Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề kiểm tra 45 phút Chương 6 Xác suất có điều kiện CTST

Mô tả thêm:

Hãy cùng thử sức kiểm tra đánh giá các kiến thức tổng quan với bài kiểm tra phút Chương 6: Xác suất có điều kiện Toán 12 sách Chân trời sáng tạo các em nhé!

  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Nhận biết

    Tìm số kết quả thuận lợi của biến cố

    Từ một hộp có 4 tấm thẻ cùng loại được ghi số lần lượt từ 1 đến 4. Bạn An lấy ra một cách ngẫu nhiên một thẻ từ hộp, bỏ thẻ đó ra ngoài và lại lấy một cách ngẫu nhiên thêm một thẻ nữa. Xét biến cố A là “thẻ lấy ra lần thứ nhất ghi số 3”. Số các kết quả thuận lợi của biến cố A

    Tập hợp các kết quả thuận lợi cho biến cố A\left\{
(3;1),(3;2),(3;4) \right\}.

    Vậy n(A) = 3.

  • Câu 2: Nhận biết

    Chọn công thức đúng

    Cho hai biến cố AB với 0 <
P(B) < 1. Khi đó công thức xác suất toàn phần tính P(A) là:

    Ta có công thức xác suất toàn phần tính P(A) là:

    P(A) = P(B).P\left( A|B ight) + P\left(
\overline{B} ight).P\left( A|\overline{B} ight)

  • Câu 3: Thông hiểu

    Xác định công thức đúng

    Cho ba biến cố A;B;C độc lập từng đôi thỏa mãn P(A) = P(B) = P(C) =
pP(ABC) = 0. Xác định P\left( A\overline{B}\overline{C}
ight)?

    Ta có:

    P\left( A\overline{B}\overline{C}
ight) = P\left( A\overline{B} ight) - P\left( A\overline{B}C
ight)

    = p(1 - p) - p^{2} = p -
2p^{2}

  • Câu 4: Thông hiểu

    Chọn đáp án đúng

    Cho hai biến cố A;BP(A) = 0,2;P(B) = 0,6;P\left( A|B ight) =
0,3. Xác định P\left( \overline{A}B
ight)?

    Theo công thức tính xác suất có điều kiện ta có:

    P\left( A|B ight) = \frac{P(AB)}{P(B)}\Rightarrow P(AB) = P\left( A|B ight)P(B) = 0,3.0,6 =0,18

    \overline{A}BAB là hai biến cố xung khắc và \overline{A}B \cup AB = B nên theo tính chất của xác suất ta có:

    P\left( \overline{A}B ight) + P(AB) =
P(B)

    \Rightarrow P\left( \overline{A}B
ight) = P(B) - P(AB) = 0,6 - 0,18 = 0,42

  • Câu 5: Thông hiểu

    Tính xác suất P

    Khảo sát về sở thích uống trà sữa của 200 em học sinh theo giới tính và loại trà sữa ta được bảng số liệu sau:

    A table with numbers and lettersDescription automatically generated

    Chọn ngẫu nhiên một bạn học sinh. Nếu đã chọn được một bạn nữ thì xác suất để bạn nữ thích uống vị hồng trà là bao nhiêu?

    Gọi A là biến cố “chọn được bạn nữ” suy ra P(A) = \frac{130}{200} =
\frac{13}{20}.

    B là biến cố “chọn được bạn thích uống hồng trà”.

    Khi đó P(AB) = \frac{80}{200} =
\frac{2}{5}.

    Nếu đã chọn được một bạn nữ thì xác suất để bạn nữ thích uống vị hồng trà là P\left( B|A \right) =
\frac{P(AB)}{P(A)} = \frac{8}{13}.

  • Câu 6: Vận dụng

    Tính xác suất để viên bi lấy ra màu đỏ

    Hộp thứ nhất có 3 viên bi xanh và 6 viên bi đỏ. Hộp thứ hai có 3 viên bi xanh và 7 viên bi đỏ. Các viên bi có cùng kích thước và khối lượng. Lấy ra ngẫu nhiên 1 viên bi từ hộp thứ nhất chuyển sang hộp thứ hai. Sau đó lại lấy ra ngẫu nhiên đồng thời 2 viên bi từ hộp thứ hai. Tính xác suất để hai viên bi lấy ra từ hộp thứ hai là bi đỏ.

    Gọi A là biến cố “lấy được một viên bi màu xanh ở hộp thứ nhất“ và B là biến cố “lấy được hai viên bi màu đỏ ở hộp thứ hai”

    Khi đó ta có P(A) = \frac{1}{3}, P\left( B|A \right) =
\frac{C_{7}^{2}}{C_{11}^{2}} = \frac{21}{55}.

    Suy ra P\left( \overline{A} \right) = 1 -
P(A) = \frac{2}{3}; P\left(
B|\overline{A} \right) = \frac{C_{8}^{2}}{C_{11}^{2}} =
\frac{28}{55}.

    Áp dụng công thức xác suất toàn phần ta có

    P(B) = P(A)P\left( B|A \right) + P\left(\overline{A} \right)P\left( B|\overline{A} \right)=\frac{1}{3}.\frac{21}{55} + \frac{2}{3}.\frac{28}{55} =\frac{7}{15}.

  • Câu 7: Nhận biết

    Tính xác suất có điều kiện

    Cho hai biến cố AB là hai biến cố độc lập, với P(A) = 0,2024, P(B) = 0,2025. Tính P\left( A|B \right).

    Theo bài ra ta có:

    AB là hai biến cố độc lập nên: P\left( A|B \right) = P(A) = 0,2024

  • Câu 8: Nhận biết

    Xét tính đúng sai của các kết luận

    Một két nước ngọt đựng 24 chai nước có khối lượng và hình thức bề ngoài như nhau, trong đó

    có 16 chai loại I và 8 chai loại II. Bác Tùng lần lượt lấy ra ngẫu nhiên hai chai (lấy không hoàn lại). Xét

    các biến cố: A:” lần thứ nhất lấy ra chai nước loại I”; B:”Lần thứ hai lấy ra chai nước loại I”.

    a)P\left( B|A \right) =
\frac{16}{23}. Sai||Đúng

    b)P\left( B|A \right) =
\frac{15}{23}. Sai||Đúng

    c)P\left( B|A \right) =
\frac{8}{23}. Đúng||Sai

    d) P\left( B|A \right) =
\frac{7}{23}. Đúng||Sai

    Đáp án là:

    Một két nước ngọt đựng 24 chai nước có khối lượng và hình thức bề ngoài như nhau, trong đó

    có 16 chai loại I và 8 chai loại II. Bác Tùng lần lượt lấy ra ngẫu nhiên hai chai (lấy không hoàn lại). Xét

    các biến cố: A:” lần thứ nhất lấy ra chai nước loại I”; B:”Lần thứ hai lấy ra chai nước loại I”.

    a)P\left( B|A \right) =
\frac{16}{23}. Sai||Đúng

    b)P\left( B|A \right) =
\frac{15}{23}. Sai||Đúng

    c)P\left( B|A \right) =
\frac{8}{23}. Đúng||Sai

    d) P\left( B|A \right) =
\frac{7}{23}. Đúng||Sai

    Ta có: P(A) = \frac{16}{24} =
\frac{2}{3};P(\overline{A}) = \frac{8}{24} = \frac{1}{3}.

    Nếu lần thứ nhất lấy ra chai loại I thì két còn 23 chai nước, trong đó có 15 chai loại I, 8 chai loại II. Suy ra P(B
\mid A) = \frac{15}{23}.

    Nếu lần thứ nhất lấy ra chai loại II thì két còn 23 chai nước, trong đó có 16 chai loại I, 7 chai loại II. Suy ra P(B \mid \overline{A}) =
\frac{16}{23}.

    Theo công thức xác suất toàn phần, ta có:

    P(B) = P(A).P(B \mid A) +
P(\overline{A}).P(B \mid \overline{A}) = \frac{2}{3} \cdot \frac{15}{23}
+ \frac{1}{3} \cdot \frac{16}{23} = \frac{2}{3}.

    Ta có: P(\overline{B} \mid A) = 1 - P(B
\mid A) = 1 - \frac{15}{23} = \frac{8}{23};

    P(\overline{B} \mid \overline{A}) = 1 -
P(B \mid \overline{A}) = 1 - \frac{16}{23} = \frac{7}{23}.

    Đáp án: a) S, b) S, c) Đ, d) Đ.

  • Câu 9: Thông hiểu

    Tính xác suất khỏi bệnh

    Điều trị phương pháp I, phương pháp II, phương pháp III tương ứng cho 5000,3000,2000 bệnh nhân. Xác suất khỏi của các phương pháp tương ứng là 0,85;0,9;0,95. Tìm xác suất khỏi của 3 phương pháp khi điều trị cho bệnh nhân

    Tổng số bệnh nhân điều trị là 10000 người

    Gọi A1 là biến cố bệnh nhân điều trị bởi phương pháp thứ I.

    A2 là biến cố bệnh nhân điều trị bởi phương pháp thứ II.

    A3 là biến cố bệnh nhân điều trị bởi phương pháp thứ III.

    Khi đó: P\left( A_{1} ight) =
0,5;P\left( A_{2} ight) = 0,3;P\left( A_{3} ight) = 0,2

    Gọi B là biến cố điều trị khỏi bệnh.

    Khi đó P\left( B|A_{1} ight) =
0,85;P\left( B|A_{2} ight) = 0,9;P\left( B|A_{3} ight) =
0,95

    Áp dụng công thức xác suất toàn phần ta có:

    P(B) = P\left( A_{1} ight).P\left(
B|A_{1} ight) + P\left( A_{2} ight).P\left( B|A_{2} ight) +
P\left( A_{3} ight).P\left( B|A_{3} ight)

    \Rightarrow P(A) = 0,5.0,85 + 0,3.0,9 +
0,2.0,95 = 0,885

  • Câu 10: Thông hiểu

    Chọn đáp án đúng

    Một phân xưởng có 3 máy tự động: máy I sản xuất 25%, máy II sản xuất 30%, máy III sản xuất 45% số sản phẩm. Tỷ lệ phế phẩm tương ứng của các máy lần lượt là 0,1%, 0,2% và 0,3%. Chọn ngẫu nhiên ra một sản phẩm của phân xưởng. 1. Tìm xác suất nó là phế phẩm.

    Gọi Ai là "lấy ra sản phẩm từ lô i" thì A1, A2, A3 tạo thành hệ đầy đủ.

    Gọi A là "lấy ra sản phẩm là phế phẩm".

    Áp dụng công thức xác suất toàn phần, ta có

    P(A) = P\left( A_{1} ight)P\left(
A|A_{1} ight) + P\left( A_{2} ight)P\left( A|A_{2} ight) + P\left(
A_{3} ight)P\left( A|A_{3} ight)

    \Rightarrow P(A) = 0,25.0,1\% +
0,3.0,2\% + 0,45.0,3\% = 0,22\%

  • Câu 11: Nhận biết

    Tính giá trị của P(A)

    Cho hai biến cố AB, với P(B) =
0,8, P\left( A|B \right) =
0,7, P\left( A|\overline{B} \right)
= 0,45. Giá trị P(A) bằng

    Ta có: P\left( \overline{B} \right) = 1 -
P(B) = 1 - 0,8 = 0,2

    Công thức xác suất toàn phần

    P(A) = P(B).P\left( A|B \right) +
P\left( \overline{B} \right).P\left( A|\overline{B} \right)= 0,8.0,7 + 0,2.0,45 = 0,65

  • Câu 12: Nhận biết

    Tìm giá trị xác suất

    Cho hai biến cố AB, với P(A) =
0,6;P(B) = 0,7;P(A \cap B) = 0,3. Tính P\left( \overline{B}|A ight)?

    Ta có:

    P\left( \overline{B}|A ight) = 1 -
P\left( B|A ight)

    = 1 - \frac{P(A \cap B)}{P(A)} = 1 -
\frac{0,3}{0,6} = \frac{1}{2}.

  • Câu 13: Vận dụng

    Chọn đáp án đúng

    Bạn T quên mất số cuối cùng trong số điện thoại cần gọi (số điện thoại gồm 6 chữ số) và T chọn số cuối cùng này một cách ngẫu nhiên. Tính xác suất để T gọi đúng số điện thoại này mà không phải thử quá 3 lần. Nếu biết số cuối cùng là số lẻ thì xác suất này là bao nhiêu?

    Gọi Ai: “gọi đúng ở lần thứ i” (i = 1, 2, 3)

    Khi đó, biến cố “gọi đúng khi không phải thử quá ba lần” là:

    A = A_{1} + \overline{A_{1}}A_{2} +
\overline{A_{1}}\overline{A_{2}}A_{3}

    Ta có:

    P(A) = P\left( A_{1} ight) + P\left(
\overline{A_{1}}A_{2} ight) + P\left(
\overline{A_{1}}\overline{A_{2}}A_{3} ight)

    = P\left( A_{1} ight) + P\left(
\overline{A_{1}} ight)P\left( A_{2}|\overline{A_{1}} ight) + P\left(
\overline{A_{1}} ight)P\left( \overline{A_{2}}|\overline{A_{1}}
ight)P\left( A_{3}|\overline{A_{1}}\overline{A_{2}}
ight)

    Khi đã biết số cuối cùng là số lẻ thì khi đó các số để chọn quay chỉ còn giới hạn lại trong 5 trường hợp (số lẻ) nên:

    P(A) = \frac{1}{5} +
\frac{4}{5}.\frac{1}{4} + \frac{4}{5}.\frac{3}{4}.\frac{1}{3} =
0,6

  • Câu 14: Thông hiểu

    Tính xác suất để tổng số chấm bằng 6

    Gieo lần lượt hai con xúc xắc cân đối và đồng chất. Tính xác suất để tổng số chấm xuất hiện trên hai con xúc xắc bằng 6 biết rằng con xúc xắc thứ nhất xuất hiện mặt 4 chấm. (Làm tròn đến hàng phần trăm).

    Gọi A là biến cố “con xúc xắc thứ nhất xuất hiện mặt 4 chấm”

    Gọi B là biến cố “Tổng số chấm xuất hiện trên 2 con xúc xắc bằng 6”.

    Khi con xúc xắc thứ nhất đã xuất hiện mặt 4 chấm thì thì lần thứ hai xuất hiện 2 chấm thì tổng hai lần xuất hiện là 6 chấm thì P\left( B|A \right) = \frac{1}{6} \approx
0,17

  • Câu 15: Vận dụng

    Ghi đáp án vào ô trống

    Áo sơ mi An Phước trước khi xuất khẩu sang Mỹ phải qua 2 lần kiểm tra, nếu cả hai lần đều đạt thì chiếc áo đó mới đủ tiêu chuẩn xuất khẩu. Biết rằng bình quân 98% sản phẩm làm ra qua được lần kiểm tra thứ nhất và 95% sản phẩm qua được lần kiểm tra đầu sẽ tiếp tục qua được lần kiểm tra thứ hai. Tìm xác suất để một chiếc áo sơ mi đủ tiêu chuẩn xuất khẩu? (kết quả làm tròn đến hàng phần trăm)

    Đáp án : 0,93

    Đáp án là:

    Áo sơ mi An Phước trước khi xuất khẩu sang Mỹ phải qua 2 lần kiểm tra, nếu cả hai lần đều đạt thì chiếc áo đó mới đủ tiêu chuẩn xuất khẩu. Biết rằng bình quân 98% sản phẩm làm ra qua được lần kiểm tra thứ nhất và 95% sản phẩm qua được lần kiểm tra đầu sẽ tiếp tục qua được lần kiểm tra thứ hai. Tìm xác suất để một chiếc áo sơ mi đủ tiêu chuẩn xuất khẩu? (kết quả làm tròn đến hàng phần trăm)

    Đáp án : 0,93

    Gọi A là biến cố “qua được lần kiểm tra đầu tiên” \Rightarrow P(A) = 0,98

    Gọi B là biến cố “qua được lần kiểm tra thứ 2” \Rightarrow P\left( B|A ight) =
0,95

    Chiếc áo sơ mi đủ tiêu chuẩn xuất khẩu phải thỏa mãn 2 điều kiện trên, hay ta đi tính P(A \cap
B).

    Ta có

    P\left( B|A ight) = \frac{P(A \cap
B)}{P(A)}

    \Rightarrow P(A \cap B) = P\left( B|A
ight).P(A) = 0,95.0,98 = \frac{931}{1000} \approx 0,93

  • Câu 16: Nhận biết

    Tính P(A)

    Cho hai biến cố A,B với P(B) = 0,6, P(A|B) = 0,7P(A|\overline{B}) = 0,4. Khi đó P(A) bằng

    Ta có: P(\overline{B}) = 1 - P(B) = 1 -
0,6 = 0,4.

    Theo công thức xác suất toàn phần:

    P(A) = P(B).P\left( A \middle| B \right)
+ P\left( \overline{B} \right).P\left( A \middle| \overline{B}
\right)

    = 0,6.0,7 + 0,4.0,4 = 0,58.

  • Câu 17: Vận dụng

    Tính xác suất để lấy được viên bi màu đỏ

    Một chiếc hộp có 20 viên bi, trong đó có 12 viên bi màu đỏ và 8 viên bi màu vàng; các viên bi có kích thước và khối lượng như nhau. Bạn Minh lấy 1 viên bi từ hộp sau đó bạn Châu lấy viên bi thứ hai. Tính xác suất để bạn Châu lấy được viên bi màu đỏ.

    Xét hai biến cố : A: “ Bạn Châu lấy được viên bi màu đỏ”

    B: “ Bạn Minh lấy được viên bi màu đỏ”

    Khi đó ta có:

    P(B) = \frac{12}{20} =
\frac{3}{5},P\left( \overline{B} \right) = 1 - P(B) =
\frac{2}{5},

    P\left( A|B \right) =
\frac{11}{19},P\left( A|\overline{B} \right) =
\frac{12}{19}

    Áp dụng công thức xác suất toàn phần, ta có:

    P(A) = P(B).P\left( A|B \right) + P\left(
\overline{B} \right).P\left( A|\overline{B} \right) = \frac{3}{5}.\frac{11}{19} +
\frac{2}{5}.\frac{12}{19} = \frac{3}{5}

  • Câu 18: Nhận biết

    Tính P(A|B)

    Cho hai biến cố A,\ B với P(B) = 0,7;P(AB) = 0,3. Tính P(A/B)

    Ta có P\left( {A/B} \right) = \frac{{P\left( {AB} \right)}}{{P\left( B \right)}} = \frac{{0,3}}{{0,7}} = \frac{3}{7}.

  • Câu 19: Nhận biết

    Tính P(A|B)

    Cho hai biến cố AB là hai biến cố độc lập, với P(A) = 0,2024, P(B) = 0,2025. Tính P\left( A|B \right).

    Ta có: AB là hai biến cố độc lập nên: P\left( A|B \right) = P(A) = 0,2024

  • Câu 20: Thông hiểu

    Xét tính đúng sai của các nhận định

    Cho hai biến cố AB, với P\left( \overline{A} \right) = 0,4\ ,\ P(B) = 0,7\
,\ P(A \cap B) = 0,3.

    a) P(A) = 0,6P\left( \overline{B} \right) = 0,3 Đúng||Sai

    b) P\left( A|B \right) =
\frac{2}{3}Sai||Đúng

    c) P\left( \overline{B}|A \right) =
\frac{1}{3} Sai||Đúng

    d) P\left( \overline{A} \cap B \right) =
\frac{3}{5} Sai||Đúng

    Đáp án là:

    Cho hai biến cố AB, với P\left( \overline{A} \right) = 0,4\ ,\ P(B) = 0,7\
,\ P(A \cap B) = 0,3.

    a) P(A) = 0,6P\left( \overline{B} \right) = 0,3 Đúng||Sai

    b) P\left( A|B \right) =
\frac{2}{3}Sai||Đúng

    c) P\left( \overline{B}|A \right) =
\frac{1}{3} Sai||Đúng

    d) P\left( \overline{A} \cap B \right) =
\frac{3}{5} Sai||Đúng

    a) Đúng.

    Ta có: P\left( \overline{A} \right) = 1 -
P(A) = 0,6

    P(B) = 1 - P\left( \overline{B} \right) =
0,3.

    b) Sai.

    Ta có: P\left( A|B \right) = \frac{P(A
\cap B)}{P(B)} = \frac{0,3}{0,7} = \frac{3}{7}.

    c) Sai.

    Ta có: P\left( \overline{B}|A \right) = 1
- P\left( B|A \right) = \frac{P(A \cap B)}{P(A)} = 1 - \frac{0,3}{0,6} =
0,5.

    d) Sai.

    Ta có: P\left( \overline{A} \cap B
\right) = P\left( \overline{A}|B \right).P(B)

    P\left( \overline{A}|B \right) = 1 -
P\left( A|B \right) = \frac{P(A \cap B)}{P(B)} = 1 - \frac{0,3}{0,7} =
\frac{4}{7}

    P\left( \overline{B} \cap A \right) =
P\left( \overline{A}|B \right).P(B) = \frac{4}{7}.0,7 =
\frac{2}{5}.

  • Câu 21: Nhận biết

    Tìm kết luận đúng nhất

    Cho hai biến cố ABP(B)
> 0P\left( A|B \right) =
0,7. Tính P\left( \overline{A}|B
\right) có kết quả là

    Với mọi biến cố AB, P(B) >
0 ta có P\left( \overline{A}|B
\right) = 1 - P\left( A|B \right) = 1 - 0,7 = 0,3.

  • Câu 22: Vận dụng cao

    Tính xác suất bắn trúng

    Cuối tuần M đến sân chơi để bắn cung, biết khoảng cách bắn tên thay đổi liên tục và khả năng bạn M bắn trúng bia tỉ lệ nghịch với khoảng cách bắn. M bắn lần đầu ở khoảng cách 20m với xác suất trúng bia là 0,5, nếu bị trượt M bắn tiếp mũi tên thứ hai ở khoảng cách 30m, nếu lại trượt M bắn mũi tên thứ ba ở khoảng cách 40m. Tính xác suất để M bắn trúng bia?

    Gọi A là biến cố “M bắn trúng bia ở lần thứ nhất”

    Gọi B là biến cố “M bắn trúng bia ở lần thứ hai”

    Gọi C là biến cố “M bắn trúng bia ở lần thứ ba”

    Ta có: P(A) = 0,5

    Vì xác suất bắn trúng bia trong mỗi lần bắn tỷ lệ nghịch với khoảng cách bắn nên ta có:

    \left\{ \begin{matrix}P\left( B|\overline{A} ight) = \dfrac{20.0,5}{30} = \dfrac{1}{3} \\P\left( C|\overline{A}.\overline{B} ight) = \dfrac{20.0,5}{40} =\dfrac{1}{4} \\\end{matrix} ight.

    Ta có sơ đồ cây như sau:

    Xác suất để M bắn trúng bia là:

    P(A) + P\left( \overline{A}B ight) +
P\left( \overline{A}\overline{B}C ight) = 0,5 + 0,5.\frac{1}{3} +
0,5.\frac{2}{3}.\frac{1}{4} = 0,75

  • Câu 23: Nhận biết

    Tính xác suất có điều kiện

    Cho hai biến cố AB, với P(A) =
0,6, P(B) = 0,7, P(A \cap B) = 0,3. Tính P\left( \overline{B}|A \right).

    Ta có:

    P\left( \overline{B}|A \right) = 1- P\left( B|A \right)

    = 1 - \frac{P(A \cap B)}{P(A)} = 1 -\frac{0,3}{0,6}= 1 - \frac{1}{2} = \frac{1}{2}

  • Câu 24: Vận dụng cao

    Tính xác suất theo yêu cầu

    Một loại linh kiện do hai nhà máy số I và số II cùng sản xuất. Tỉ lệ phế phẩm của các nhà máy I và II lần lượt là 4\%3\%. Trong một lô linh kiện để lẫn lộn 80 sản phẩm của nhà máy số I và 120 sản phẩm của nhà máy số II. Một khách hàng lấy ngẫu nhiên một linh kiện từ lô hàng đó. Giả sử linh kiện được lấy ra là linh kiện phế phẩm. Xác suất linh kiện đó do nhà máy nào sản xuất là cao hơn?

    Xét hai biến cố sau: A: ‘‘Linh kiện lấy ra do nhà máy I sản xuất”,

    B: ‘‘Linh kiện lấy ra là phế phẩm”

    Trong lô linh kiện có tổng cộng 80 + 120
= 200 linh kiện nên P(A) =
\frac{80}{200} = 0,4;P\left(
\overline{A} \right) = 0,6.

    Vì tỉ lệ phế phẩm của các nhà máy I và II lần lượt là 4\%3\% nên P\left( B|A \right) = 4\% = 0,04

    Khi đó: P\left( B|\overline{A} \right) =
3\% = 0,03.

    Ta có sơ đồ cây:

    A diagram of a triangle with Great Pyramid of Giza in the backgroundDescription automatically generated

    Khi linh kiện lấy ra là phế phẩm thì xác suất linh kiện đó do nhà máy I sản xuất là P\left( A|B \right) và xác suất linh kiện đó do nhà máy II sản xuất là P\left( \overline{A}|B \right).

    Áp dụng công thức Bayes, ta có:

    P\left( A|B \right) = \frac{P(A).P\left(B|A \right)}{P(A).P\left( B|A \right) + P\left( \overline{A}\right).P\left( B|\overline{A} \right)}= \frac{0,4.0,04}{0,4.0,04 +0,6.0,03} \approx 47\%.

    Suy ra P\left( \overline{A}|B \right) = 1
- P\left( A|B \right) \approx 53\%.

    Vậy xác suất linh kiện đó do nhà máy II sản xuất là cao hơn.

  • Câu 25: Thông hiểu

    Chọn đáp án đúng

    Dây chuyền lắp ráp nhận được các chi tiết do hai máy sản xuất. Trung bình máy thứ nhất cung cấp 60\% chi tiết, máy thứ hai cung cấp 40\% chi tiết. Biết 90\% chi tiết do máy thứ nhất sản xuất đều đạt tiêu chuẩn và 85\% chi tiết do máy thứ hai sản xuất là đạt tiêu chuẩn. Lấy ngẫu nhiên từ dây chuyển một sản phẩm, thấy nó đạt tiêu chuẩn. Tìm xác suất để sản phẩm đó do máy thứ nhất sản xuất.

    Gọi A là biến cố chi tiết lấy từ dây chuyển đạt tiêu chuẩn.

    Biến cố A có thể xảy ra đồng thời với một trong hai biến cố sau đây tạo nên một nhóm đầy đủ các biến cố.

    H1 chi tiết máy do máy một sản xuất.

    H2 chi tiết máy do máy hai sản xuất.

    Như vậy xác suất để chi tiết máy dó máy một sản xuất bằng:

    P\left( H_{1}|A ight) = \frac{P\left(
H_{1} ight).P\left( A|H_{1} ight)}{P\left( H_{1} ight).P\left(
A|H_{1} ight) + P\left( H_{2} ight).P\left( A|H_{2}
ight)}

    Theo dữ kiện đề bài cho ta có:\left\{
\begin{matrix}
P\left( H_{1} ight) = 0,6;P\left( H_{2} ight) = 0,4 \\
P\left( A|H_{1} ight) = 0,9;P\left( A|H_{2} ight) = 0,85 \\
\end{matrix} ight.

    Do đó:

    P\left( H_{1}|A ight) =
\frac{0,6.0,9}{0,6.0,9 + 0,4.0,85} = 0,614

  • Câu 26: Vận dụng cao

    Chọn đáp án đúng

    Một hãng hàng không cho biết rằng 5\% số khách đặt trước vé cho các chuyến đã định sẽ hoãn không đi chuyến bay đó. Do đó hãng đã đưa ra một chính sách là sẽ bán 52 ghế cho một chuyến bay mà trong đó mỗi chuyến chỉ trở được 50 khách hàng. Tìm xác suất để tất cả các khách đặt chỗ trước và không hoãn chuyến bay đều có ghế. Biết rằng xác suất bán được 51 vé hoặc 52 vé là như nhau và bằng 10\%?

    Gọi A là "bán được 52 vé", B là "bán được 51 vé" và C là "bán được nhiều nhất 50 vé".

    Khi đó A, B, C tạo thành hệ đầy đủ.

    Ta có P(A) = 0,1; P(B) = 0,1; P(C) = 0,8

    Gọi H là "khách đặt chỗ trước và không hoãn chuyến đều có ghế".

    Biến cố H|A xảy ra nếu có ít nhất 2 khách hủy chuyến, H|B xảy ra nếu có ít nhất 1 khách hủy chuyến. Tính trực tiếp xác suất của các sự kiện này đều khá phức tạp.

    Do đó để cho đơn giản ta tìm P\left(\overline{H} ight).

    Ta có: \left\{ \begin{matrix}P\left( \overline{H}|A ight) = 0,95^{52}.0,05^{0} +52.0,95^{51}.0,05^{1} \\P\left( \overline{H}|B ight) = 0,95^{51}.0,05^{0} \\P\left( \overline{H}|C ight) = 0 \\\end{matrix} ight.

    Do đó:

    P\left( \overline{H} ight) =P(A).P\left( \overline{H}|A ight) + P(B).P\left( \overline{H}|Bight) + P(C).P\left( \overline{H}|C ight)

    \Rightarrow P\left( \overline{H} ight)= 0,1\left( 0,95^{52}.0,05^{0} + 52.0,95^{51}.0,05^{1} ight)+0,1.0,95^{51}.0,05^{0} + 0,8.0 \approx 0,033

    \Rightarrow P(H) = 1 - P\left(\overline{H} ight) \approx 0,9667 = 96,67\%

  • Câu 27: Thông hiểu

    Chọn đáp án đúng

    Một hộp chứa 8 bi trắng, 2 bi đỏ. Lần lượt lấy từng bi. Giả sử lần đầu tiên lấy được bi trắng. Xác định xác suất lần thứ hai lấy được bi đỏ.

    Gọi A là biến cố lần một lấy được bi trắng.

    Gọi B là biến cố lần hai lấy được bi đỏ.

    Xác suất lần 2 lấy được bi đỏ khi lần 1 đã lấy được bi trắng làP\left( B|A ight).

    Ta có: \left\{ \begin{matrix}P(A) = \dfrac{8.9}{10.9} = \dfrac{4}{5} \\P(A \cap B) = \dfrac{8.2}{10.9} = \dfrac{8}{45} \\\end{matrix} ight. khi đó:

    P\left( B|A ight) = \dfrac{P(A \cap B)}{P(A)} = \dfrac{\dfrac{8}{45}}{\dfrac{4}{5}} = \dfrac{2}{9}.

  • Câu 28: Nhận biết

    Tính P(B|A)

    Cho hai biến cố A,B thỏa mãn P(A) = 0,4, P(B) = 0,3, P(A|B) = 0,25. Khi đó, P(B|A) bằng

    Theo công thức Bayes, ta có:

    P(B|A) = \frac{P(B).P(A|B)}{P(A)} =
\frac{0,3.0,25}{0,4} = 0,1875.

  • Câu 29: Thông hiểu

    Chọn phương án thích hợp

    Kết quả khảo sát tại một xã cho thấy có 25\% cư dân hút thuốc lá. Tỉ lệ cư dân thường xuyên gặp các vấn đề sức khoẻ về đường hô hấp trong số những người hút thuốc lá và không hút thuốc lá lần lượt là 60\%25\%. Nếu ta gặp một cư dân của xã thường xuyên gặp các vấn đề sức khoẻ về đường hô hấp thì xác suất người đó có hút thuốc lá là bao nhiêu?

    Giả sử ta gặp một cư dân của xã, gọi A là biến cố "Người đó có hút thuốc lá" và B là biến cố "Người đó thường xuyên gặp các vấn đề sức khoẻ về đường hô hấp". Ta có sơ đồ hình cây sau:

    Ảnh có chứa văn bản, ảnh chụp màn hình, Phông chữ, biểu đồMô tả được tạo tự động

    Ta có

    P(B) = P(A) \cdot P(B \mid A) +P(\overline{A}) \cdot P(B \mid \overline{A})= 0,15 + 0,1875 =0,3375.

    Theo công thức Bayes, ta có:

    P(A \mid B) =
\frac{P(A)P(B \mid A)}{P(B)} = \frac{0,15}{0,3375} =
\frac{4}{9}.

    Vậy nếu ta gặp một cư dân của xã thường xuyên gặp các vấn đề sức khoẻ về đường hô hấp thì xác suất người đó có hút thuốc lá là \frac{4}{9}.

  • Câu 30: Nhận biết

    Chọn đáp án đúng

    Cho hai biến cố A;B với P(B) = 0,6;P\left( A|B ight) = 0,7;P\left(
A|\overline{B} ight) = 0,4. Giá trị P(A) bằng:

    Ta có: P\left( \overline{B} ight) = 1 -
P(B) = 1 - 0,6 = 0,4

    Theo công thức xác suất toàn phần, ta có:

    P(A) = P(B).P\left( A|B ight) +
P\left( \overline{B} ight).P\left( A|\overline{B} ight)

    \Rightarrow P(A) = 0,6.0,7 + 0,4.0,4 =
0,58

  • Câu 31: Nhận biết

    Kết luận đúng

    Giả sử AB là hai biến cố ngẫu nhiên thỏa mãn P(A) > 00 < P(B) < 1. Khi đó

    Ta có: P\left( \left. \ B \right|A
\right) = \frac{P(B)P\left( \left. \ A \right|B \right)}{P(B)P\left(
\left. \ A \right|B \right) + P\left( \overline{B} \right)P\left( \left.
\ A \right|\overline{B} \right)}

  • Câu 32: Vận dụng

    Ghi đáp án vào ô trống

    Một xí nghiệp mỗi ngày sản xuất ra 2000 sản phẩm trong đó có 39 sản phẩm lỗi. Lần lượt lấy ra ngẫu nhiên hai sản phẩm không hoàn lại để kiểm tra. Tính xác suất của biến cố: Sản phẩm lấy ra lần thứ hai bị lỗi (làm tròn kết quả đến hàng phần trăm).

    Đáp án: 0,02

    Đáp án là:

    Một xí nghiệp mỗi ngày sản xuất ra 2000 sản phẩm trong đó có 39 sản phẩm lỗi. Lần lượt lấy ra ngẫu nhiên hai sản phẩm không hoàn lại để kiểm tra. Tính xác suất của biến cố: Sản phẩm lấy ra lần thứ hai bị lỗi (làm tròn kết quả đến hàng phần trăm).

    Đáp án: 0,02

    Xét các biến cố:

    A_{1}: Sản phẩm lấy ra lần thứ nhất bị lỗi.

    Khi đó, ta có: P\left( A_{1}
ight) = \frac{39}{2000}; P\left(
\overline{A_{1}} ight) = \frac{1961}{2000}.

    A_{2}: Sản phẩm lấy ra lần thứ hai bị lỗi.

    Khi sản phẩm lấy ra lần thứ nhất bị lỗi thì còn 1999 sản phẩm và trong đó có 38 sản phẩm lỗi nên ta có:

    P\left( {{A_2}\left| {{A_1}} ight.} ight) = \frac{{38}}{{1999}}, suy ra P\left(
\overline{A_{2}}\left| A_{1} ight.\  ight) =
\frac{1961}{1999}.

    Khi sản phẩm lấy ra lần thứ nhất không bị lỗi thì còn 1999 sản phẩm trong đó có 39sản phẩm lỗi nên ta có:

    P\left( A_{2}\left| \overline{A_{1}}
ight.\  ight) = \frac{39}{1999}, suy ra P\left( \overline{A_{2}}\left| \overline{A_{1}}
ight.\  ight) = \frac{1960}{1999}.

    Khi đó, xác suất để sản phẩm lấy ra lần thứ hai bị lỗi là:

    P\left( A_{2} ight) = P\left(
A_{2}\left| A_{1} ight.\  ight).P\left( A_{1} ight) + P\left(
A_{2}\left| \overline{A_{1}} ight.\  ight).P\left( \overline{A_{1}}
ight)

    = \frac{38}{1999}.\frac{39}{2000} +
\frac{39}{1999}.\frac{1961}{2000} \approx 0,02.

    Đáp số: 0,02.

  • Câu 33: Thông hiểu

    Chọn đáp án đúng

    Một công ty xây dựng đấu thầu 2 dự án độc lập. Khả năng thắng thầu của các dự án 1 là 0,6 và dự án 2 là 0,7. Xác suất công ty thắng thầu đúng 1 dự án là:

    Gọi A là biến cố ”Thắng thầu dự án 1″

    Gọi B là biến cố “Thắng thầu dự án 2″

    Theo đề bài ta có: \left\{ \begin{matrix}
P(A) = 0,6 \Rightarrow P\left( \overline{A} ight) = 0,4 \\
P(B) = 0,3 \Rightarrow P\left( \overline{B} ight) = 0,7 \\
\end{matrix} ight. với 2 biến cố A; B độc lập.

    Gọi C là biến cố “Thắng thầu đúng 1 dự án” khi đó ta có:

    P(C) = P\left( A \cap \overline{B} +
\overline{A} \cap B ight)

    = P\left( A \cap \overline{B} ight) +
P\left( \overline{A} \cap B ight)

    = P(A)P\left( \overline{B} ight) +
P\left( \overline{A} ight)P(B)

    = 0,6.0,3 + 0,4.0,7 = 0,46

  • Câu 34: Vận dụng

    Xét tính đúng sai của các nhận định

    Để nghiên cứu sự phát triển của một loại cây, người ta trồng hạt giống của loại cây đó trên hai lô đất thí nghiệm M, N khác nhau. Xác suất phát triển bình thường của cây đó trên các lô đất MN lần lượt là 0,56 và 0,62. Lặp lại thí nghiệm trên với đầy đủ các điều kiện tương đồng. Xét các biến cố:

    A: “Cây phát triển bình thường trên lô đất M”;

    B: “Cây phát triển bình thường trên lô đất N”.

    a) Các cặp biến cố \overline{A}và B, A và \overline{B} là độc lập. Đúng||Sai

    b) Hai biến cố C = \overline{A}\  \cap B D = \ A \cap
\overline{B} không là hai biến cố xung khắc. Sai||Đúng

    c) P(\overline{A}) = 0,56; P(\overline{B}) = 0,62. Sai||Đúng

    d) Xác suất để cây chỉ phát triển bình thường trên một lô đất là 0,4856. Đúng||Sai

    Đáp án là:

    Để nghiên cứu sự phát triển của một loại cây, người ta trồng hạt giống của loại cây đó trên hai lô đất thí nghiệm M, N khác nhau. Xác suất phát triển bình thường của cây đó trên các lô đất MN lần lượt là 0,56 và 0,62. Lặp lại thí nghiệm trên với đầy đủ các điều kiện tương đồng. Xét các biến cố:

    A: “Cây phát triển bình thường trên lô đất M”;

    B: “Cây phát triển bình thường trên lô đất N”.

    a) Các cặp biến cố \overline{A}và B, A và \overline{B} là độc lập. Đúng||Sai

    b) Hai biến cố C = \overline{A}\  \cap B D = \ A \cap
\overline{B} không là hai biến cố xung khắc. Sai||Đúng

    c) P(\overline{A}) = 0,56; P(\overline{B}) = 0,62. Sai||Đúng

    d) Xác suất để cây chỉ phát triển bình thường trên một lô đất là 0,4856. Đúng||Sai

    a) Do hai lô đất khác nhau. Nên các cặp biến cố \overline{A}và B, A và \overline{B} là độc lập. Suy ra đúng.

    b) Do C \cap D = \overline{A}\  \cap
A\  \cap B \cap \overline{B} = \varnothing nên hai biến cố C, D xung khắc. Suy ra sai.

    c) Tacó: P(\overline{A}) = 1 – P(A) = 1 – 0,56 = 0,44;

    P(\overline{B}) = 1 – P(B) = l – 0,62 = 0,38. Suy ra sai.

    d) Xác suất để cây chỉ phát triển bình thường trên một lô đất là:

    P(C \cup D) = P(C) + P(D) = P\left(
\overline{A}\  \right).P(B) + P(A).P\left( \overline{B} \right)

    = 0,44. 0,62 + 0,56.0,38 = 0,4856. Suy ra đúng.

  • Câu 35: Nhận biết

    Tính xác suất của biến cố

    Một túi đựng 6 bi xanh và 4 bi đỏ. Lấy ngẫu nhiên 2 bi. Xác suất để cả hai bi đều đỏ là:

    Ta có số phần từ của không gian mẫu là n(\Omega) = C_{10}^{2} = 45.

    Gọi A: "Hai bi lấy ra đều là bi đỏ".

    Khi đó n(A) = C_{4}^{2} = 6.

    Vậy xác suất cần tính là P(A) =
\frac{n(A)}{n(\Omega)} = \frac{2}{15}.

  • Câu 36: Thông hiểu

    Tính xác suất

    Trong một trường học, tỉ lệ học sinh nữ là 52\%. Tỉ lệ học sinh nữ và tỉ lệ học sinh nam tham gia lớp học bổ trợ kiến thức lần lượt là 18\%15\%. Gặp ngẫu nhiên một học sinh của trường. Biết rằng học sinh có tham gia lớp học bổ trợ kiến thức. Tính xác suất học sinh đó là nam?

    Gọi A_{1};A_{2} lần lượt là các biến cố gặp được một học sinh nữ, một học sinh nam

    Nên 1 2 A A, là hệ biến cố đầy đủ.

    Gọi B “Học sinh đó tham gia lớp học bổ trợ kiến thức”

    Ta có: \left\{ \begin{matrix}
P\left( A_{1} ight) = 52\% = 0,52 \\
P\left( A_{2} ight) = 1 - 0,52 = 0,48 \\
P\left( B|A_{1} ight) = 18\% = 0,18 \\
P\left( B|A_{2} ight) = 15\% = 0,15 \\
\end{matrix} ight.

    Áp dụng công thức xác suất toàn phần ta có:

    P(B) = P\left( B|A_{1} ight).P\left(
A_{1} ight) + P\left( B|A_{2} ight).P\left( A_{2}
ight)

    \Rightarrow P(B) = 0,18.0,52 + 0,15.0,48
= \frac{207}{1250} = 0,1656

    Xác suất để học sinh đó là nam, biết rằng học sinh đó tham gia câu lạc bộ nghệ thuật, ta áp dụng công thức Bayes:

    P\left( A_{2}|B ight) = \frac{P\left(
B|A_{2} ight).P\left( A_{2} ight)}{P(B)} = \frac{0,15.0,48}{0,1656}
= \frac{10}{23}

  • Câu 37: Vận dụng cao

    Tính xác suất để cuộc gọi là đúng

    Một ứng dụng được sử dụng để chặn cuộc gọi rác trong điện thoại. Tuy nhiên, vì ứng dụng không tuyệt đối hoàn hảo nên một cuộc gọi rác bị chặn với xác suất 0,8 và một cuộc gọi đúng (không phải là cuộc gọi rác) bị chặn với xác suất 0,01. Thống kê cho thấy tỉ lệ cuộc gọi rác là 10\%. Chọn ngẫu nhiên một cuộc gọi không bị chặn. Xác suất để đó là cuộc gọi đúng là

    Gọi A là biến cố: “cuộc gọi được chọn là cuộc gọi rác”, B là biến cố: “cuộc gọi được chọn bị chặn” thì \overline{B} là biến cố: “cuộc gọi được chọn không bị chặn”.

    Theo đầu bài ta có: P(A) = 0,1; P\left( \overline{A} \right) = 0,9; P\left( \left. \ B \right|A \right) =
0,8; P\left( \left. \ B
\right|\overline{A} \right) = 0,01.

    Ta có:

    P(B) = P\left( \left. \ B \right|A
\right).P(A) + P\left( \left. \ B \right|\overline{A} \right).P\left(
\overline{A} \right)

    = 0,8.0,1 + 0,01.0,9 =
0,089.

    P\left( \left. \ B \right|\overline{A}
\right) = 0,01 \Rightarrow P\left( \left. \ \overline{B}
\right|\overline{A} \right) = 0,99

    P\left( \left. \ B \right|A \right) = 0,8
\Rightarrow P\left( \left. \ \overline{B} \right|A \right) =
0,2

    Theo công thức Bayes ta có:

    P\left( \left. \ \overline{A}
\right|\overline{B} \right) = \frac{P\left( \overline{A} \right).P\left(
\left. \ \overline{B} \right|\overline{A} \right)}{P\left( \overline{A}
\right).P\left( \left. \ \overline{B} \right|\overline{A} \right) +
P(A).P\left( \left. \ \overline{B} \right|A \right)}

    = \frac{0,9.0,99}{0,9.0,99 + 0,1.0,2} =
\frac{891}{911}.

  • Câu 38: Thông hiểu

    Xét tính đúng sai của các nhận định

    Có hai đội thi đấu môn Bóng bàn. Đội I có 6 vận động viên, đội II có 8 vận động viên. Xác suất đạt huy chương đồng của mỗi vận động viên đội I và đội II tương ứng là 0,80,65. Chọn ngẫu nhiên một vận động viên.

    a) [NB] Xác suất để vận động viên này thuộc đội I0,8. Sai||Đúng

    b) [TH] Xác suất để vận động viên được chọn đạt huy chương đồng là \frac{5}{7}. Đúng||Sai

    c) [TH] Xác suất để vận động viên này thuộc đội II và đạt huy chương đồng là 0,48. Sai||Đúng

    d) [VD] Xác suất để vận động viên này thuộc đội I và đạt huy chương đồng là \frac{12}{25}. Đúng||Sai

    Đáp án là:

    Có hai đội thi đấu môn Bóng bàn. Đội I có 6 vận động viên, đội II có 8 vận động viên. Xác suất đạt huy chương đồng của mỗi vận động viên đội I và đội II tương ứng là 0,80,65. Chọn ngẫu nhiên một vận động viên.

    a) [NB] Xác suất để vận động viên này thuộc đội I0,8. Sai||Đúng

    b) [TH] Xác suất để vận động viên được chọn đạt huy chương đồng là \frac{5}{7}. Đúng||Sai

    c) [TH] Xác suất để vận động viên này thuộc đội II và đạt huy chương đồng là 0,48. Sai||Đúng

    d) [VD] Xác suất để vận động viên này thuộc đội I và đạt huy chương đồng là \frac{12}{25}. Đúng||Sai

    a) Sai. Gọi A là biến cố: “Vận động viên được chọn thuộc đội I”.

    Ta có n(A) = 6, n(\Omega) = 14.

    Do đó P(A) = \frac{6}{14} = \frac{3}{7}
\approx 0,4286.

    b) Đúng. Ta có: \overline{A} là biến cố: “Vận động viên được chọn thuộc đội II”.

    Suy ra P\left( \overline{A} ight) =
\frac{4}{7}.

    B là biến cố: “Vận động viên được chọn đạt huy chương đồng”.

    Khi đó ta có: P\left( B|A ight) =
0,8, P\left( B|\overline{A} ight)
= 0,65.

    P(B) = P(A).P\left( B|A ight) +
P\left( \overline{A} ight).P\left( B|\overline{A} ight)

    P(B) = \frac{3}{7}.0,8 + \frac{4}{7}.0,65
= \frac{5}{7}.

    c) Sai. Áp dụng công thức Bayes ta có:

    P\left( \overline{A}|B ight) =
\frac{P\left( \overline{A} ight).P\left( B|\overline{A}
ight)}{P(B)} =\dfrac{\dfrac{4}{7}.0,65}{\dfrac{5}{7}} = \dfrac{13}{25} =
0,52.

    d) Đúng. Áp dụng công thức Bayes ta có:

    P\left( A|B ight) = \frac{P(A).P\left(
B|A ight)}{P(B)} =\dfrac{\dfrac{3}{7}.0,8}{\dfrac{5}{7}} = \dfrac{12}{25}.

  • Câu 39: Thông hiểu

    Ghi đáp án đúng vào ô trống

    Một đoàn tàu gồm 3 toa đỗ ở sân ga. Có 5 hành khách bước lên tàu, mỗi hành khách độc lập với nhau chọn ngẫu nhiên 1 toa. Tính xác suất để mỗi toa có ít nhất 1 hành khách bước lên tàu (kết quả làm tròn đến hàng phần trăm).

    Đáp án: 0,62

    Đáp án là:

    Một đoàn tàu gồm 3 toa đỗ ở sân ga. Có 5 hành khách bước lên tàu, mỗi hành khách độc lập với nhau chọn ngẫu nhiên 1 toa. Tính xác suất để mỗi toa có ít nhất 1 hành khách bước lên tàu (kết quả làm tròn đến hàng phần trăm).

    Đáp án: 0,62

    Không gian mẫu là số cách sắp xếp 5 hành khách lên 3 toa tàu. Vì mỗi hành khách có 3 cách chọn toa nên có 3^{5} cách xếp.

    Suy ra số phần tử của không gian mẫu là n(\Omega) = 3^{5} = 243.

    Gọi A là biến cố ''5 hành khách bước lên tàu mà mỗi toa có ít nhất 1 hành khách''. Để tìm số phần tử của biến cố A ta đi tìm số phần tử của biến cố \overline{A}, tức có toa không có hành khách nào bước lên tàu, có 2 khả năng sau:

    Trường hợp thứ nhất: Có 2 toa không có hành khách bước lên.

    +) Chọn 2 trong 3 toa để không có khách bước lên, có C_{3}^{2} cách.

    +) Sau đó cả 5 hành khách lên toa còn lại, có 1 cách.

    Do đó trường hợp này có C_{3}^{2}.1 =
3 cách.

    Trường hợp thứ hai: Có 1 toa không có hành khách bước lên.

    +) Chọn 1 trong 3 toa để không có khách bước lên, có C_{3}^{1} cách.

    +) Hai toa còn lại ta cần xếp 5 hành khách lên và mỗi toa có ít nhất 1 hành khách, có 2^{5} - C_{2}^{1}.1 = 30.

    Do đó trường hợp này có C_{3}^{1}.30 =
90 cách.

    Suy ra số phần tử của biến cố \overline{A}n\left( \overline{A} ight) = 3 + 90 =
93.

    Suy ra số phần tử của biến cố An(A) = n(\Omega) - n\left( \overline{A}
ight) = 243 - 93 = 150.

    Vậy xác suất cần tính P(A) =
\frac{n(A)}{n(\Omega)} = \frac{150}{243} = \frac{50}{81} \approx
0,62.

  • Câu 40: Vận dụng

    Ghi đáp án vào ô trống

    Một bệnh truyền nhiễm có xác suất lây bệnh là 0,8 nếu tiếp xúc với người bệnh mà không đeo khẩu trang; là 0,1 nếu tiếp xúc với người bệnh mà có đeo khẩu trang. Chị Mai có tiếp xúc với người bệnh hai lần, một lần đeo khẩu trang và một lần không đeo khẩu trang. Tính xác suất để chị Mai bị lây bệnh từ người bệnh truyền nhiễm đó. (Kết quả ghi dưới dạng số thập phân).

    Đáp án: 0,82

    Đáp án là:

    Một bệnh truyền nhiễm có xác suất lây bệnh là 0,8 nếu tiếp xúc với người bệnh mà không đeo khẩu trang; là 0,1 nếu tiếp xúc với người bệnh mà có đeo khẩu trang. Chị Mai có tiếp xúc với người bệnh hai lần, một lần đeo khẩu trang và một lần không đeo khẩu trang. Tính xác suất để chị Mai bị lây bệnh từ người bệnh truyền nhiễm đó. (Kết quả ghi dưới dạng số thập phân).

    Đáp án: 0,82

    Gọi A là biến cố: "Chị Hoa bị nhiễm bệnh khi tiếp xúc người bệnh mà không đeo khẩu trang" và B : "Chị Hoa bị nhiễm bệnh khi tiếp xúc với người bệnh dù có đeo khẩu trang”.

    Dễ thấy \overline{A},\overline{B} là hai biến cố độc lập.

    Xác suất để chị Hoa không nhiễm bệnh trong cả hai lần tiếp xúc với người bệnh là

    P(\overline{A}\overline{B}) =
P(\overline{A}) \cdot P(\overline{B}) = 0,2 \cdot 0,9 =
0,18.

    Gọi P là xác suất để chị Hoa bị lây bệnh khi tiếp xúc người bệnh, ta có:

    P = 1 - P(\overline{A}\overline{B}) = 1
- 0,18 = 0,82.

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 6 Xác suất có điều kiện CTST Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo