \left\lbrack \begin{matrix}
0 < x < 2 \\
x < - 2 \\
\end{matrix} ight..

    Kết hợp điều kiện ta có g'(x) > 0
\Leftrightarrow \left\lbrack \begin{matrix}
0 < x < 1 \\
x < - 2 \\
\end{matrix} ight..

    + Trường hợp 2: x - 1 > 0
\Leftrightarrow x > 1, khi đó ta có g(x) = 2f(x - 1) - x^{2} + 2x + 2020.

    g'(x) = 2f'(x - 1) - 2(x -
1)

    g'(x) > 0 \Leftrightarrow2f'(x - 1) - 2(x - 1) > 0

    \Leftrightarrow f'(x - 1) > x -
1 \Leftrightarrow \left\lbrack \begin{matrix}
x - 1 < - 1 \\
1 < x - 1 < 3 \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack \begin{matrix}
x < 0 \\
2 < x < 4 \\
\end{matrix} ight..

    Kết hợp điều kiện ta có g'(x) > 0
\Leftrightarrow 2 < x < 4.

    Vậy hàm số g(x) = 2f\left( |x - 1|
ight) - x^{2} + 2x + 2020 đồng biến trên khoảng (0;1).

  • Câu 24: Nhận biết

    Tìm số giao điểm của (C) với trục hoành

    Cho hàm số y = x^{3} - 3x có đồ thị (C). Tìm số giao điểm của (C) và trục hoành.

    Xét phương trình hoành độ giao điểm của (C) và trục hoành:x^{3} - 3x = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
x = 0 \\
x = \pm \sqrt{3} \\
\end{matrix} ight.

    Vậy số giao điểm của (C) và trục hoành là 3.

  • Câu 25: Vận dụng cao

    Tính số điểm cực trị của hàm số

    Cho hàm số y = f(x). Biết hàm số y = f’(x) có đồ thị như hình vẽ bên dưới. Số điểm cực trị của hàm số y = {2021^{f\left( x ight)}} + {2020^{f\left( x ight)}} là:

    Tính số điểm cực trị của hàm số

    Ta có:

    \begin{matrix}  y' = f'\left( x ight){.2021^{f\left( x ight)}}.\ln 2021 + f'\left( x ight){.2020^{f\left( x ight)}}.\ln 2020 \hfill \\   = f'\left( x ight)\left[ {{{2021}^{f\left( x ight)}}.\ln 2021 + {{2020}^{f\left( x ight)}}.\ln 2020} ight] \hfill \\ \end{matrix}

    Do {2021^{f\left( x ight)}}.\ln 2021 + {2020^{f\left( x ight)}}.\ln 2020 > 0,\forall x \in \mathbb{R}

     y' = 0 \Leftrightarrow f'\left( x ight) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {{x_1} = a} \\   {{x_2} = b} \\   {{x_3} = c} \end{array}} ight.

    Tính số điểm cực trị của hàm số

    Vậy hàm số y = {2021^{f\left( x ight)}} + {2020^{f\left( x ight)}} có ba điểm cực trị.

  • Câu 26: Thông hiểu

    Chọn mệnh đề đúng

    Cho hàm số y = f(x) có bảng xét dấu đạo hàm như sau:

    Mệnh đề nào sau đây đúng?

  • Câu 27: Nhận biết

    Tìm hàm số nghịch biến trên R

    Hàm số nào dưới dây nghịch biến trên tập số thực?

    Ta thấy hàm số y = - x^{2} - 3x có tập xác định \mathbb{R} và đạo hàm y = - 3x^{2} - 3 < 0;\forall
x\mathbb{\in R} nên nghịch biến trên \mathbb{R}.

  • Câu 28: Vận dụng

    Chọn đáp án đúng

    Có bao nhiêu giá trị nguyên của m để đồ thị hàm số y = -x^{3} +3mx^{2} -3m-1 có điểm cực đại và điểm cực tiểu đối xứng với nhau qua đường thẳng d: x + 8y - 74.

  • Câu 29: Nhận biết

    Tìm số nghiệm của phương trình

    Cho hàm số f\left( x \right) = a{x^3} + b{x^2} + cx + d;\left( {a;b;c;d \in \mathbb{R}} \right). Đồ thị của hàm số y=f(x) như hình vẽ bên. Số nghiệm thực của phương trình 3f(x)+4=0 là

    Ta có: 3f(x) + 4 = 0 \Leftrightarrow f\left( x ight) =  - \frac{4}{3}{\text{   }}\left( * ight)

    (*) là phương trình hoành độ giao điểm của đồ thị hàm số y=f(x) và đường thẳng y =  - \frac{4}{3}.

    Dựa vào đồ thị hàm số, ta thấy (*) có 3 nghiệm.

  • Câu 30: Vận dụng cao

    Ghi đáp án vào ô trống

    Hai thành phố AB cách nhau một con sông. Người ta xây dựng một cây cầu EF bắc qua sông biết rằng thành phố A cách con sông một khoảng là 5km và thành phố B cách con sông một khoảng là 7km (hình vẽ), biết HE + KF = 24km và độ dài EF không đổi. Hỏi cần xây cây cầu cách thành phố B là bao nhiêu km để đường đi từ thành phố A đến thành phố B là ngắn nhất (đi theo đường AEFB) ? (kết quả làm tròn đến hàng đơn vị)

    Đáp án: 16 km

    Đáp án là:

    Hai thành phố AB cách nhau một con sông. Người ta xây dựng một cây cầu EF bắc qua sông biết rằng thành phố A cách con sông một khoảng là 5km và thành phố B cách con sông một khoảng là 7km (hình vẽ), biết HE + KF = 24km và độ dài EF không đổi. Hỏi cần xây cây cầu cách thành phố B là bao nhiêu km để đường đi từ thành phố A đến thành phố B là ngắn nhất (đi theo đường AEFB) ? (kết quả làm tròn đến hàng đơn vị)

    Đáp án: 16 km

    Đặt HE = x_{}và_{}FK = y, với x,\ y > 0

    Ta có: HE + KF = 24 \Rightarrow x + y =24 \Rightarrow y = 24 - x

    \left\{ \begin{matrix}AE = \sqrt{25 + x^{2}} \\BF = \sqrt{49 + y^{2}} = \sqrt{49 + (24 - x)^{2}} \\\end{matrix} ight.

    Nhận định AB ngắn nhất khi AE + BF nhỏ nhất ( vì EF không đổi).

    Xét hàm số f(x) = \sqrt{x^{2} + 25} +\sqrt{(24 - x)^{2} + 49}

    f'(x) = \frac{x}{\sqrt{x^{2} + 25}} +\frac{x - 24}{\sqrt{x^{2} - 48x + 625}},\ \forall x \in(0;24).

    Cho f'(x) = 0 \Rightarrow x =10

    Bảng biến thiên

    Vậy\underset{(0;24)\ \ \ \ \ \ \ \ \ \}{\min f(x)} = f(10) = 12\sqrt{5}

    Khi đó BF = \sqrt{49 + (24 - 10)^{2}} =7\sqrt{5} \approx 16\ km

  • Câu 31: Nhận biết

    Chọn mệnh đề đúng

    Tìm tập hợp tất cả các giá trị của tham số thực m để hàm số y
= \frac{1}{3}x^{3} + mx^{2} + 4x - m đồng biến trên khoảng ( - \infty; + \infty).

    Ta có: y' = x^{2} + 2mx +
4.

    Hàm số đồng biến trên khoảng ( - \infty;
+ \infty) khi và chỉ khi y'
\geq 0,\forall x \in ( - \infty; + \infty).

    \Leftrightarrow \Delta' = m^{2} - 4
\leq 0 \Leftrightarrow - 2 \leq m \leq 2.

  • Câu 32: Nhận biết

    Xác định giao điểm

    Đồ thị hàm số y = x^{4} - x^{2} -
2 cắt trục tung tại điểm:

    Ta có: x = 0 \Rightarrow y = 0^{4} -
0^{2} - 2 = - 2

    Vậy đồ thị hàm số y = x^{4} - x^{2} -
2 cắt trục tung tại điểm (0; -
2).

  • Câu 33: Thông hiểu

    Xác định tiệm cận đứng của đồ thị hàm số

    Tìm số tiệm cận đứng của đồ thị hàm số y
= \frac{x^{2} - 3x - 4}{x^{2} - 16}.

    Xét phương trình x^{2} - 16 = 0\
\  \Leftrightarrow \ \ x = \pm 4.

    Ta có:

    \lim_{x ightarrow \  - 4}y = \lim_{x
ightarrow \  - 4}\frac{x^{2} - 3x - 4}{x^{2} - 16}

    = \lim_{x
ightarrow \  - 4}\frac{(x + 1)(x - 4)}{(x + 4)(x - 4)} = \lim_{x
ightarrow \  - 4}\frac{x + 1}{x + 4} = \infty ightarrow x = -
4 là TCĐ;

    \lim_{x ightarrow \ 4}y = \lim_{x
ightarrow \ 4}\frac{x^{2} - 3x - 4}{x^{2} - 16}

    = \lim_{x ightarrow
\ 4}\frac{(x + 1)(x - 4)}{(x + 4)(x - 4)} = \lim_{x ightarrow \
4}\frac{x + 1}{x + 4} = \frac{5}{8}ightarrow x = 4 không là TCĐ.

    Vậy đồ thị hàm số có duy nhất một tiệm cận đứng.

  • Câu 34: Vận dụng cao

    Số TCĐ và TCN của đồ thị hàm số

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Số TCĐ và TCN của đồ thị hàm số

    Hỏi đồ thị hàm số y = \frac{{{f^2}\left( x ight)\sqrt {{x^2} + x} }}{{\left[ {{f^2}\left( x ight) - 2f\left( x ight)} ight]\left( {2{x^5} + {x^4} - 10{x^3} - 5{x^2} + 8x + 4} ight)}} có bao nhiêu tiệm cận đứng và tiệm cận ngang?

    Dựa vào bảng biến thiên ta có: f\left( x ight) = a{x^2}\left( {x + 1} ight)\left( {x - 2} ight)

    Ta có:

    \begin{matrix}  y = \dfrac{{{f^2}\left( x ight)\sqrt {{x^2} + x} }}{{\left[ {{f^2}\left( x ight) - 2f\left( x ight)} ight]\left( {2{x^5} + {x^4} - 10{x^3} - 5{x^2} + 8x + 4} ight)}} \hfill \\   \Rightarrow y = \dfrac{{a{x^2}\left( {x + 1} ight)\left( {x - 2} ight)\sqrt {{x^2} + x} }}{{\left[ {f\left( x ight) - 2} ight]\left( {{x^2} - 4} ight)\left( {{x^2} - 1} ight)\left( {2x + 1} ight)}} \hfill \\   \Rightarrow y = \dfrac{{a{x^2}\sqrt {{x^2} + x} }}{{\left[ {f\left( x ight) - 2} ight]\left( {x + 2} ight)\left( {x - 1} ight)\left( {2x + 1} ight)}} \hfill \\ \end{matrix}

    Dựa vào bảng biến thiên suy ra phương trình f(x) = 2 có 2 nghiệm x = a hoặc x = b trong đó a < 0, b > 2

    Với điều kiện thì phương trình

    \left[ {f\left( x ight) - 2} ight]\left( {x + 2} ight)\left( {x - 1} ight)\left( {2x + 1} ight) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x =  - 2} \\   {x = 1} \\   {x = a} \\   {x = b} \end{array}} ight.

    Do đó đồ thị hàm số có 4 đường tiệm cận đứng

    Mặt khác bậc của tử số nhỏ hơn bậc của mẫu số nên đồ thị hàm số có một tiệm cận ngang là y = 0 => Đồ thị hàm số có 5 đường tiệm cận.

  • Câu 35: Vận dụng

    Xác định vận tốc lớn nhất

    Người ta khảo sát gia tốc a(t) của một vật thể chuyển động (t là khoảng thời gian tính bằng giâu từ lúc vật thể chuyển động) từ giây thứ nhất đến giây thứ ba ghi nhận được a(t) là một hàm số liên tục có đồ thị như hình bên:

    Xác định vận tốc lớn nhất

    Hỏi trong thời gian từ giây thứ nhất đến giây thứ ba được khảo sát đó, thời điểm nào vận tốc lớn nhất?

    Từ đồ thị ta có: a(t) = 0 => v’(t) = 0 = > t = 2

    Ta có bảng biến thiên:

    Xác định vận tốc lớn nhất

    => Vận tốc lớn nhất đạt được khi t = 2

  • Câu 36: Nhận biết

    Xác định số cực tiểu của hàm số

    Cho hàm số y = f(x) có đạo hàm f'(x) = x(x + 1)(x - 2)^{3};\forall
x\mathbb{\in R}. Số điểm cực tiểu của hàm số là:

    Ta có: f'(x) = x(x + 1)(x - 2)^{3} =
0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = - 1 \\
x = 2 \\
\end{matrix} ight.

    Bảng xét dấu:

    Suy ra số điểm cực tiểu của hàm số là 2 điểm.

  • Câu 37: Vận dụng

    Tìm m tham số m thỏa mãn yêu cầu

    Tất cả giá trị của tham số m để đồ thị hàm số y = x^{3} + \left( m^{2} - 2
\right)x + 2m^{2} + 4 cắt các trục tọa độ Ox,Oylần lượt tại A,Bsao cho diện tích tam giác OAB bằng 8 là

    Giao điểm của đồ thị hàm số đã cho với trục tung là B\left( 0\ ;\ 2m^{2} + 4 ight)

    Phương trình hoành độ giao điểm của đồ thị đã cho với trục hoành là:

    x^{3} + \left( m^{2} - 2 ight)x +
2m^{2} + 4 = 0\Leftrightarrow (x + 2)\left( x^{2} - 2x + m^{2} + 2
ight) = 0

    \Leftrightarrow \left\lbrack \begin{matrix}
x = - 2 \\
(x - 1)^{2} + m^{2} + 1 = 0\ \ \ \ (vn) \\
\end{matrix} ight.

    Giao điểm của đồ thị đã cho với trục hoành là A( - 2;0).

    Diện tích tam giác ABC là:

    S = \frac{1}{2}OA.OB = \frac{1}{2}.2.\left( 2m^{2}
+ 4 ight) = 8 \Rightarrow m = \pm \sqrt{2}.

  • Câu 38: Thông hiểu

    Chọn hàm số thích hợp

    Trong các hàm số sau, hàm số nào có hai điểm cực đại và một điểm cực tiểu?

    Dựa vào dấu của hệ số a < 0;b >
0 nên hàm số y = - x^{4} + x^{2} +
3 có ba điểm cực trị trong đó có hai điểm cực đại và một điểm cực tiểu.

  • Câu 39: Thông hiểu

    Tìm tham số m để hàm số đạt cực đại tại một điểm

    Tất cả các giá trị của tham số m để hàm số y = - x^{4} + (m +
1)x^{2} đạt cực đại tại x =
0 là:

    Ta có: y' = - 4x^{3} + 2(m +
1)x

    \Rightarrow y' = 0 \Leftrightarrow\left\lbrack \begin{matrix}x = 0 \\x^{2} = \dfrac{1}{2}(m + 1)(*) \\\end{matrix} ight.

    Ta thấy hệ số a = - 1 < 0 nên nếu hàm số có ba cực trị thì hàm số có hai cực đại và một cực tiểu nên không thể đạt cực đại tại x =
0.

    Để hàm số đạt cực đại tại x = 0 thì hàm số có một cực trị hay phương trình (*) vô nghiệm hoặc có nghiệm kép

    \Leftrightarrow m + 1 \leq 0 \Leftrightarrow m
\leq - 1.

  • Câu 40: Thông hiểu

    Chọn phương án đúng

    Hình vẽ sau đây là đồ thị của một trong bốn hàm số cho ở các đáp án A,\ B,\ C,\ D. Hỏi đó là hàm số nào?

    Dựa vào đồ thị, ta có \lim_{x ightarrow
+ \infty}y = + \infty, loại phương án y = - x^{3} + 2x + 1.

    Xét phương án y = x^{3} + 2x + 1y' = 3x^{2} + 2 > 0,\ \ \forall
x\mathbb{\in R}, hàm số không có cực tri, loại phương án y = x^{3} + 2x + 1.

    Xét phương án y = x^{3} - 2x^{2} +
1y' = 3x^{2} - 6xy' đổi dấu khi đi qua các điểm x = 0,\ \ x = 2 nên hàm số đạt cực tri tại x = 0x = 2, loại phương án y = x^{3} - 2x^{2} + 1.

    Vậy phương án đúng là y = x^{3} - 2x +
1.

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 1 Ứng dụng đạo hàm để khảo sát hàm số CTST Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo