Tìm khoảng đồng biến của hàm số
Cho hàm số có bảng biến thiên như sau:
Hàm số đã cho đồng biến trên khoảng nào dưới đây?
Dựa vào bảng biến thiên ta thấy: ,
.
Suy ra, hàm số đồng biến trên khoảng
.
Mời các bạn học cùng thử sức với đề Đề thi học kì 1 môn Toán lớp 12 sách Chân trời sáng tạo nha!
Tìm khoảng đồng biến của hàm số
Cho hàm số có bảng biến thiên như sau:
Hàm số đã cho đồng biến trên khoảng nào dưới đây?
Dựa vào bảng biến thiên ta thấy: ,
.
Suy ra, hàm số đồng biến trên khoảng
.
Chọn khẳng định đúng
Cho hàm số liên tục và có bảng biến thiên trên đoạn
như hình vẽ bên. Khẳng định nào sau đây đúng?
Dựa vào bảng biến thiên ta thấy: tại
.
Suy ra .
Tìm tiệm cận ngang của đồ thị hàm số
Cho hàm số có đồ thị như hình vẽ.
Đồ thị hàm số đã cho có đường tiệm cận ngang bằng:
Dựa vào đồ thị hàm số ta có: .
Do đó, đồ thị hàm số có đường tiệm cận ngang là
.
Chọn đáp án thích hợp
Đồ thị hàm số là hình nào trong 4 hình dưới đây?
Ta có:
Khi đó .
Do đó, chọn đáp án là: Hình 2
Chọn đáp án chính xác
Trong không gian, cho hai vectơ và
. Vectơ
bằng
Theo quy tắc ba điểm: .
Tìm câu sai
Chọn mệnh đề sai. Trong không gian, cho hình hộp .
Hình vẽ minh họa
Đáp án đúng theo quy tắc hình hộp
Đáp án sai
Đáp án đúng theo quy tắc hình hộp
Đáp án đúng theo quy tắc hình bình hành
Tính góc giữa hai vectơ
Trong không gian, cho hình lập phương . Góc giữa hai vectơ
và
bằng
Hình vẽ minh họa
Ta có: . Do đó,
Vì nên tam giác
là tam giác đều.
Suy ra
Vậy
Xác định tọa độ vectơ
Cho và
. Hãy xác định tọa độ của
?
Ta có:
Tìm tọa độ vectơ
Trong không gian , cho hình chóp
có đáy
là hình thoi cạnh bằng 5, giao điểm của hai đường chéo
và
trùng với gốc tọa độ
. Các véc tơ
,
,
lần lượt cùng hướng với các véc tơ
,
,
và
,
. Gọi
là trung điểm cạnh
. Tọa độ của véc tơ
là
Hình vẽ minh họa
Ta có .
Khi đó .
Vì là trung điểm của
nên ta có
.
Xác định tọa độ điểm Q
Trong không gian tọa độ cho ba điểm
. Tìm tọa độ điểm
để tứ giác
là hình bình hành
Minh họa bằng hình vẽ sau:
Ta có .
là hình bình hành
.
Vậy .
Tính khoảng tứ phân vị của mẫu số liệu ghép nhóm
Bạn An rất thích chạy bộ. Thời gian chạy bộ mỗi ngày trong thời gian gần đây của bạn An được thống kê lại ở bảng sau:
Thời gian (phút) | [20; 25) | [25; 30) | [30; 35) | [35; 40) | [40; 45) |
Số ngày | 6 | 6 | 4 | 1 | 1 |
Hãy tính khoảng tứ phân vị của mẫu số liệu ghép nhóm trong bảng trên.
Cỡ mẫu .
Gọi là mẫu số liệu gốc gồm thời gian của 18 ngày chạy bộ của bạn An được sắp xếp theo thứ tự không giảm.
Ta có:
Tứ phân vị thứ nhất của mẫu số liệu gốc là .
Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là:
.
Tứ phân vị thứ ba của mẫu số liệu gốc là .
Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là:
.
Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm là: .
Tính phương sai của mẫu số liệu ghép nhóm
Cân nặng (kg) của một số quả mít trong một khu vườn được thống kê ở bảng sau:
|
Cân nặng (kg) |
[4; 6) |
[6; 8) |
[8; 10) |
[10; 12) |
[12; 14) |
|
Số cây giống |
6 |
12 |
19 |
9 |
4 |
Hãy tính phương sai của mẫu số liệu ghép nhóm trên (làm tròn đến hàng phần mười).
Ta có giá trị đại diện được thể hiện trong bảng sau:
|
Cân nặng (kg) |
[4; 6) |
[6; 8) |
[8; 10) |
[10; 12) |
[12; 14) |
|
Giá trị đại diện |
5 |
7 |
9 |
11 |
13 |
|
Số cây giống |
6 |
12 |
19 |
9 |
4 |
Cỡ mẫu: .
Số trung bình
.
Phương sai:
.
Xét tính đúng sai của mỗi ý hỏi
Cho hàm số
có đồ thị
. Các khẳng định sau đúng hay sai?
a) Hàm số có 2 điểm cực trị. Đúng||Sai
b) Giá trị cực đại của hàm số là
. Sai||Đúng
c)
. Sai||Đúng
d) Khoảng cách giữa 2 điểm cực trị của đồ thị hàm số là
. Đúng||Sai
Cho hàm số
có đồ thị
. Các khẳng định sau đúng hay sai?
a) Hàm số có 2 điểm cực trị. Đúng||Sai
b) Giá trị cực đại của hàm số là
. Sai||Đúng
c)
. Sai||Đúng
d) Khoảng cách giữa 2 điểm cực trị của đồ thị hàm số là
. Đúng||Sai
a) đúng, b) sai, c) sai, d) đúng.
Ta có
Cho
Dựa vào bảng biến thiên ta thấy
- Hàm số có 2 điểm cực trị nên a) đúng.
- Giá trị cực đại của hàm số là nên b) sai.
- Hàm số nghịch biến trên
nên c) sai.
- Đồ thị có 2 điểm cực trị là và
nên d) đúng.
Xét tính đúng sai của mỗi kết luận
Trong không gian với hệ tọa độ
, cho tam giác
với
,
,
. Các khẳng định sau đúng hay sai?
a)
. Sai||Đúng
b)
. Sai||Đúng
c) Hình chiếu vuông góc của điểm
trên mặt phẳng tọa độ
là điểm
. Đúng||Sai
d) Nếu
là hình bình hành thì tọa độ điểm D là
. Sai||Đúng
Trong không gian với hệ tọa độ
, cho tam giác
với
,
,
. Các khẳng định sau đúng hay sai?
a)
. Sai||Đúng
b)
. Sai||Đúng
c) Hình chiếu vuông góc của điểm
trên mặt phẳng tọa độ
là điểm
. Đúng||Sai
d) Nếu
là hình bình hành thì tọa độ điểm D là
. Sai||Đúng
Ta có:
a) sai.
b) sai.
c) đúng
d) Gọi ,
,
Vì là hình bình hành nên
.
Vậy d) sai
Xét tính đúng sai của mỗi khẳng định
Xét tính đúng sai của mỗi khẳng định. Trong không gian
cho ba điểm
và hai vecto ![]()
a) Tích vô hướng của hai vecto
bằng
Đúng||Sai
b) Trung điểm của đoạn
có tọa độ là
. Sai||Đúng
c) Tọa độ của vecto
là
. Sai||Đúng
d) Hình chiếu vuông góc của trọng tâm tam giác
lên mặt phẳng
là
Đúng||Sai
Xét tính đúng sai của mỗi khẳng định. Trong không gian
cho ba điểm
và hai vecto ![]()
a) Tích vô hướng của hai vecto
bằng
Đúng||Sai
b) Trung điểm của đoạn
có tọa độ là
. Sai||Đúng
c) Tọa độ của vecto
là
. Sai||Đúng
d) Hình chiếu vuông góc của trọng tâm tam giác
lên mặt phẳng
là
Đúng||Sai
a) đúng, b) sai, c) sai, d) đúng.
a) Ta có
b) Ta có trung điểm của đoạncó tọa độ là
c) Ta có
Suy ra
d) Ta có Suy ra hình chiếu vuông góc của trọng tâm tam giác
lên mặt phẳng
là
.
Xét tính đúng sai của các khẳng định
Bảng dưới đây thống kê điểm thi học kỳ I môn tiếng Anh của học sinh hai lớp 12A và 12B năm học 2023-2024.
|
Điểm thi |
[0; 2) |
[2; 4) |
[4; 6) |
[6; 8) |
[8; 10) |
|
Số học sinh lớp 12A |
1 |
5 |
20 |
8 |
6 |
|
Số học sinh lớp 12B |
2 |
3 |
10 |
18 |
7 |
Xét tính đúng sai của các kết luận sau?
a) Khoảng biến thiên của mẫu số liệu ghép nhóm của mỗi lớp là bằng nhau. Đúng||Sai
b) Khoảng tứ phân vị của mẫu số liệu ghép nhóm lớp 12A bằng
Đúng||Sai
c) Khoảng tứ phân vị của mẫu số liệu ghép nhóm lớp 12B bằng
Sai||Đúng
d) Nếu so sánh theo khoảng tứ phân vị thì điểm thi môn tiếng Anh của lớp 12B đồng đều hơn so với lớp 12A. Sai||Đúng
Bảng dưới đây thống kê điểm thi học kỳ I môn tiếng Anh của học sinh hai lớp 12A và 12B năm học 2023-2024.
|
Điểm thi |
[0; 2) |
[2; 4) |
[4; 6) |
[6; 8) |
[8; 10) |
|
Số học sinh lớp 12A |
1 |
5 |
20 |
8 |
6 |
|
Số học sinh lớp 12B |
2 |
3 |
10 |
18 |
7 |
Xét tính đúng sai của các kết luận sau?
a) Khoảng biến thiên của mẫu số liệu ghép nhóm của mỗi lớp là bằng nhau. Đúng||Sai
b) Khoảng tứ phân vị của mẫu số liệu ghép nhóm lớp 12A bằng
Đúng||Sai
c) Khoảng tứ phân vị của mẫu số liệu ghép nhóm lớp 12B bằng
Sai||Đúng
d) Nếu so sánh theo khoảng tứ phân vị thì điểm thi môn tiếng Anh của lớp 12B đồng đều hơn so với lớp 12A. Sai||Đúng
a) Đúng. Khoảng biến thiên:
b) Lớp 12A:
Ta có
c) Lớp 12B:
Ta có
d) Ta có Lớp 12A sẽ đồng đều hơn so với lớp 12B.
Ghi đáp án vào ô trống
Cho hàm số
với
, có đồ thị là đường cong như hình vẽ bên dưới.

Với
thì giá trị
là bao nhiêu?
Đáp án: 7
Cho hàm số
với
, có đồ thị là đường cong như hình vẽ bên dưới.

Với
thì giá trị
là bao nhiêu?
Đáp án: 7
Với , ta có
.
Đồ thị hàm số có tiệm cận đứng là nên
.
Khi đó .
Thực hiện phép chia đa thức lấy tử chia mẫu ta được thương là , nên đồ thị hàm số có đường tiệm cận xiên là
, mặt khác nhìn vào đồ thị ta thấy đồ thị hàm số có đường tiệm cận xiên là
.
Nên ta có phương trình:
hay
.
Khi đó .
Vì đồ thị hàm số đi qua điểm nên ta được
.
Suy ra .
Vậy .
Ghi đáp án vào ô trống
Một máy bay bắt đầu hạ cánh, biết quỹ đạo đường bay của nó được mô hình hóa toán học trong mặt phẳng với hệ tọa độ
(với mỗi đơn vị trên mỗi trục có độ dài bằng 1 dặm) có dạng đồ thị của hàm bậc ba. Vị trí bắt đầu hạ cánh có tọa độ là
là điểm cực đại của đồ thị hàm số và máy bay này tiếp đất tại vị trí gốc tọa độ là điểm cực tiểu của đồ thị hàm số. Khi máy bay cách vị trí hạ cánh theo phương ngang 3 dặm thì máy bay cách mặt đất bao nhiêu dặm (kết quả làm tròn đến hàng phần trăm)?
Đáp án: 0,84 dặm
Một máy bay bắt đầu hạ cánh, biết quỹ đạo đường bay của nó được mô hình hóa toán học trong mặt phẳng với hệ tọa độ
(với mỗi đơn vị trên mỗi trục có độ dài bằng 1 dặm) có dạng đồ thị của hàm bậc ba. Vị trí bắt đầu hạ cánh có tọa độ là
là điểm cực đại của đồ thị hàm số và máy bay này tiếp đất tại vị trí gốc tọa độ là điểm cực tiểu của đồ thị hàm số. Khi máy bay cách vị trí hạ cánh theo phương ngang 3 dặm thì máy bay cách mặt đất bao nhiêu dặm (kết quả làm tròn đến hàng phần trăm)?
Đáp án: 0,84 dặm
Gọi hàm số mô phỏng đường bay của máy bay là .
Đồ thị hàm số đi qua điểm nên ta có
.
Đồ thị hàm số đi qua điểm nên ta có phương trình
.
Mặt khác, ta có và
là hai điểm cực trị của đồ thị hàm số nên ta có
tức là
.
Từ và
ta có
.
Suy ra .
Thay ta được
.
Vậy khi máy bay ha cánh theo phương ngang 3 dặm thì máy bay cách mặt đất khoảng dặm.
Ghi đáp án vào ô trống
Hằng ngày mực nước của hồ thủy điện ở miền Trung lên và xuống theo lượng nước mưa, và các suối nước đổ về hồ. Từ lúc 8h sáng, độ sâu của mực nước trong hồ tính theo mét và lên xuống theo thời gian t (giờ) trong ngày cho bởi công thức
. Biết rằng phải thông báo cho các hộ dân di dời trước khi xả nước theo quy định trước 5 tiếng. Hỏi cần thông báo cho hộ dân di dời trước khi xả nước lúc mấy giờ. Biết rằng mực nước trong hồ phải lên cao nhất mới xả nước.
Đáp án: 15
Hằng ngày mực nước của hồ thủy điện ở miền Trung lên và xuống theo lượng nước mưa, và các suối nước đổ về hồ. Từ lúc 8h sáng, độ sâu của mực nước trong hồ tính theo mét và lên xuống theo thời gian t (giờ) trong ngày cho bởi công thức
. Biết rằng phải thông báo cho các hộ dân di dời trước khi xả nước theo quy định trước 5 tiếng. Hỏi cần thông báo cho hộ dân di dời trước khi xả nước lúc mấy giờ. Biết rằng mực nước trong hồ phải lên cao nhất mới xả nước.
Đáp án: 15
Ta có:
Bảng biến thiên:
Mực nước lên cao nhất thì phải mất giờ.
Hay mực nước lên cao nhất là lúc 20 giờ.
Vậy phải thông báo cho dân di dời vào giờ chiều cùng ngày.
Ghi đáp án vào ô trống
Trong không gian
, cho hình hộp chữ nhật
có
trùng với gốc tọa độ
Biết rằng
,
,
với
,
là các số dương và
. Tính thể tích lớn nhất của tứ diện
? (Kết quả làm tròn đến chữ số thập phân thứ hai).
Đáp án: 3,16
Trong không gian
, cho hình hộp chữ nhật
có
trùng với gốc tọa độ
Biết rằng
,
,
với
,
là các số dương và
. Tính thể tích lớn nhất của tứ diện
? (Kết quả làm tròn đến chữ số thập phân thứ hai).
Đáp án: 3,16
Hình vẽ minh họa
Ta có: ,
,
,
nên
⇒ (do
);
;
.
Mà
⇒.
Xét hàm số trên
⇒
Bảng biến thiên:
Vậy .
Ghi đáp án vào ô trống
Một chiếc máy được đặt trên một giá đỡ ba chân tại điểm đặt
, giá đỡ có các điểm tiếp xúc mặt đất của ba chân lần lượt là
,
. Biết rằng trọng lượng của chiếc máy là
, tác dụng lên các giá đỡ theo các lực
như hình.

Tính tích vô hướng của
(làm tròn đến chữ số hàng đơn vị).
Đáp án: 6311
Một chiếc máy được đặt trên một giá đỡ ba chân tại điểm đặt
, giá đỡ có các điểm tiếp xúc mặt đất của ba chân lần lượt là
,
. Biết rằng trọng lượng của chiếc máy là
, tác dụng lên các giá đỡ theo các lực
như hình.

Tính tích vô hướng của
(làm tròn đến chữ số hàng đơn vị).
Đáp án: 6311
Ta có:
.
Suy ra, (vì chân bằng nhau, giá đỡ cân bằng, trọng lực tác dụng đều lên 3 chân của giá đỡ).
Do đó:
.
Mà .
Suy ra .
Từ đó .
Vậy .
Ghi đáp án vào ô trống
Bảng dưới đây thống kê cự li ném tạ của một vận động viên.
Cự li | [19; 21) | [21; 23) | [23; 25) | [25; 27) | [27; 29) |
Tần số | 13 | 45 | 24 | 12 | 6 |
Hãy tính độ lệch chuẩn của mẫu số liệu ghép nhóm trên (kết quả được làm tròn đến hàng phần trăm)
Đáp án: 2,07
Bảng dưới đây thống kê cự li ném tạ của một vận động viên.
Cự li | [19; 21) | [21; 23) | [23; 25) | [25; 27) | [27; 29) |
Tần số | 13 | 45 | 24 | 12 | 6 |
Hãy tính độ lệch chuẩn của mẫu số liệu ghép nhóm trên (kết quả được làm tròn đến hàng phần trăm)
Đáp án: 2,07
Ta có:
Cự li | [19; 21) | [21; 23) | [23; 25) | [25; 27) | [27; 29) |
Giá trị đại diện | 20 | 22 | 24 | 26 | 28 |
Tần số | 13 | 45 | 24 | 12 | 6 |
Cỡ mẫu:
Số trung bình:
Phương sai:
Độ lệch chuẩn: .
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: