Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề kiểm tra 15 phút Chương 4 Nguyên hàm Tích phân CTST

Mô tả thêm:

Cùng nhau thử sức với bài kiểm tra 15 phút Toán 12 Chân trời sáng tạo Chương 4 Nguyên hàm Tích phân nhé!

  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Thông hiểu

    Tính giá trị biểu thức

    Biết \int_{0}^{1}{\frac{x^{2} + 2x}{(x +
3)^{2}}dx} = \frac{a}{4} - 4ln\frac{4}{b} với a;b là các số nguyên dương. Giá trị của biểu thức a^{2} + b^{2} bằng:

    Giả sử I = \int_{0}^{1}{\frac{x^{2} +
2x}{(x + 3)^{2}}dx}. Đặt t = x + 3
\Rightarrow dt = dx, đổi cận \left\{ \begin{matrix}
x = 0 \Rightarrow t = 3 \\
x = 1 \Rightarrow t = 4 \\
\end{matrix} ight.

    I = \int_{3}^{4}{\frac{t^{2} - 4t +
3}{t^{2}}dx} = \int_{3}^{4}{\left( 1 - \frac{4}{t} + \frac{3}{t^{2}}
ight)dx}

    = \left. \ \left( t - 4ln|t| -
\frac{3}{t} ight) ight|_{3}^{4} = \frac{5}{4} -
4ln\frac{4}{3}

    \Rightarrow \left\{ \begin{matrix}
a = 5 \\
b = 3 \\
\end{matrix} ight.\  \Rightarrow a^{2} + b^{2} = 34

  • Câu 2: Thông hiểu

    Ghi đáp án đúng vào ô trống

    Một khu đất trồng cây cảnh (phần được tô đậm) là hình phẳng giới hạn bởi y = f(x) = \sqrt{x}y = g(x) = x - 2 như hình bên dưới (đơn vị trên mỗi trục toạ độ là m). Cần tính diện tích của khu đất để báo cho đơn vị thiết kế trước trồng cây cảnh khi kí hợp đồng. Diện tích của khu đất là bao nhiêu mét vuông (làm tròn kết quả đến hàng phần mười).

    Đáp án: 3,3 m2

    Đáp án là:

    Một khu đất trồng cây cảnh (phần được tô đậm) là hình phẳng giới hạn bởi y = f(x) = \sqrt{x}y = g(x) = x - 2 như hình bên dưới (đơn vị trên mỗi trục toạ độ là m). Cần tính diện tích của khu đất để báo cho đơn vị thiết kế trước trồng cây cảnh khi kí hợp đồng. Diện tích của khu đất là bao nhiêu mét vuông (làm tròn kết quả đến hàng phần mười).

    Đáp án: 3,3 m2

    Phương trình hoành độ giao điểm của các đồ thị hàm số y = \sqrt{x},y = x - 2.

    \sqrt{x} = x - 2 \Leftrightarrow \left\{
\begin{matrix}
x \geq 2 \\
x = (x - 2)^{2} \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x \geq 2 \\
x^{2} - 5x + 4 = 0 \\
\end{matrix} \Leftrightarrow x = 4. ight.

    Diện tích của hình phẳng cần tìm là

    S = \int_{0}^{4}\sqrt{x}dx -
\int_{0}^{4}(x - 2)dx = \frac{10}{3} \approx 3,3(m^{2}).

  • Câu 3: Vận dụng cao

    Phương trình tiếp tuyến của đồ thị hàm số

    Cho hàm số y = f(x) xác định trên \mathbb{R}\backslash \left\{ 0 ight\} thỏa mãn f\left( x ight) + x'f\left( x ight) = 3{x^2};f\left( 2 ight) = 8. Phương trình tiếp tuyến của đồ thị hàm số y = f(x) tại giao điểm với trục hoành là:

     Ta có:

    \begin{matrix}  f\left( x ight) + x'f\left( x ight) = 3{x^2} \hfill \\   \Leftrightarrow \left( x ight)'f\left( x ight) + xf'\left( x ight) = 3{x^2} \hfill \\   \Leftrightarrow \left[ {xf\left( x ight)} ight]' = 3{x^2} \hfill \\ \end{matrix}

    Lấy nguyên hàm hai vế ta được:

    \begin{matrix}  \int {\left[ {xf\left( x ight)} ight]'dx = \int {3{x^2}dx} }  \hfill \\   \Leftrightarrow xf\left( x ight) = {x^3} + C \hfill \\ \end{matrix}

    Mặt khác f\left( 2 ight) = 8 \Rightarrow 3.f\left( 2 ight) = 8 + C \Rightarrow C = 8

    => xf\left( x ight) = {x^3} + 8 \Rightarrow f\left( x ight) = \frac{{{x^3} + 8}}{x}

    Xét phương trình hoành độ giao điểm \frac{{{x^3} + 8}}{x} = 0 \Rightarrow x =  - 2

    Ta có: f'\left( x ight) = \frac{{2{x^3} - 8}}{{{x^2}}} \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {f'\left( { - 2} ight) =  - 6} \\   {f\left( { - 2} ight) = 0} \end{array}} ight.

    Phương trình tiếp tuyến tại giao điểm với trục hoành là:

    y = f'\left( { - 2} ight)\left( {x + 2} ight) + f\left( { - 2} ight) \Rightarrow y =  - 6x - 12

  • Câu 4: Nhận biết

    Chọn đáp án đúng

    Công thức tính diện tích S của hình thang cong giới hạn bởi hai đồ thị y = f(x), y = g(x), x =
a, x = b, (a < b)

    Đáp án đúng: S = \int_{a}^{b}{\left| f(x)
- g(x) ight|dx}.

  • Câu 5: Vận dụng

    Tìm giá trị của tích phân I

    Tích phân I = \int_{- 2}^{2}\left|
\frac{x^{2} - x - 2}{x - 1} \right|dx có giá trị là:

    Tích phân I = \int_{- 2}^{0}\left|
\frac{x^{2} - x - 2}{x - 1} ight|dx có giá trị là:

    Ta có:

    f(x) = \frac{x^{2} - x - 2}{x - 1}
\Rightarrow f(x) = 0

    \Leftrightarrow x = - 1 \vee x = 2 \land
x eq 1

    Bảng xét dấu:

    Ta có:

    I = \int_{- 2}^{0}\left| \frac{x^{2} - x
- 2}{x - 1} ight|dx = - \int_{- 2}^{- 1}\left( \frac{x^{2} - x - 2}{x
- 1} ight)dx + \int_{- 1}^{0}\frac{x^{2} - x - 2}{x -
1}dx.

    I_{1} = - \int_{- 2}^{- 1}\left(
\frac{x^{2} - x - 2}{x - 1} ight)dx = - - \int_{- 2}^{- 1}\left( x -
\frac{2}{x - 1} ight)dx

    = - \left. \ \left( \frac{x^{2}}{2} -
2ln|x - 1| ight) ight|_{- 2}^{- 1} = \frac{5}{2} + 2ln2 -
2ln3.

    I_{2} = \int_{- 1}^{0}\left( \frac{x^{2}
- x - 2}{x - 1} ight)dx = ... = \left. \ \left( \frac{x^{2}}{2} -
2ln|x - 1| ight) ight|_{- 1}^{0} = \frac{1}{2} - 2ln2.

    \Rightarrow I = I_{1} + I_{2} = 3 -
2ln3.

  • Câu 6: Thông hiểu

    Xét tính đúng sai của các khẳng định

    Cho hàm số y = f(x) = x^{2} - 5x +
4 có đồ thị như hình vẽ. Biết rằng đồ thị hàm số f(x) tạo với trục hoành và 2 đường thẳng x = 0,\ x = 4 một hình phẳng (H) gồm 2 phần có diện tích lần lượt là S_{1},\ S_{2}.

    Xét tính đúng, sai của các mệnh đề sau:

    a) [NB] f(x) là một nguyên hàm của hàm số g(x) = 2x -
5 trên \mathbb{R}. Đúng||Sai

    b) [TH] S_{1} =
\frac{11}{6}. Đúng||Sai

    c) [TH] S_{1} =
\int_{0}^{4}{f(x)dx} - S_{2}. Sai||Đúng

    d) [VD,VDC] Biết đường thẳng d:y = x + m( m là tham số ) cắt đồ thị y = f(x) tại hai điểm phân biệt và diện tích hình phẳng giới hạn bởi d(P) bằng \frac{4}{3}. Khi đó tổng các giá trị của tham số m bằng -4. Đúng||Sai

    Đáp án là:

    Cho hàm số y = f(x) = x^{2} - 5x +
4 có đồ thị như hình vẽ. Biết rằng đồ thị hàm số f(x) tạo với trục hoành và 2 đường thẳng x = 0,\ x = 4 một hình phẳng (H) gồm 2 phần có diện tích lần lượt là S_{1},\ S_{2}.

    Xét tính đúng, sai của các mệnh đề sau:

    a) [NB] f(x) là một nguyên hàm của hàm số g(x) = 2x -
5 trên \mathbb{R}. Đúng||Sai

    b) [TH] S_{1} =
\frac{11}{6}. Đúng||Sai

    c) [TH] S_{1} =
\int_{0}^{4}{f(x)dx} - S_{2}. Sai||Đúng

    d) [VD,VDC] Biết đường thẳng d:y = x + m( m là tham số ) cắt đồ thị y = f(x) tại hai điểm phân biệt và diện tích hình phẳng giới hạn bởi d(P) bằng \frac{4}{3}. Khi đó tổng các giá trị của tham số m bằng -4. Đúng||Sai

    a) Đúng. Ta có: f'(x) = (x^{2} - 5x +
4)' = 2x - 5\ \ \ \forall x\mathbb{\in R}

    b) Đúng. Ta có:

    S_{1} = \int_{0}^{1}{f(x)dx =
\int_{0}^{1}{(x^{2} - 5x + 4)dx =}}\frac{11}{6}

    c) Sai. Ta có

    \int_{0}^{4}{f(x)dx} =
\int_{0}^{1}{f(x)dx + \int_{1}^{4}{f(x)dx}}

    = \int_{0}^{1}{\left| f(x) ight|dx -
\int_{1}^{4}{\left| f(x) ight|dx = S_{1} - S_{2}}}

    Suy ra : S_{1} = \int_{0}^{1}{f(x)dx} +
S_{2}.

    d) Đúng.

    Phương trình hoành độ giao điểm của d và đồ thị hàm số f(x)

    x^{2} - 5x + 4 = x + m \Leftrightarrow
x^{2} - 6x + 4 - m = 0

    d(P) cắt nhau tại hai điểm phân biệt

    \Leftrightarrow \Delta' = 9 - 4 + m = m + 5
> 0 \Leftrightarrow m > - 5

    Theo Viète: x_{1} + x_{2} = 6;x_{1}x_{2}
= 4 - m ( x_{1} <
x_{2})

    Ta có

    S = \int_{x_{1}}^{x_{2}}\left( m - x^{2}
+ 6x - 4 ight)dx

    = \left. \ \left( (m - 4)x + 3x^{2} -
\frac{x^{3}}{3} ight) ight|_{x_{1}}^{x_{2}}

    = \left( (m - 4) + 3\left( x_{1} + x_{2}
ight) - \frac{1}{3}\left\lbrack \left( x_{1} + x_{2} ight)^{2} -
x_{1}x_{2} ightbrack ight)\left( x_{2} - x_{1}
ight)

    = \frac{4}{3}\sqrt{(m + 5)^{3}} =
\frac{4}{3} \Leftrightarrow m = -
4

    Vậy S = - 4.

  • Câu 7: Nhận biết

    Chọn khẳng định đúng

    Công thức tính diện tích S của hình phẳng giới hạn bởi hai đồ thị hàm số y = f(x);y = g(x) liên tục trên đoạn \lbrack a;bbrack và hai đường thẳng x = a;x = b;a < b

    Ta có hình phẳng giới hạn bởi \left\{
\begin{matrix}
\left( C_{1} ight):y = f(x) \\
\left( C_{2} ight):y = g(x) \\
x = a \\
x = b \\
\end{matrix} ight.S =
\int_{a}^{b}{\left| f(x) - g(x) ight|dx}.

  • Câu 8: Vận dụng

    Ghi đáp án vào ô trống

    Cho hình phẳng D được giới hạn bởi hai đường y = 2\left( x^{2} - 1ight);y = 1 - x^{2}. Tính thể tích khối tròn xoay tạo thành do D quay quanh trục Ox?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hình phẳng D được giới hạn bởi hai đường y = 2\left( x^{2} - 1ight);y = 1 - x^{2}. Tính thể tích khối tròn xoay tạo thành do D quay quanh trục Ox?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 9: Nhận biết

    Tính giá trị biểu thức

    Cho hàm số F(x) là một nguyên hàm của f(x) = \frac{1}{2x - 1} , biết rằng F(1) = 2. Khi đó giá trị F(2) là:

    Ta có: F(x) = \int_{}^{}\frac{dx}{2x - 1}
= \frac{1}{2}\ln|2x - 1| + C;\left( C\mathbb{\in R} ight)

    F(1) = 2 \Rightarrow C = 2. Vậy với x > \frac{1}{2} thì F(x) = \frac{1}{2}\ln(2x - 1) +
2

    Vậy F(2) = \frac{1}{2}\ln3 +2.

  • Câu 10: Nhận biết

    Chọn đáp án đúng

    Cho \int_{}^{}{x(x + 1)^{10}dx}. Nếu đặt t=x+1 thì \int_{}^{}{f(t)dt}

    Ta có:

    \int_{}^{}{x(x + 1)^{10}dx} =
\int_{}^{}{(t - 1).t^{10}dx}

    = \int_{}^{}{\left( t^{11} - t^{10}
\right)dx} = \frac{t^{12}}{12} - \frac{t^{11}}{11} + C

  • Câu 11: Nhận biết

    Tìm nguyên hàm của hàm số

    Tìm nguyên hàm của hàm số f\left( x ight) = {\left( {2x + 1} ight)^{2019}} bằng:

     Ta có:

    \int {\left[ {{{\left( {2x + 1} ight)}^{2019}}} ight]dx}  = \frac{1}{2}\int {\left[ {{{\left( {2x + 1} ight)}^{2019}}} ight]d\left( {2x + 1} ight)}

    = \frac{1}{2}\frac{{{{\left( {2x + 1} ight)}^{2020}}}}{{2020}} + C = \frac{{{{\left( {2x + 1} ight)}^{2020}}}}{{4040}} + C

  • Câu 12: Nhận biết

    Xác định nguyên hàm

    \int_{}^{}{x^{2}dx} bằng

    Ta có \int_{}^{}{x^{2}dx} =\frac{1}{3}x^{3} + C.

  • Câu 13: Thông hiểu

    Tính giá trị biểu thức

    Cho hàm số f(x) = \frac{1}{\sin
x} có một nguyên hàm là F(x) thỏa mãn F\left( \frac{\pi}{3} ight) = 0. Giá trị của e^{F\left( \frac{2\pi}{3}
ight)} bằng:

    Ta có: F(x) = \int_{}^{}{\frac{1}{\sin x}dx} =\int_{}^{}{\frac{1}{2\sin\frac{x}{2}.\cos\frac{x}{2}}dx}

    = \int {\frac{1}{{2\tan \frac{x}{2}.{{\cos }^2}\frac{x}{2}}}dx}  = \int {\frac{1}{{\tan \frac{x}{2}}}d\left( {\tan \frac{x}{2}} ight)}= \ln \left| {\tan \frac{x}{2}} ight| + C

    Lại có F\left( \frac{\pi}{3} ight) = 0
\Leftrightarrow \ln\left| \tan\frac{\pi}{6} ight| + C = 0

    \Rightarrow C = - \ln\frac{\sqrt{3}}{3}= \ln\sqrt{3} = \frac{1}{2}\ln3

    Do đó: {e^{F\left( {\frac{{2\pi }}{3}} ight)}} = {e^{\ln \left| {\tan \frac{\pi }{3}} ight| + \frac{1}{2}\ln 3}} = {e^{\ln 3}} = 3

  • Câu 14: Thông hiểu

    Chọn đáp án đúng

    Biết \int_{\frac{\pi}{6}}^{\frac{\pi}{3}}\frac{dx}{\sin
x.sin\left( x + \frac{\pi}{6} \right)} = a\ln\frac{b}{c}, với a, b, c là các số nguyên dương và \frac{b}{c} là phân số tối giản. Tính S = a + b + c.

    Ta có:

    I =
\int_{\frac{\pi}{6}}^{\frac{\pi}{3}}\frac{dx}{\sin x.sin\left( x +
\frac{\pi}{6} ight)}

    Ta có:

    I = \frac{\sin\left\lbrack \left( x +
\frac{\pi}{6} ight) - x ightbrack}{\sin\frac{\pi}{6}} =
\frac{\sin\left( x + \frac{\pi}{6} ight).cosx - \cos\left( x +
\frac{\pi}{6} ight).sinx}{\sin\frac{\pi}{6}}

    \Rightarrow \frac{1}{\sin x.sin\left( x +
\frac{\pi}{6} ight)} = \frac{1}{\sin\frac{\pi}{6}}.\left( \frac{\cos
x}{\sin x} - \frac{\cos\left( x + \frac{\pi}{6} ight)}{\sin\left( x +
\frac{\pi}{6} ight)} ight)

    I =
2\int_{\frac{\pi}{6}}^{\frac{\pi}{3}}{\frac{\cos x}{\sin x}dx} -
2\int_{\frac{\pi}{6}}^{\frac{\pi}{3}}\frac{\cos\left( x + \frac{\pi}{6}
ight)}{\sin\left( x + \frac{\pi}{6} ight)}dx

    = 2.ln\left( \frac{\sqrt{3}}{2} ight) -
2ln\frac{1}{2} - 2ln1 + 2ln\frac{\sqrt{3}}{2}

    = 4ln\left( \frac{\sqrt{3}}{2} ight) -
2ln2 = 2ln\frac{3}{4} + 2ln2 = 2ln\frac{3}{2}

    \Rightarrow S = 2 + 3 + 2 =
7

  • Câu 15: Nhận biết

    Chọn đáp án đúng

    Tích phân I = \int_{0}^{1}{\frac{1}{x +
1}dx} có giá trị là:

    Tích phân I = \int_{0}^{1}{\frac{1}{x +
1}dx} có giá trị là:

    Cách 1:I = \int_{0}^{1}{\frac{1}{x +
1}dx} = \left. \ \left( \ln|x + 1| ight) ight|_{0}^{1} =
ln2.

    Cách 2: Dùng máy tính cầm tay.

  • Câu 16: Vận dụng

    Chọn mệnh đề đúng

    Biết rằng  F(x) nguyên hàm của hàm số f(x) = \frac{1}{x^{2}(x +1)} thỏa mãn F(1) + F( - 2) = \frac{1}{2}. Chọn mệnh đề đúng?

    Sử dụng phương pháp đồng nhất thức, ta có:

    f(x) = \frac{1}{x^{2}(x + 1)} =\frac{A}{x} + \frac{B}{x^{2}} + \frac{C}{x + 1}= \frac{(A + C)x^{2} +(A + B)x + B}{x^{2}(x + 1)}

    Suy ra \left\{ \begin{matrix}A + C = 0 \\A + B = 0 \\B = 1 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}A = - 1 \\B = 1 \\C = 1 \\\end{matrix} ight.

    F(x) = \int_{}^{}{f(x)dx} =\int_{}^{}{\left( - \frac{1}{x} + \frac{1}{x^{2}} + \frac{1}{x + 1}ight)dx}

    \Rightarrow F(x) = - \ln|x| -\frac{1}{x} + \ln|x + 1| + C = \ln\left| \frac{x + 1}{x} ight| -\frac{1}{x} + C

    Khi đó F(x) = \left\{ \begin{matrix}\ln\dfrac{x + 1}{x} - \dfrac{1}{x} + C_{1};x \in (0; + \infty) \\\ln\dfrac{- x - 1}{x} - \dfrac{1}{x} + C_{2};x \in ( - 1;0) \\\ln\frac{x + 1}{x} - \dfrac{1}{x} + C_{3};x \in ( - \infty; - 1) \\\end{matrix} ight.

    F(1) + F( - 2) =\frac{1}{2}

    \Leftrightarrow \ln2 - 1 + C_{1} +\ln\frac{1}{2} + \frac{1}{2} + C_{3} = \frac{1}{2}

    \Leftrightarrow C_{1} + C_{3} =1

    Vậy T = F(2) + F( - 3) = \ln\frac{3}{2} -\frac{1}{2} + C_{1} + \ln\frac{2}{3} + \frac{1}{3} + C_{3} =\frac{5}{6}

  • Câu 17: Nhận biết

    Tính tích phân

    Giá trị của D = \int_{0}^{1}{\left(
2019x^{2018} - 1 ight)dx} bằng

    Ta có:

    D = \int_{0}^{1}{\left( 2019x^{2018} - 1
ight)dx} = \left. \ \left( x^{2019} - x ight) ight|_{0}^{1} =
0

  • Câu 18: Vận dụng cao

    Tính kinh phí làm biển quảng cáo

    Một biển quảng cáo có dạng hình elip với bốn đỉnh A_{1};A_{2};B_{1};B_{2} như hình vẽ:

    Người ta chia elip bởi Parabol có đỉnh B_{1}, trục đối xứng B_{1}B_{2} và đi qua các điểm M;N. Sau đó sơn phần tô đậm với giá 200 nghìn đồng/m2 và trang trí đèn led phần còn lại với giá 500 nghìn đồng/m2. Hỏi kinh phí sử dụng gần nhất với giá trị nào dưới đây? Biết rằng A_{1}A_{2} =4m;B_{1}B_{2} = MN = 2m

    Chọn hệ trục tọa độ Oxy sao cho O là trung điểm của A1A2. Tọa độ các đỉnh A1(−2; 0), A2(2; 0), B1(0; −1), B2(0; 1)

    Phương trình đường Elip (E):\frac{x^{2}}{4} + \frac{y^{2}}{9} = 1\Leftrightarrow y = \pm \sqrt{1 - \frac{x^{2}}{4}}

    Ta có: M\left( - 1;\frac{\sqrt{3}}{2}ight),N\left( 1;\frac{\sqrt{3}}{2} ight) \in (E)

    Parabol (P) có đỉnh B1(0; −1) và trục đối xứng là Ox nên (P) có phương trình y = ax^{2} - 1, (a > 0), đi qua M; N

    \Rightarrow a = \frac{\sqrt{3}}{2} + 1\Rightarrow (P):y = \left( \frac{\sqrt{3}}{2} + 1 ight)x^{2} -1

    Diện tích phần tô đậm

    S_{1} = 2\int_{0}^{1}{\left\lbrack\sqrt{1 - \frac{x^{2}}{4}} - \left( \frac{\sqrt{3}}{2} + 1 ight)x^{2}+ 1 ightbrack dx}

    = \int_{0}^{1}{\sqrt{4 - x^{2}}dx} -\frac{2}{3}\left( \frac{\sqrt{3}}{2} + 1 ight) + 2

    Đặt x = 2\sin t;t \in \left\lbrack -\frac{\pi}{2};\frac{\pi}{2} ightbrack \Rightarrow dx =2\cos tdt

    Đổi cận \left\{ \begin{matrix}x = 0 \Rightarrow t = 0 \\x = 1 \Rightarrow t = \dfrac{\pi}{6} \\\end{matrix} ight.

    \Rightarrow S_{1} =\int_{0}^{\frac{\pi}{6}}{\sqrt{4 - 4\sin^{2}t}.2\cos tdt} -\frac{2}{3}\left( \frac{\sqrt{3}}{2} + 1 ight) + 2

    = 4\int_{0}^{\frac{\pi}{6}}{\cos^{2}tdt}- \frac{\sqrt{3}}{4} + \frac{4}{3} = 2\int_{0}^{\frac{\pi}{6}}{(1 +\cos2t)dt} - \frac{\sqrt{3}}{4} + \frac{4}{3}

    = \left. \ (2t + \sin2t)ight|_{0}^{\frac{\pi}{6}} - \frac{\sqrt{3}}{4} + \frac{4}{3} =\frac{\pi}{3} + \frac{\sqrt{3}}{6} + \frac{4}{3}

    Diện tích hình Elip là S = πab = 2π

    Suy ra diện tích phần còn lại là: S_{2} =S - S_{1} = \frac{5\pi}{3} - \frac{\sqrt{3}}{6} -\frac{4}{3}

    Kinh phí sử dụng là 2.10^{5}S_{1} +5.10^{5}S_{2} \approx 2.341.000 đồng.

  • Câu 19: Thông hiểu

    Chọn đáp án đúng

    Hãy xác định hàm số f(x) từ đẳng thức: x^{2} + xy + C =
\int_{}^{}{f(y)dy}

    Ta có: \left( x^{2} + xy \right)' = x
+ C

    Vậy f(x) = x.

  • Câu 20: Nhận biết

    Chọn đáp án đúng

    Tính thể tích khối tròn xoay sinh ra khi quay hình phẳng giới hạn bởi các đường sau xung quanh trục Ox : y = 2x - x^{2},\ y = 0,\ x = 0,\ x =
2.

    Thể tích khối tròn xoay V =
\pi\int_{0}^{2}{\left( 2x - x^{2} \right)^{2}dx} = \frac{16\pi}{15}.

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 4 Nguyên hàm Tích phân CTST Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo