Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề kiểm tra 15 phút Chương 4 Nguyên hàm Tích phân CTST

Mô tả thêm:

Cùng nhau thử sức với bài kiểm tra 15 phút Toán 12 Chân trời sáng tạo Chương 4 Nguyên hàm Tích phân nhé!

  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Vận dụng

    Tìm nguyên hàm của hàm số

    Tìm nguyên hàm của hàm số  f\left( x ight) = \frac{{{{\left( {x - 2} ight)}^{10}}}}{{{{\left( {x + 1} ight)}^{12}}}}

     \int {f\left( x ight)} dx = \int {\frac{{{{\left( {x - 2} ight)}^{10}}}}{{{{\left( {x + 1} ight)}^{12}}}}} dx = {\int {\left( {\frac{{x - 2}}{{x + 1}}} ight)} ^{10}}.\frac{1}{{{{\left( {x + 1} ight)}^2}}}dx

    Đặt t = \frac{{x - 2}}{{x + 1}} \Rightarrow dt = \frac{3}{{{{\left( {x + 1} ight)}^2}dx}} \Rightarrow \frac{1}{3}dt = \frac{1}{{{{\left( {x + 1} ight)}^2}}}dx

    => \int {f\left( x ight)} dx = \int {{t^{10}}.\frac{1}{3}dt = \frac{1}{{33}}.{t^{11}} + C}

    => \frac{1}{{33}}{\left( {\frac{{x - 2}}{{x + 1}}} ight)^{11}} + C

  • Câu 2: Nhận biết

    Xác định quãng đường vật chuyển động

    Một vật chuyển động chậm dần đều với vận tốc v(t) = 30 - 2t(m/s). Hỏi trong 5s trước khi dừng hẳn, vật di chuyển động được bao nhiêu mét?

    Khi dừng hẳn v(t) = 30 - 2t = 0
\Rightarrow t = 15(s)

    Khi đó trong 5s trước khi dừng hẳn vật di chuyển được:

    S = \int_{10}^{15}{v(t)dt} =
\int_{10}^{15}{(30 - 2t)dt} = 25m.

  • Câu 3: Nhận biết

    Chọn đáp án thích hợp

    Cho hàm số y = f(x) liên tục trên \lbrack a;bbrack. Diện tích hình phẳng giới hạn bởi đồ thị hàm số y =
f(x), trục hoành, đường thẳng x =
a;x = b

    Công thức đúng là: S =
\int_{a}^{b}{\left| f(x) ight|dx}

  • Câu 4: Nhận biết

    Tính thể tích tròn xoay

    Cho hình phẳng (H) giới hạn bởi các đường y = \cos x;y = 0;x = 0;x =
\frac{\pi}{2}. Thể tích vật thể tròn xoay có được khi (H) quay quanh trục Ox bằng:

    Gọi V là thể tích khối tròn xoay cần tính. Ta có:

    V = \pi\int_{0}^{\frac{\pi}{2}}{\left(\cos x ight)^{2}dx} = \pi\int_{0}^{\frac{\pi}{2}}{\frac{1 +\cos2x}{2}dx}

    = \pi\left. \ \left( \frac{x}{2} +\frac{\sin2x}{4} ight) ight|_{0}^{\frac{\pi}{2}} =\frac{\pi^{2}}{4}

  • Câu 5: Thông hiểu

    Tính diện tích hình phẳng

    Diện tích hình phẳng giới hạn bởi hai đường y = x^{2}y = x bằng:

    Xét phương trình hoành độ giao điểm

    x^{2} = x \Leftrightarrow \left\lbrack
\begin{matrix}
x = 0 \\
x = 1 \\
\end{matrix} ight.

    Diện tích hình phẳng là:

    S = \int_{0}^{1}{\left| x^{2} - x
ight|dx} = \left| \int_{0}^{1}{\left( x^{2} - x ight)dx}
ight|

    = \left| \left. \ \left( \frac{x^{2}}{2}
- \frac{x^{3}}{3} ight) ight|_{0}^{1} ight| =
\frac{1}{6}

  • Câu 6: Nhận biết

    Chọn công thức thích hợp

    Viết công thức tính thể tích V của phần vật thể bị giới hạn bởi hai mặt phẳng vuông góc với trục Ox tại các điểm x = a;x = b;a < b, có diện tích thiết diện cắt bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ x;(a \leq x \leq b)S(x).

    Thể tích của vật thể đã cho là: V =
\int_{a}^{b}{S(x)dx}.

  • Câu 7: Nhận biết

    Tính tích phân I

    Giá trị tích phân I =
\int_{1}^{2}{\frac{1}{x^{6}}dx} bằng:

    Ta có:

    I = \int_{1}^{2}{\frac{1}{x^{6}}dx} =
\int_{1}^{2}{x^{- 6}dx} = \left. \ \frac{x^{- 5}}{- 5} ight|_{1}^{2} =
\frac{31}{125}

  • Câu 8: Vận dụng cao

    Chọn kết luận đúng

    Cho hai hàm số y = f(x) và y = g(x) không âm, có đạo hàm trên đoạn [1; 4] và thỏa mãn các hệ thức f\left( 1 ight) + g\left( 1 ight) = 4;g\left( x ight) =  - xf'\left( x ight);f\left( x ight) =  - xg'\left( x ight). Kết luận nào sau đây đúng?

    Ta có:

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {g\left( x ight) =  - xf'\left( x ight)} \\   {f\left( x ight) =  - xg'\left( x ight)} \end{array}} ight. \hfill \\   \Rightarrow f\left( x ight) + g\left( x ight) =  - x\left[ {f'\left( x ight) + g'\left( x ight)} ight] \hfill \\   \Rightarrow \dfrac{{f'\left( x ight) + g'\left( x ight)}}{{f\left( x ight) + g\left( x ight)}} = \dfrac{{ - 1}}{x} \hfill \\ \end{matrix}

    \begin{matrix}   \Rightarrow \int\limits_1^4 {\dfrac{{f'\left( x ight) + g'\left( x ight)}}{{f\left( x ight) + g\left( x ight)}}dx = \int\limits_1^4 {\dfrac{{ - 1}}{x}dx} }  \hfill \\   \Leftrightarrow \int\limits_1^4 {\dfrac{{d\left[ {f\left( x ight) + g\left( x ight)} ight]}}{{f\left( x ight) + g\left( x ight)}} = } \left. {\ln \left| x ight|} ight|_1^4 =  - \ln 4 \hfill \\   \Rightarrow \ln \left| {f\left( x ight) + g\left( x ight)} ight|_1^4 =  - \ln 4 \hfill \\   \Rightarrow \ln \left| {f\left( 4 ight) + g\left( 4 ight)} ight| - \ln \left| {f\left( 1 ight) + g\left( 1 ight)} ight| =  - \ln 4 \hfill \\   \Rightarrow \ln \left| {f\left( 4 ight) + g\left( 4 ight)} ight| = 0 \hfill \\   \Rightarrow f\left( 4 ight) + g\left( 4 ight) = 1 \hfill \\ \end{matrix}

     

  • Câu 9: Nhận biết

    Tìm nguyên hàm của hàm số

    Tìm nguyên hàm của hàm số f(x) =\cos3x.

    Ta có \int_{}^{}{\cos3xdx =
\frac{1}{3}\int_{}^{}{d(\sin3x)} = \frac{\sin3x}{3}} + C

  • Câu 10: Vận dụng cao

    Ghi đáp án đúng vào ô trống

    Một chiếc cổng có hình dạng là một parabol có khoảng cách giữa hai chân cổng là 8 m. Người ta treo một tấm phông hình chữ nhật có hai đỉnh M,N nằm trên Parabol và hai đỉnh P, Q nằm trên mặt đất như hình vẽ bên. Ở phần phía ngoài phông người ta mua hoa để trang trí với chi phí 200.000 đồng /m^{2}, biết MN = 4\ m,MQ = 6\ m. Tính số tiền để mua hoa trang trí. Kết quả làm tròn đến hàng triệu và lấy một chữ số sau dấu phẩy.

    Đáp án: 3,7||3.7

    Đáp án là:

    Một chiếc cổng có hình dạng là một parabol có khoảng cách giữa hai chân cổng là 8 m. Người ta treo một tấm phông hình chữ nhật có hai đỉnh M,N nằm trên Parabol và hai đỉnh P, Q nằm trên mặt đất như hình vẽ bên. Ở phần phía ngoài phông người ta mua hoa để trang trí với chi phí 200.000 đồng /m^{2}, biết MN = 4\ m,MQ = 6\ m. Tính số tiền để mua hoa trang trí. Kết quả làm tròn đến hàng triệu và lấy một chữ số sau dấu phẩy.

    Đáp án: 3,7||3.7

    Gắn hệ trục tọa độ Oxy như hình vẽ.

    Phương trình parabol có dạng (P):y =
ax^{2} + bx + c.

    Ta có:

    \left\{ \begin{matrix}
A( - 4;0) \in (P) \\
B(4;0) \in (P) \\
N(2;6) \in (P) \\
\end{matrix} \Leftrightarrow \left\{ \begin{matrix}
16a - 4b + c = 0 \\
16a + 4b + c = 0 \\
4a + 2b + c = 6 \\
\end{matrix} \Leftrightarrow \left\{ \begin{matrix}
a = - \dfrac{1}{2} \\
b = 0 \\
c = 8 \\
\end{matrix} ight.\  ight.\  ight.

    \Rightarrow (P):y = - \frac{1}{2}x^{2} +
8

    Diện tích để trang trí hoa là:

    S = \int_{- 4}^{4}{\left( -
\frac{1}{2}x^{2} + 8 ight)dx} - S_{MNPQ} = \frac{128}{3} - 4.6 =
\frac{56}{3}.

    Vậy số tiền để mua hoa trang trí: \frac{56}{3} \cdot 200000 \approx 3733300 \approx
3,7 triệu.

  • Câu 11: Thông hiểu

    Tính diện tích hình phẳng

    Diện tích hình phẳng giới hạn bởi các đường y = (x - 1)e^{2x}, trục hoành; x = 0x =
2 bằng:

    Hoành độ giao điểm của đồ thị hàm số y =
(x - 1)e^{2x} và trục hoành là nghiệm của phương trình: (x - 1)e^{2x} = 0 \Leftrightarrow x =
1

    Diện tích hình phẳng giới hạn bởi các đường là:

    S = \int_{0}^{2}{\left| (x - 1)e^{2x}
ight|dx}

    = \int_{0}^{1}{\left\lbrack (1 -
x)e^{2x} ightbrack dx} + \int_{1}^{2}{\left\lbrack (x - 1)e^{2x}
ightbrack dx}

    = \frac{1}{2}\int_{0}^{1}{(1 - x)d\left(
e^{2x} ight)} + \frac{1}{2}\int_{1}^{2}{(x - 1)d\left( e^{2x}
ight)}

    = \frac{1}{2}\left. \ (1 - x)e^{2x}
ight|_{0}^{1} + \frac{1}{2}\int_{0}^{1}{e^{2x}dx} + \frac{1}{2}\left.
\ (x - 1)e^{2x} ight|_{1}^{2} -
\frac{1}{2}\int_{1}^{2}{e^{2x}dx}

    = \frac{e^{4}}{2} - \frac{1}{2} +
\frac{1}{4}\left. \ e^{2x} ight|_{0}^{1} - \frac{1}{4}\left. \ e^{2x}
ight|_{1}^{2}

    = \frac{e^{4}}{4} + \frac{e^{2}}{2} -
\frac{3}{4}

  • Câu 12: Vận dụng

    Tính tích phân

    Cho hai hàm số f(x) = ax^{3} + bx +
c;g(x) = bx^{3} + ax + c;(a > 0) có đồ thị như hình vẽ:

    Gọi S_{1};S_{2} là diện tích hình phẳng được gạch trong hình vẽ. Khi S_{1} + S_{2} = 3 thì \int_{0}^{1}{f(x)dx} bằng bao nhiêu?

    Phương trình hoành độ giao điểm

    (a - b)x^{3} + (b - a)x = 0

    \Leftrightarrow (a - b)\left( x^{3} - x
ight) = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = - 1 \\
x = 0 \\
\end{matrix} ight.

    Ký hiệu S_{3} là diện tích hình phẳng như hình vẽ:

    Ta có:

    S_{1} = \int_{- 1}^{0}{\left\lbrack f(x)
- g(x) ightbrack dx} = (a - b)\int_{- 1}^{0}{\left( x^{3} - x
ight)dx} = \frac{1}{4}(a - b)

    S_{2} = - \int_{- 1}^{0}{g(x)dx} = -
\int_{- 1}^{0}{\left( bx^{3} + ax + c ight)dx} = - \left( \frac{b}{4}
+ \frac{a}{2} + c ight)

    Vì vậy S_{1} + S_{2} = 3 \Leftrightarrow
\frac{1}{4}(a - b) - \left( \frac{b}{4} + \frac{a}{2} + c ight) =
3

    \Leftrightarrow a + 2b + 4c = -
12

    \Rightarrow \int_{0}^{1}{f(x)dx} =
\int_{0}^{1}{\left( ax^{3} + bx + c ight)dx} = \frac{a}{4} +
\frac{b}{2} + c = \frac{a + 2b + 4c}{4} = - 3

  • Câu 13: Vận dụng

    Ghi đáp án vào ô trống

    Một xe ô tô sau khi chờ hết đèn đỏ đã bắt đầu tăng tốc liên tục. Sau 10 giây thì ôtô đạt vận tốc cao nhất v =
50m/s, sau đó giảm dần và dừng lại. Hàm vận tốc được biểu thị bằng đồ thị là đường cong parabol như hình bên dưới. Tính quãng đường xe ôtô bắt đầu chạy sau khi chờ hết đèn đỏ đến khi dừng lại (làm tròn kết quả đến hàng đơn vị).

    Đáp án: 667m

    Đáp án là:

    Một xe ô tô sau khi chờ hết đèn đỏ đã bắt đầu tăng tốc liên tục. Sau 10 giây thì ôtô đạt vận tốc cao nhất v =
50m/s, sau đó giảm dần và dừng lại. Hàm vận tốc được biểu thị bằng đồ thị là đường cong parabol như hình bên dưới. Tính quãng đường xe ôtô bắt đầu chạy sau khi chờ hết đèn đỏ đến khi dừng lại (làm tròn kết quả đến hàng đơn vị).

    Đáp án: 667m

    Giả sử hàm số biểu thị cho vận tốc có dạng (P):v(t) = at^{2} + bt + c\left( a,b,c\mathbb{\in
R} ight)

    Do (P) đi qua gốc O nên c =
0

    (P) có đỉnh là I(10;50) \Rightarrow \left\{ \begin{matrix}
\frac{- b}{2a} = 10 \\
50 = a.100 + b.10 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = - \frac{1}{2} \\
b = 10 \\
\end{matrix} ight.

    Do đó (P):v(t) = - \frac{1}{2}t^{2} +
10t

    Xe dừng lại khi v(t) = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
t = 0 \\
t = 20 \\
\end{matrix} ight.

    Quảng đường xe ô tô di chuyển trong 20 giây là S = \int_{0}^{20}{\left( - \frac{1}{2}t^{2} + 10t
ight)dt} \approx 667m

  • Câu 14: Thông hiểu

    Tính tích phân

    Cho hàm số f(x) liên tục trên \mathbb{R}\int_{0}^{2}{\left\lbrack f(x) + 3x^{2}
ightbrack dx} = 10. Xác định giá trị của \int_{0}^{2}{f(x)dx}?

    Ta có: \int_{0}^{2}{\left\lbrack f(x) +
3x^{2} ightbrack dx} = 10 \Leftrightarrow \int_{0}^{2}{f(x)dx} = 10
- \int_{0}^{2}{3x^{2}dx}

    \Leftrightarrow \int_{0}^{2}{f(x)dx} =
10 - \left. \ x^{3} ight|_{0}^{2} = 2

  • Câu 15: Nhận biết

    Tìm tham số a thỏa mãn điều kiện

    Xác định giá trị của tham số a thỏa mãn \int_{0}^{a}{\left( 3x^{2} + 2
ight)dx} = a^{3} + 2?

    Ta có: \int_{0}^{a}{\left( 3x^{2} + 2
ight)dx} = \left. \ \left( x^{3} + 2x ight) ight|_{0}^{a} = a^{3}
+ 2a

    \Rightarrow \int_{0}^{a}{\left( 3x^{2} +
2 ight)dx} = a^{3} + 2 \Leftrightarrow a^{3} + 2a = a^{3} + 2
\Leftrightarrow a = 1

    Vậy đáp án a = 1.

  • Câu 16: Thông hiểu

    Tìm kết quả đúng

    Tìm \int_{}^{}{xsin2xdx} ta thu được kết quả nào sau đây?

    Ta có: I =
\int_{}^{}{xsin2xdx}

    Đặt: \left\{ \begin{matrix}
u = x \\
dv = sin2xdx \\
\end{matrix} \right.\  \Rightarrow \left\{ \begin{matrix}
du = dx \\
v = - \frac{1}{2}cos2x \\
\end{matrix} \right.

    Khi đó:

    I = uv - \int_{}^{}{vdu = -
\frac{1}{2}xcos2x + \frac{1}{2}}\int_{}^{}{cos2xdx}

    = - \frac{1}{2}xcos2x + \frac{1}{4}sin2x +
C

  • Câu 17: Nhận biết

    Xác định nguyên hàm của hàm số

    Tìm nguyên hàm F(x) = \int_{}^{}{\left( x
+ \sin x \right)dx} biết F(0) =
19 .

    Ta có:

    F(x) = \int_{}^{}{\left( x + \sin x
ight)dx = \frac{x^{2}}{2} - \cos x + C}

    F(0) = 19 \Rightarrow C = 20\Rightarrow F(x) = \frac{x^{2}}{2} - \cos x + 20

  • Câu 18: Nhận biết

    Tìm nguyên hàm của hàm số

    Tìm nguyên hàm của hàm số f\left( x ight) = {\left( {2x + 1} ight)^{2019}} bằng:

     Ta có:

    \int {\left[ {{{\left( {2x + 1} ight)}^{2019}}} ight]dx}  = \frac{1}{2}\int {\left[ {{{\left( {2x + 1} ight)}^{2019}}} ight]d\left( {2x + 1} ight)}

    = \frac{1}{2}\frac{{{{\left( {2x + 1} ight)}^{2020}}}}{{2020}} + C = \frac{{{{\left( {2x + 1} ight)}^{2020}}}}{{4040}} + C

  • Câu 19: Thông hiểu

    Tính giá trị biểu thức

    Cho hai hàm số F(x) = \left( x^{2} + bx +
c ight)e^{x}f(x) = \left(
x^{2} + 3x + 4 ight)e^{x}. Biết a;b là các số thực để F(x) là một nguyên hàm của f(x). Tính S
= a + b?

    Từ giả thiết ta có:

    F'(x) = f(x)

    \Leftrightarrow (2x + a)e^{x} + \left(
x^{2} + ax + b ight)e^{x} = \left( x^{2} + 3x + 4 ight)e^{x};\forall
x\mathbb{\in R}

    \Leftrightarrow x^{2} + (2 + a)x + a + b
= x^{2} + 3x + 4;\forall x\mathbb{\in R}

    Đồng nhất hai vế ta có: \left\{
\begin{matrix}
a + 2 = 3 \\
a + b = 4 \\
\end{matrix} ight.\  \Rightarrow S = a + b = 4.

  • Câu 20: Thông hiểu

    Xác định tham số a

    Tích phân I = \int_{0}^{a}{\frac{\sin x +
\cos x}{\left( \sin x - \cos x \right)^{2}}dx} = \frac{1 + \sqrt{3}}{1 -
\sqrt{3}}. Giá trị của a là:

    Tích phân I = \int_{0}^{a}{\frac{\sin x +
\cos x}{\left( \sin x - \cos x ight)^{2}}dx} = \frac{1 + \sqrt{3}}{1 -
\sqrt{3}}. Giá trị của alà:

    Ta có:

    I = \int_{0}^{a}{\frac{\sin x + \cos
x}{\left( \sin x - \cos x ight)^{2}}dx} = \left. \ \left( -
\frac{1}{t} ight) ight|_{- 1}^{\sin a - \cos a}

    = \frac{1}{\cos a - \sin a} - 1,\ t = \sin x -
\cos x.

    Theo đề bài, ta có: \frac{1}{\cos a -
\sin a} - 1 = \frac{1 + \sqrt{3}}{1 -
\sqrt{3}}\overset{casio}{ightarrow}a = \frac{\pi}{3}.

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 4 Nguyên hàm Tích phân CTST Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo