Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề kiểm tra 15 phút Chương 3 Các số đặc trưng đo mức độ phân tán cho mẫu số liệu ghép nhóm CTST

Mô tả thêm:

Cùng nhau thử sức với bài kiểm tra 15 phút Toán 12 Chân trời sáng tạo Chương 3 Các số đặc trưng đo mức độ phân tán cho mẫu số liệu ghép nhóm nhé!

  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Nhận biết

    Xác định khoảng biến thiên

    Cho bảng tần số ghép nhóm dưới đây:

    Độ tuổi

    [50; 55)

    [55; 60)

    [60; 65)

    [65; 70)

    [70; 75)

    [75; 80)

    [80; 85)

    [85; 90)

    Tần số

    4

    7

    4

    6

    16

    12

    2

    0

    Hãy xác định khoảng biến thiên của mẫu số liệu ghép nhóm trên?

    Do nhóm số liệu [85; 90) có tần số là 0 nên ta sẽ chỉ xét đến nhóm số liệu [80; 85).

    Do đó: R = 85 – 50 = 35.

  • Câu 2: Thông hiểu

    Xác định tứ phân vị thứ ba của mẫu số liệu

    Chị A lập bảng doanh thu bán hải sản của cửa hàng trong 20 ngày (đơn vị: triệu đồng) như sau:

    Doanh thu

    [5; 7)

    [7; 9)

    [9; 11)

    [11; 13)

    [13; 15)

    Số ngày

    2

    7

    7

    3

    1

    Tính giá trị Q_{3} của mẫu dữ liệu ghép nhóm trên?

    Ta có:

    Doanh thu

    [5; 7)

    [7; 9)

    [9; 11)

    [11; 13)

    [13; 15)

     

    Số ngày

    2

    7

    7

    3

    1

    N = 20

    Tần số tích lũy

    2

    9

    16

    19

    20

     

    Cỡ mẫu N = 20 \Rightarrow \frac{3N}{4} =
15

    => Nhóm chứa tứ phân vị thứ ba là [9; 11)

    (Vì 15 nằm giữa hai tần số tích lũy 9 và 16)

    Do đó: l = 9;m = 9,f = 7;c = 11 - 9 =
2

    Khi đó tứ phân vị thứ ba là:

    \Rightarrow Q_{3} = l +\dfrac{\dfrac{3N}{4} - m}{f}.c = 9 + \dfrac{15 - 9}{7}.2 = \dfrac{75}{7}\approx 10,7

  • Câu 3: Thông hiểu

    Xác định tính đúng sai của từng phương án

    Thu nhập theo tháng (đơn vị: triệu đồng) của 20 người lao động ở ba nhà máy như sau:

    Thu nhập

    [5; 8)

    [8; 11)

    [11; 14)

    [14; 17)

    [17; 20)

    [20; 23)

    Số người nhà máy A

    2

    5

    4

    4

    5

    0

    Số người nhà máy B

    0

    6

    4

    3

    7

    0

    Số người nhà máy C

    1

    5

    8

    6

    0

    0

    Xét tính đúng, sai các mệnh đề sau:

    (a) Trong 20 người lao động ở nhà máy A, hiệu số thu nhập của hai người lao động bất kì không vượt quá 15 triệu đồng. Đúng||Sai

    (b) Trong 20 người lao động ở nhà máy B, hiệu số thu nhập của hai người lao động bất kì không vượt quá 18 triệu đồng. Sai|| Đúng

    (c) Nếu dựa vào khoảng biến thiên thì thu nhập của người lao động ở nhà máy A phân tán hơn so với người lao động ở nhà máy B. Đúng||Sai

    (d) Nếu dựa vào khoảng biến thiên thì thu nhập của người lao động ở nhà máy C phân tán hơn so với người lao động ở nhà máy A. Sai|| Đúng

    Đáp án là:

    Thu nhập theo tháng (đơn vị: triệu đồng) của 20 người lao động ở ba nhà máy như sau:

    Thu nhập

    [5; 8)

    [8; 11)

    [11; 14)

    [14; 17)

    [17; 20)

    [20; 23)

    Số người nhà máy A

    2

    5

    4

    4

    5

    0

    Số người nhà máy B

    0

    6

    4

    3

    7

    0

    Số người nhà máy C

    1

    5

    8

    6

    0

    0

    Xét tính đúng, sai các mệnh đề sau:

    (a) Trong 20 người lao động ở nhà máy A, hiệu số thu nhập của hai người lao động bất kì không vượt quá 15 triệu đồng. Đúng||Sai

    (b) Trong 20 người lao động ở nhà máy B, hiệu số thu nhập của hai người lao động bất kì không vượt quá 18 triệu đồng. Sai|| Đúng

    (c) Nếu dựa vào khoảng biến thiên thì thu nhập của người lao động ở nhà máy A phân tán hơn so với người lao động ở nhà máy B. Đúng||Sai

    (d) Nếu dựa vào khoảng biến thiên thì thu nhập của người lao động ở nhà máy C phân tán hơn so với người lao động ở nhà máy A. Sai|| Đúng

    Ta có khoảng biến thiên thu nhập của người lao động ở nhà máy A là 20 - 5 = 15 triệu đồng.

    Ta có khoảng biến thiên thu nhập của người lao động ở nhà máy B là 20 - 8 = 12 triệu đồng.

    Ta có khoảng biến thiên thu nhập của người lao động ở nhà máy C là 17 – 5 = 12 triệu đồng.

    (a) Trong 20 người lao động ở nhà máy A, hiệu số thu nhập của hai người lao động bất kì không vượt quá 15 triệu đồng.

    Chọn ĐÚNG.

    (b) Trong 20 người lao động ở nhà máy B, hiệu số thu nhập của hai người lao động bất kì không vượt quá 18 triệu đồng.

    Chọn SAI.

    (c) Nếu dựa vào khoảng biến thiên thì thu nhập của người lao động ở nhà máy A phân tán hơn so với người lao động ở nhà máy B.

    Chọn ĐÚNG.

    (d) Nếu dựa vào khoảng biến thiên thì thu nhập của người lao động ở nhà máy C phân tán hơn so với người lao động ở nhà máy A.

    Chọn SAI.

  • Câu 4: Vận dụng

    Chọn đáp án đúng

    Anh An đầu tư số tiền bằng nhau vào hai lĩnh vực kinh doanh A,B. Anh An thống kê số tiền thu được mỗi tháng trong vòng 60 tháng theo mỗi lĩnh vực cho kết quả như sau:

    A white grid with black numbersDescription automatically generated

    Đáp án nào sau đây đúng?

    Ta có

    A table with numbers and lettersDescription automatically generated

    Số tiền trung bình thu được khi đầu tư vào các lĩnh vực A,B tương ứng là:

    {\overline{x}}_{A} = \frac{1}{60}(5 \cdot
7,5 + \ldots + 5 \cdot 27,5) = 17,5;

    {\overline{x}}_{B} = \frac{1}{60}(20
\cdot 7,5 + \ldots + 20 \cdot 27,5) = 17,5

    Độ lệch chuẩn của số tiền thu được hàng tháng khi đầu tư vào các lĩnh vực A,B tương ứng là

    s_{A} = \sqrt{\frac{1}{60}\left( 5 \cdot
7,5^{2} + \ldots + 5 \cdot 27,5^{2} \right) - (17,5)^{2}} \approx
5;

    s_{B} = \sqrt{\frac{1}{60}\left( 20
\cdot 7,5^{2} + \ldots + 20 \cdot 27,5^{2} \right) - (17,5)^{2}} \approx
8

    Như vậy, về trung bình đầu tư vào các lĩnh vực A,Bsố tiền thu được hàng tháng như nhau tuy nhiên độ lệch chuẩn của mẫu số liệu về số tiền thu được hàng tháng khi đầu tư vào lĩnh vực B cao hơn khi đầu tư vào lĩnh vực A. Người ta nói rằng, đầu tư vào lĩnh vực B là "rủi ro" hơn.

  • Câu 5: Nhận biết

    Chọn kết luận đúng

    Số đặc trưng nào không sử dụng thông tin của nhóm số liệu đầu tiên và nhóm số liệu cuối cùng?

    Theo các công thức tính khoảng biến thiên, khoảng tứ phân vị, phương sai, độ lệch chuẩn ta thấy khoảng tứ phân vị là không sử dụng thông tin của nhóm số liệu đầu và nhóm số liệu cuối.

  • Câu 6: Nhận biết

    Tìm khoảng biến thiên của mẫu số liệu

    Cho mẫu số liệu ghép nhóm cho bởi bảng sau:

    Nhóm

    [0; 10)

    [10; 20)

    [20; 30)

    [30; 40)

    Tần số

    3

    7

    2

    9

    Khoảng biến thiên của mẫu số liệu ghép nhóm này là

    Khoảng biến thiên của mẫu số liệu ghép nhóm là:

    R = 40 – 0 = 40.

  • Câu 7: Nhận biết

    Tìm đường kính trung bình

    Kiểm lâm thực hiện đo đường kính của một số cây thân gỗ tại hai khu vực A và B thu được kết quả như sau:

    Đường kính (cm)

    [30; 32)

    [32; 34)

    [34; 36)

    [36; 38)

    [38; 40)

    A

    25

    28

    20

    10

    7

    B

    22

    27

    19

    18

    14

    Đường kính trung bình của cây tại hai khu vực A và B lần lượt là:

    Ta có:

    Đường kính (cm)

    [30; 32)

    [32; 34)

    [34; 36)

    [36; 38)

    [38; 40)

    Giá trị đại diện

    31

    33

    35

    37

    39

    A

    25

    28

    20

    10

    7

    B

    22

    27

    19

    18

    14

    Suy ra

    \overline{x_{A}} = \frac{25.31 + 38.33 +
20.35 + 10.37 + 7.39}{100} = 33,72

    \overline{x_{B}} = \frac{25.31 + 27.33 +
19.35 + 18.37 + 14.39}{100} = 34,2

  • Câu 8: Thông hiểu

    Xét tính đúng sai của các nhận định

    Bảng 1 và Bảng 2 lần lượt biểu diễn mẫu số liệu ghép nhóm thống kê mức lương của hai công ty A,B (đơn vị: triệu đồng).

    Nhóm

    Giá trị đại diện

    Tần số

    Nhóm

    Giá trị đại diện

    Tần số

    \lbrack 10;15)

    12,5

    15

    \lbrack 10;15)

    12,5

    25

    \lbrack 15;20)

    17,5

    18

    \lbrack 15;20)

    17,5

    15

     \lbrack 20;25) 

    22,5

    10

     \lbrack 20;25) 

    22,5

    7

     \lbrack 25;30) 

    27,5

    10

     \lbrack 25;30) 

    27,5

    5

     \lbrack 30;35) 

    32,5

    5

     \lbrack 30;35) 

    32,5

    5

     \lbrack 35;40) 

    37,5

    2

     \lbrack 35;40) 

    37,5

    3

    n = 60 n = 60

    Bảng 1

    Bảng 2

    a) [NB] Số trung bình cộng của mẫu số liệu ghép nhóm ở Bảng 1 là \frac{62}{3} (triệu đồng). Đúng||Sai

    b) [TH] Phương sai của mẫu số liệu ghép nhóm ở Bảng 1 là: s_{1}^{2} \approx 49,1389. Đúng||Sai

    c) [TH] Độ lệch chuẩn của mẫu số liệu ghép nhóm ở Bảng 2 là: s_{2} \approx 7,61(triệu đồng). Đúng||Sai

    d) [VD] Công ty B có mức lương đồng đều hơn công ty A. Sai|||Đúng

    Đáp án là:

    Bảng 1 và Bảng 2 lần lượt biểu diễn mẫu số liệu ghép nhóm thống kê mức lương của hai công ty A,B (đơn vị: triệu đồng).

    Nhóm

    Giá trị đại diện

    Tần số

    Nhóm

    Giá trị đại diện

    Tần số

    \lbrack 10;15)

    12,5

    15

    \lbrack 10;15)

    12,5

    25

    \lbrack 15;20)

    17,5

    18

    \lbrack 15;20)

    17,5

    15

     \lbrack 20;25) 

    22,5

    10

     \lbrack 20;25) 

    22,5

    7

     \lbrack 25;30) 

    27,5

    10

     \lbrack 25;30) 

    27,5

    5

     \lbrack 30;35) 

    32,5

    5

     \lbrack 30;35) 

    32,5

    5

     \lbrack 35;40) 

    37,5

    2

     \lbrack 35;40) 

    37,5

    3

    n = 60 n = 60

    Bảng 1

    Bảng 2

    a) [NB] Số trung bình cộng của mẫu số liệu ghép nhóm ở Bảng 1 là \frac{62}{3} (triệu đồng). Đúng||Sai

    b) [TH] Phương sai của mẫu số liệu ghép nhóm ở Bảng 1 là: s_{1}^{2} \approx 49,1389. Đúng||Sai

    c) [TH] Độ lệch chuẩn của mẫu số liệu ghép nhóm ở Bảng 2 là: s_{2} \approx 7,61(triệu đồng). Đúng||Sai

    d) [VD] Công ty B có mức lương đồng đều hơn công ty A. Sai|||Đúng

    a) Đúng. Ta có: Số trung bình cộng của mẫu số liệu ghép nhóm ở Bảng 1 là:

    {\overline{x}}_{1} = \frac{15 \cdot 12,5
+ 18 \cdot 17,5 + 10 \cdot 22,5 + 10 \cdot 27,5 + 5 \cdot 32,5 + 2 \cdot
37,5}{60}

    = \frac{62}{3} \approx 20,67

    Nên mệnh đề a) Đúng

    b) Đúng. Ta có:

    15 \cdot (12,5 - 20,67)^{2} + 18 \cdot
(17,5 - 20,67)^{2} + 10 \cdot (22,5 - 20,67)^{2} +

    + 10.(27,5 - 20,67)^{2} + 5.(32,5 -
20,67)^{2} + 2.(37,5 - 20,67)^{2} \approx 2948,33494

    Phương sai của mẫu số liệu ghép nhóm ở Bảng 1 là: s_{1}^{2} = \frac{2948,334}{60} \approx
49,1389.

    Nên mệnh đề b) Đúng

    c) Đúng. Số trung bình cộng của mẫu số liệu ghép nhóm ở Bảng 2 là:

    {\overline{x}}_{2} = \frac{25 \cdot 12,5
+ 15 \cdot 17,5 + 7 \cdot 22,5 + 5 \cdot 27,5 + 5 \cdot 32,5 + 3 \cdot
37,5}{60}

    = \frac{1145}{60} \approx 19,08

    Ta có: 25 \cdot (12,5 - 19,08)^{2} + 15
\cdot (17,5 - 19,08)^{2} + 7 \cdot (22,5 - 19,08)^{2} +

    + 5.(27,5 - 19,08)^{2} + 5.(32,5 -
19,08)^{2} + 3.(37,5 - 19,08)^{2} \approx 3474,584.

    Phương sai của mẫu số liệu ghép nhóm ở Bảng 2 là: s_{2}^{2} = \frac{3474,584}{60} \approx
57,9097.

    Độ lệch chuẩn của mẫu số liệu ghép nhóm ở Bảng 2 là: s_{2} \approx \sqrt{57,9097} \approx
7,61(triệu đồng)

    Nên mệnh đề c) Đúng

    d) Sai. Độ lệch chuẩn của mẫu số liệu ghép nhóm ở Bảng 1 là:

    s_{1} \approx \sqrt{49,1389} \approx
7(triệu đồng)

    s_{1} \approx 7 < s_{2} \approx
7,61 nên công ty A có mức lương đồng đều hơn công ty B.

    Nên mệnh đề c) Sai

  • Câu 9: Nhận biết

    Chọn đáp án đúng

    Cho mẫu số liệu ghép nhóm với bộ ba tứ phân vị lần lượt là Q_{1} = 11,5; Q_{2} = 14,5; Q_{3} = 21,3. Khi đó khoảng tứ phân vị của mẫu số liệu trên là

    Khoảng tứ phân vị của mẫu số liệu là: \Delta Q = Q_{3} - Q_{1} = 21,3 - 11,5 =
9,8.

  • Câu 10: Thông hiểu

    Tìm phương sai của mẫu số liệu ghép nhóm

    Bảng dưới đây thống kê cự li ném tạ của một vận động viên.

    Cự li (m)

    [19; 19,5)

    [19,5; 20)

    [20; 20,5)

    [20,5; 21)

    [21; 21,5)

    Tần số

    13

    45

    24

    12

    6

    Phương sai của mẫu số liệu ghép nhóm trên gần với giá trị nào sau đây nhất?

    Ta có:

    Cự li (m)

    [19; 19,5)

    [19,5; 20)

    [20; 20,5)

    [20,5; 21)

    [21; 21,5)

    Giá trị đại diện

    19,25

    19,75

    20,25

    20,75

    21,25

    Tần số

    13

    45

    24

    12

    6

    Cỡ mẫu là n = 13 + 45 + 24 + 12 + 6 = 100.

    Số trung bình của mẫu số liệu ghép nhóm là:

    \overline{x} = \frac{1}{100}\lbrack
13.19,25 + 45.19,75

    + 24.20,25 + 12.20,75 + 6.21,25) =
20,015

    Phương sai của mẫu số liệu ghép nhóm là:

    S^{2} = \frac{1}{100}\lbrack
13.(19,25)^{2} + 45.(19,25)^{2}

    + 24.(19,25)^{2} + 12.(19,25)^{2} +
6.(19,25)^{2}brack - (20,015)^{2} \approx 0,277

  • Câu 11: Thông hiểu

    Xét tính đúng sai của các kết luận

    Bạn An và bạn Bình làm thí nghiệm trồng cây. Mỗi bạn trồng 40 cây cần tây trong cốc, phần gốc của các cây khi bắt đầu trồng đều dài bẳng nhau. Bảng 1 và Bảng 2 lần lượt biểu diễn mẫu số liệu ghép nhóm về sổ liệu thống kê chiều cao của các cây (đơn vị: centimét) mà bạn An và bạn Bình trồng sau 5 tuần.

    a) [NB] Khoảng biến thiên của cả hai mẫu số liệu trên là 20. Đúng||Sai

    b) [TH] Chiều cao trung bình của mỗi cây do hai bạn An và Bình trồng không bằng nhau. Sai||Đúng

    c) [TH] Khoảng tứ phân vị của mẫu số liệu ở Bảng 1 là 5,5. Đúng||Sai

    d) [VD,VDC] Chiều cao của các cây mà bạn Bình trồng đồng đều hơn các cây mà bạn An trồng. Sai||Đúng

    Đáp án là:

    Bạn An và bạn Bình làm thí nghiệm trồng cây. Mỗi bạn trồng 40 cây cần tây trong cốc, phần gốc của các cây khi bắt đầu trồng đều dài bẳng nhau. Bảng 1 và Bảng 2 lần lượt biểu diễn mẫu số liệu ghép nhóm về sổ liệu thống kê chiều cao của các cây (đơn vị: centimét) mà bạn An và bạn Bình trồng sau 5 tuần.

    a) [NB] Khoảng biến thiên của cả hai mẫu số liệu trên là 20. Đúng||Sai

    b) [TH] Chiều cao trung bình của mỗi cây do hai bạn An và Bình trồng không bằng nhau. Sai||Đúng

    c) [TH] Khoảng tứ phân vị của mẫu số liệu ở Bảng 1 là 5,5. Đúng||Sai

    d) [VD,VDC] Chiều cao của các cây mà bạn Bình trồng đồng đều hơn các cây mà bạn An trồng. Sai||Đúng

    a) Đúng. Khoảng biến thiên của cả hai mẫu số liệu là 40 - 20 = 20.

    b) Sai. Chiều cao trung bình của cây do bạn An trồng là

    {\overline{x}}_{A} = \frac{22,5.2 +
27,5.16 + 32,5.20 + 37,5.2}{40} = 30,25\ (cm.).

    Chiều cao trung bình của cây do bạn Bình trồng là: {\overline{x}}_{B} = \frac{22,5.5 + 27,5.9 +
32,5.25 + 37,5.1}{40} = 30,25\ (cm).

    Suy ra chiều cao trung bình của mỗi cây do hai bạn An và Bình trồng là bằng nhau.

    c) Đúng. Xét mẫu số liệu ở Bảng 1.

    Tứ phân vị thứ nhất Q_{1} của mẫu số liệu đó là

    Q_{1} = 25 + \left(
\frac{10 - 2}{16} ight).5 = 27,5\ cm.

    Tứ phân vị thứ ba Q_{3} của mẫu số liệu đó là:

    Q_{3} = 30 + \left( \frac{30 -
18}{20} ight).5 = 33\ cm.

    Suy ra khoảng tứ phân vị của mẫu số liệu ở Bảng 1 là 33 - 27,5 = 5,5.

    d) Sai. Phương sai của mẫu số liệu ở Bảng 1 là

    s_{A}^{2} = \frac{22,5^{2}.2 +
27,5^{2}.16 + 32,5^{2}.20 + 37,5^{2}.2}{40} - 30,25^{2}\  =
11,1875.

    Phương sai của mẫu số liệu ở Bảng 14 là

    s_{B}^{2} = \frac{22,5^{2}.5 +
27,5^{2}.9 + 32,5^{2}.25 + 37,5^{2}.1}{40} - 30,25^{2} =
13,6875.

    Suy ra s_{A}^{2} < s_{B}^{2}. Vậy chiều cao của các cây mà bạn An trồng đồng đều hơn các cây mà bạn Bình trồng.

  • Câu 12: Vận dụng

    Ghi đáp án vào ô trống

    Cho bảng thống kê chiều cao (đơn vị: cm) của học sinh lớp 12A và lớp 12B như sau:

    Chiều cao

    [155; 160)

    [160; 165)

    [165; 170)

    [170; 175)

    [175; 180)

    [180; 185)

    12A

    2

    7

    12

    3

    0

    1

    12B

    5

    9

    8

    2

    1

    0

    Em có nhận xét gì về độ phân tán của nửa giữa số liệu chiều cao của học sinh lớp 12A so với lớp 12B?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho bảng thống kê chiều cao (đơn vị: cm) của học sinh lớp 12A và lớp 12B như sau:

    Chiều cao

    [155; 160)

    [160; 165)

    [165; 170)

    [170; 175)

    [175; 180)

    [180; 185)

    12A

    2

    7

    12

    3

    0

    1

    12B

    5

    9

    8

    2

    1

    0

    Em có nhận xét gì về độ phân tán của nửa giữa số liệu chiều cao của học sinh lớp 12A so với lớp 12B?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 13: Thông hiểu

    Ghi đáp án vào ô trống

    Thống kê thời gian làm bài test ngắn của học sinh hai lớp 12A và 12B ghi lại trong bảng sau:

    Thời gian (phút)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

    [10; 11)

    Học sinh lớp 12A

    8

    10

    13

    10

    9

    Học sinh lớp 12B

    4

    12

    17

    14

    3

    Nếu so sánh theo khoảng tứ phân vị thì học sinh lớp nào có thời gian làm bài đồng đều hơn?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Thống kê thời gian làm bài test ngắn của học sinh hai lớp 12A và 12B ghi lại trong bảng sau:

    Thời gian (phút)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

    [10; 11)

    Học sinh lớp 12A

    8

    10

    13

    10

    9

    Học sinh lớp 12B

    4

    12

    17

    14

    3

    Nếu so sánh theo khoảng tứ phân vị thì học sinh lớp nào có thời gian làm bài đồng đều hơn?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 14: Vận dụng

    Xác định tính đúng sai của các nhận định

    Bảng tần số ghép nhóm dưới đây thống kê số giờ ngủ buổi tối của các học sinh lớp 12A1 và 12A2:

    a) Khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian ngủ của các bạn nam là 5. Đúng||Sai

    b) Khoảng tứ phân vị của mẫu số liệu ghép nhóm về thời gian ngủ của các bạn nam là 2,09. Sai||Đúng

    c) Khoảng tứ phân vị của mẫu số liệu ghép nhóm về thời gian ngủ của các bạn nữ trong khoảng (2;3). Đúng||Sai

    d) Học sinh nam có thời gian ngủ đồng đều hơn. Sai||Đúng

    Đáp án là:

    Bảng tần số ghép nhóm dưới đây thống kê số giờ ngủ buổi tối của các học sinh lớp 12A1 và 12A2:

    a) Khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian ngủ của các bạn nam là 5. Đúng||Sai

    b) Khoảng tứ phân vị của mẫu số liệu ghép nhóm về thời gian ngủ của các bạn nam là 2,09. Sai||Đúng

    c) Khoảng tứ phân vị của mẫu số liệu ghép nhóm về thời gian ngủ của các bạn nữ trong khoảng (2;3). Đúng||Sai

    d) Học sinh nam có thời gian ngủ đồng đều hơn. Sai||Đúng

    a) Khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian ngủ của các bạn nam là: 9 – 4 = 5

    Mệnh đề đúng.

    b) Tính khoảng tứ phân vị của mẫu số liệu ghép nhóm về thời gian ngủ của các bạn nam:

    Cỡ mẫu n = 6 + 10 + 13 + 9 + 7 =
45

    Gọi x_{1};\ x_{2};\ \ldots;\
x_{45}là thời gian ngủ của 45 học sinh nam được sắp xếp theo thứ tự tăng dần.

    Tứ phân vị thứ nhất của mẫu số liệu là \frac{x_{11} + x_{12}}{2} thuộc nhóm \left\lbrack \mathbf{5;6} \right) nên nhóm chứa tứ phân vị thứ nhất là \left\lbrack \mathbf{5;6} \right). Ta có: Q_{1} = 5 + \frac{6 - 5}{10}\left(
\frac{45}{4} - 6 \right) \approx 5,53

    Tứ phân vị thứ ba của mẫu số liệu là \frac{x_{34} + x_{35}}{2} thuộc nhóm \left\lbrack \mathbf{7;8} \right) nên nhóm chứa tứ phân vị thứ nhất là \left\lbrack \mathbf{7;8}
\right). Ta có: Q_{3} = 7 + \frac{8 - 7}{9}\left( \frac{3.45}{4} -
29 \right) \approx 7,53

    Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \Delta Q = Q_{3} - Q_{1} = 7,53 - 5,53 =
2

    Mệnh đề sai.

    c) Tính khoảng tứ phân vị của mẫu số liệu ghép nhóm về thời gian ngủ của các bạn nữ:

    Cỡ mẫu n = 4 + 8 + 10 + 11 + 8 =
41

    Gọi x_{1};\ x_{2};\ \ldots;\
x_{41}là thời gian ngủ của 41 học sinh nữ được sắp xếp theo thứ tự tăng dần.

    Tứ phân vị thứ nhất của mẫu số liệu là \frac{x_{10} + x_{11}}{2} thuộc nhóm \left\lbrack \mathbf{5;6} \right) nên nhóm chứa tứ phân vị thứ nhất là \left\lbrack \mathbf{5;6} \right). Ta có: Q_{1} = 5 + \frac{6 - 5}{8}\left(
\frac{41}{4} - 4 \right) \approx 5,78

    Tứ phân vị thứ ba của mẫu số liệu là \frac{x_{31} + x_{32}}{2} thuộc nhóm \left\lbrack \mathbf{7;8} \right) nên nhóm chứa tứ phân vị thứ nhất là \left\lbrack \mathbf{7;8}
\right). Ta có: Q_{3} = 7 + \frac{8 - 7}{11}\left( \frac{3.41}{4}
- 22 \right) \approx 7,80

    Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \Delta Q = Q_{3} - Q_{1} = 7,80 - 5,78 =
2,02

    Mệnh đề đúng.

    d) Vì khoảng tứ phân vị của mẫu số liệu ghép nhóm của học sinh nữ lớn hơn so với học sinh nam. Học sinh nữ có thời gian ngủ đồng đều hơn.

    Mệnh đề sai.

  • Câu 15: Nhận biết

    Xét tính đúng sai của các nhận định

    Phỏng vấn một số học sinh lớp 11 về thời gian (giờ) ngủ của một buổi tối, thu được bảng số liệu sau:

    a) Số lượng học sinh nam là 45 bạn. Đúng||Sai

    b) Thời gian ngủ trung bình của các bạn học sinh nam là 8 giờ. Đúng||Sai

    c) Phương sai của mẫu số liệu trên là s^{2} = 3. Sai||Đúng

    d) Độ lệch chuẩn là 9. Sai||Đúng

    Đáp án là:

    Phỏng vấn một số học sinh lớp 11 về thời gian (giờ) ngủ của một buổi tối, thu được bảng số liệu sau:

    a) Số lượng học sinh nam là 45 bạn. Đúng||Sai

    b) Thời gian ngủ trung bình của các bạn học sinh nam là 8 giờ. Đúng||Sai

    c) Phương sai của mẫu số liệu trên là s^{2} = 3. Sai||Đúng

    d) Độ lệch chuẩn là 9. Sai||Đúng

    a) Đúng, b) Đúng, c) Sai, d) Sai.

    Số lượng học sinh nam là : 6 + 10 + 13 +
9 + 7 = 45

    Thời gian ngủ trung bình của các bạn học sinh nam là :

    \overline{x} = \frac{1}{45}.\lbrack
6.4,5 + 10.5,5 + 13.6,5 + 9.7,5 + 7.8,5\rbrack =
\frac{587}{90}

    Phương sai của mẫu số liệu trên là

    s^{2} = \frac{1}{45}.[ 6.4,5^{2} +10.5,5^{2} + 13.6,5^{2}+ 9.7,5^{2} + 7.8,5^{2}] - \left(\frac{587}{90} \right)^{2} = 1,5773

    Độ lệch chuẩn là s =
\sqrt{1,5773}.

  • Câu 16: Nhận biết

    Tính khoảng biến thiên của mẫu số liệu

    Bảng dưới đây thống kê cự li ném tạ của một vận động viên.

    Cự li (m)

    [19; 19,5)

    [19,5; 20)

    [20; 20,5)

    [20,5; 21)

    [21; 21,5)

    Tần số

    13

    45

    24

    12

    6

    Khoảng biến thiên của mẫu số liệu ghép nhóm này bằng

    Khoảng biến thiên của mẫu số liệu này bằng 21,5 - 19 = 2,5.

  • Câu 17: Nhận biết

    Xét tính đúng sai của các nhậnđịnh

    Điểm thi của 32 học sinh trong kì thi Tiếng Anh có bảng ghép nhóm sau đây:

    a) Số học sinh có điểm thi thấp hơn 60 là 10. Đúng||Sai

    b) Giá trị đại diện của nhóm [70;80) là 75. Đúng||Sai

    c) Điểm thi trung bình môn tiếng anh của 32 học sinh bằng 75. Sai||Đúng

    d) Độ lệch chuẩn bằng: 100. Sai||Đúng

    Đáp án là:

    Điểm thi của 32 học sinh trong kì thi Tiếng Anh có bảng ghép nhóm sau đây:

    a) Số học sinh có điểm thi thấp hơn 60 là 10. Đúng||Sai

    b) Giá trị đại diện của nhóm [70;80) là 75. Đúng||Sai

    c) Điểm thi trung bình môn tiếng anh của 32 học sinh bằng 75. Sai||Đúng

    d) Độ lệch chuẩn bằng: 100. Sai||Đúng

    a) Đúng b) Đúng, c) Sai d) Sai.

    Số học sinh có điểm thi thấp hơn 60 là 4 + 6 =10.

    Giá trị đại diện của nhóm [70;80) là \frac{70 + 80}{2} = 75.

    Điểm thi trung bình môn tiếng anh của 32 học sinh bằng :

    \overline{x} = \frac{1}{32}.\lbrack 4.45
+ 6.55 + 10.65 + 6.75 + 4.85 + 2.95\rbrack = 66,875

    Phương sai là:

    s^{2} = \frac{4.(45 - 66,87)^{2} + 6.(55
- 66,87)^{2}}{32}+ \frac{10.(65 - 66,87)^{2} + 6.(75 -
66,87)^{2}}{32}

    + \frac{4.(85 - 66,87)^{2} + 2.(95 -
66,87)^{2}}{32} \approx 190,2344

    s = \sqrt{190,2344}

  • Câu 18: Nhận biết

    Chọn kết luận đúng

    Cho bảng thống kê thời gian (đơn vị: phút) và số ngày tập thể dục của hai người A và B trong 30 ngày như sau:

    Thời gian

    [15; 20)

    [25; 30)

    [30; 35)

    Số ngày tập của A

    10

    15

    5

    Số ngày tập của B

    9

    21

    0

    Chọn kết luận đúng dưới đây?

    Khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian tập của A là: 35 – 15 = 20 (phút).

    Khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian tập của B là: 30 – 15 = 15 (phút).

    Do đó căn cứ theo khoảng biến thiên thì thời gian tập của A có độ phân tán lớn hơn.

  • Câu 19: Nhận biết

    Tìm tốc độ trung bình của mẫu dữ liệu

    Thống kê tốc độ của các loại xe hơi (đơn vị: km/h) được ghi lại như sau:

    42

    43,4

    43,4

    46,5

    46,7

    46,8

    47,5

    47,7

    48,1

    48,4

    50,8

    51,1

    52,7

    53,9

    54,8

    57,6

    57,5

    59,6

    60,3

    61,1

    Lập bảng tần số ghép nhóm với nhóm đầu [42; 46) và độ dài mỗi nhóm bằng 4. Tìm tốc độ trung bình của mẫu dữ liệu ghép nhóm?

    Ta lập được bảng tần số ghép nhóm như sau:

    Tốc độ

    [42; 46)

    [46; 50)

    [50; 54)

    [54; 58)

    [58; 62)

    Giá trị đại diện

    44

    48

    52

    56

    60

    Số xe

    3

    7

    4

    3

    3

    Tốc độ trung bình là:

    \overline{x} = \frac{3.44 + 7.48 + 4.52
+ 3.56 + 3.60}{20} = 51,2

  • Câu 20: Thông hiểu

    Tìm khoản biến thiên và khoảng tứ phân vị

    Để đánh giá chất lượng một loại pin điện thoại mới, người ta ghi lại thời gian nghe nhạc liên tục của điện thoại được sạc đầy pin cho đến khi hết pin cho kết quả sau:

    Thời gian (giờ)

    [5; 5,5)

    [5,5; 6)

    [6; 6,5)

    [6,5; 7)

    [7; 7,5)

    Số chiếc điện thoại

    (tần số)

    2

    8

    15

    10

    5

    Khoảng biến thiên, khoảng tứ phân vị của mẫu số liệu ghép nhóm trên lần lượt là:

    Khoảng biến thiên: R = 7,5 – 5 = 2,5.

    Khoảng tứ phân vị  \Delta_{Q} =
0,75

    Cỡ mẫu là n = 2 + 8 + 15 + 10 + 5 = 40.

    Gọi x1; x2; …; x40 thời gian nghe nhạc liên tục của điện thoại được sạc đầy pin cho đến khi hết pin và được sắp xếp theo thứ tự tăng dần.

    Tứ phân vị thứ nhất của mẫu số liệu gốc là \frac{x_{10} + x_{11}}{2}. Mà x_{10} \in [5,5; 6); x_{11} \in [6; 6,5). Do đó Q1 = 6.

    Tứ phân vị thứ ba của mẫu số liệu gốc là \frac{x_{30} + x_{31}}{2} \in[6,5; 7) nên nhóm chứa tứ phân vị thứ ba là [6,5; 7).

    Q_{3} = 6,5 + \frac{\frac{3.40}{4} -
25}{10}(7 - 6,5) = 6,75

    Khoảng tứ phân vị  \Delta_{Q} = Q3 – Q1 = 6,75 – 6 = 0,75.

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 3 Các số đặc trưng đo mức độ phân tán cho mẫu số liệu ghép nhóm CTST Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo