Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề kiểm tra 45 phút Chương 6 Xác suất có điều kiện CTST

Mô tả thêm:

Hãy cùng thử sức kiểm tra đánh giá các kiến thức tổng quan với bài kiểm tra phút Chương 6: Xác suất có điều kiện Toán 12 sách Chân trời sáng tạo các em nhé!

  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Thông hiểu

    Tính xác suất

    Cho hai biến cố A;B với P(AB) = \frac{1}{4};P\left( A|\overline{B} ight)
= \frac{1}{8};P(B) = \frac{1}{2}. Tính P(A)?

    Ta có:

    P(A) = P\left( \overline{A}\overline{B}
+ AB ight)

    = P\left( A|\overline{B} ight).P\left(
\overline{B} ight) + P(AB)

    = \frac{1}{8}.\frac{1}{2} + \frac{1}{4}
= \frac{5}{16}

  • Câu 2: Nhận biết

    Chọn đáp án đúng

    Cho AB là các biến cố của phép thử T. Biết rằng P(A) > 0;0 < P(B) <
1. Xác suất của biến cố B với điều kiện biến cố A đã xảy ra được tính theo công thức nào sau đây?

    Theo công thức Bayes ta có:

    P\left( B|A ight) = \frac{P(B).P\left(
A|B ight)}{P(B).P\left( A|B ight) + P\left( \overline{B}
ight).P\left( A|\overline{B} ight)}

  • Câu 3: Thông hiểu

    Xét tinh đúng sai của các kết luận

    Một hộp có 10 bi xanh và 8bi đen, các viên bi đều có cùng hình dáng, kích thước và khối lượng. Bạn Nam lấy ngẫu nhiên một viên trong hộp, không trả lại. Sau đó Bạn Lan lấy ngẫu nhiên một trong 17 viên bi còn lại. Gọi A là biến cố bạn Nam lấy được một viên bi xanh và Blà biến cố bạn Lan lấy được một viên bi đen.

    a) n(A) = 10.Đúng||Sai

    b) P(A) =
\frac{5}{9}Đúng||Sai

    c) P\left( \left. \ B \right|A \right) =
\frac{4}{9}.Sai||Đúng

    d) P(A.B) = 0,8. Sai||Đúng

    Đáp án là:

    Một hộp có 10 bi xanh và 8bi đen, các viên bi đều có cùng hình dáng, kích thước và khối lượng. Bạn Nam lấy ngẫu nhiên một viên trong hộp, không trả lại. Sau đó Bạn Lan lấy ngẫu nhiên một trong 17 viên bi còn lại. Gọi A là biến cố bạn Nam lấy được một viên bi xanh và Blà biến cố bạn Lan lấy được một viên bi đen.

    a) n(A) = 10.Đúng||Sai

    b) P(A) =
\frac{5}{9}Đúng||Sai

    c) P\left( \left. \ B \right|A \right) =
\frac{4}{9}.Sai||Đúng

    d) P(A.B) = 0,8. Sai||Đúng

    a) Đ Vì hộp có 10 bi xanh nên số phần tử của biến cố An(A) = 10.

    b) Đ Vì bạn Nam lấy ngẫu nhiên 1 viên bi từ hộp chứa 10 bi xanh và 8 bi đen nên n(\Omega) = 18

    Do đó, P(A) = \frac{n(A)}{n(\Omega)} =
\frac{10}{18} = \frac{5}{9}.

    c) S Nếu A xảy ra tức là bạn Nam lấy được bi xanh thì trong hộp có 17viên bi với 8bi đen

    Do đó, P\left( \left. \ B \right|A
\right) = \frac{8}{17} \neq \frac{4}{9}.

    d) S Áp dụng công thức nhân xác suất, ta có:

    P(A.B) = P(A).P\left( \left. \ B
\right|A \right) = \frac{5}{9}.\frac{8}{17} = \frac{40}{153} \approx 0,3
\neq 0,8.

  • Câu 4: Thông hiểu

    Tìm xác suất có điều kiện

    Gieo đồng thời hai con xúc sắc cân đối. Tính xác suất để tổng số chấm xuất hiện trên hai con xúc sắc là 7, biết rằng có ít nhất một con xúc sắc xuất hiện mặt 5 chấm.

    Gọi A là biến cố “Tổng số chấm xuất hiện trên hai con xúc sắc là 7” và B là biến cố “Có ít nhất một con xúc sắc xuất hiện mặt 5 chấm”.

    Ta có

    P(B) = 1 - P\left( \overline{B} \right) =
1 - \frac{25}{36} = \frac{11}{36};

    A \cap B = \left\{ (2;5),\ \ (5;2)
\right\} \Rightarrow P(A \cap B) = \frac{2}{36}.

    Suy ra P\left( A\left| B
\right.\  \right) = \frac{P(A \cap B)}{P(B)} =
\frac{2}{11}.

  • Câu 5: Nhận biết

    Tính xác suất có điều kiện

    Một mảnh đất chia thành hai khu vườn. Khu A có 150 cây ăn quả, khu B có 200 cây ăn quả. Trong đó, số cây Táo ở khu A và khu B lần lượt là 50 cây và 100 cây. Chọn ngẫu nhiên 1 cây trong mảnh đất. Xác suất cây được chọn là cây Táo , biết rằng cây đó ở khu B, là :

    Xét các biến cố : E: “Cây chọn được là cây Táo”, F: “Cây chọn được ở khu B”

    Ta có: P\left( E\left| F
\right.\  \right) = \frac{n(E \cap F)}{n(F)} = \frac{100}{200} =
\frac{1}{2}.

    Vậy xác suất cây được chọn là cây Táo, biết rằng cây đó ở Khu B, là \frac{1}{2}.

  • Câu 6: Thông hiểu

    Tính xác suất của biến cố

    Trong lễ khai giảng năm học mới, bạn An tham gia trò chơi gồm hai vòng. Xác suất thắng ở vòng chơi đầu tiên là 0,7. Nếu An thắng ở vòng thứ nhất thì xác suất thắng ở vòng hai là 0,8. Ngược lại, nếu An thua ở vòng thứ nhất thì xác suất thắng ở vòng hai là 0,4. Xác xuất để An thắng ở vòng chơi thứ hai là

    Gọi biến cố A: “Bạn An thắng ở vòng thứ nhất”

    Biến cố B: “Bạn An thắng ở vòng thứ hai”

    Ta có sơ đồ hình cây biểu thị tình huống trên như sau:

    P(B) = P(A)P\left( B|A \right) + P\left(\overline{A} \right)P\left( B|\overline{A} \right)= 0,7.0,8 + 0,3.0,4 =0,68.

  • Câu 7: Thông hiểu

    Chọn đáp án đúng

    Một cửa hàng sách ước lượng rằng: trong tổng số các khách hàng đến cửa hàng có 30\% khách cần hỏi nhân viên bán hàng, 20\% khách mua sách và 15\% khách thực hiện cả hai điều trên. Gặp ngẫu nhiên một khách trong nhà sách. Tính xác suất để người này không mua sách, biết rằng người này đã hỏi nhân viên bán hàng?

    Gọi A là "khách hỏi nhân viên bán hàng" và B là "khách mua sách".

    Ta có: \left\{ \begin{matrix}
P(A) = 0,3;P(B) = 0,2 \\
P(AB) = 0,15 \\
\end{matrix} ight.

    P\left( \overline{B}|A ight) =
\frac{P\left( \overline{B}|A ight)}{P(A)} = \frac{P(A) - P(AB)}{P(A)}
= 0,5.

  • Câu 8: Nhận biết

    Chọn phương án thích hợp

    Gieo lần lượt hai con xúc xắc cân đối và đồng chất. Tính xác suất để tổng số chấm xuất hiện trên hai con xúc xắc bằng 6. Biết rằng con xúc xắc thứ nhất xuất hiện mặt 4 chấm.

    Gọi A là biến cố “con xúc xắc thứ nhất xuất hiện mặt 4 chấm”

    Gọi B là biến cố “Tổng số chấm xuất hiện trên 2 con xúc xắc bằng 6”.

    Khi con xúc xắc thứ nhất đã xuất hiện mặt 4 chấm thì lần thứ hai xuất hiện 2 chấm thì tổng hai lần xuất hiện là 6 chấm thì P\left( B|A \right) = \frac{1}{6}

  • Câu 9: Vận dụng cao

    Tìm xác suất để bi lấy ra màu trắng

    Có 3 hộp đựng bi giống nhau, mỗi hộp đựng 5 bi trắng và 7 bi đỏ có cùng kích thước, và trọng lượng. Lần thứ nhất lấy 1 bi từ hộp I bỏ sang hộp II, lần thứ hai lấy 1 từ hộp II bỏ sang hộp III. Cuối cùng lấy 1 bi từ hộp III ra ngoài. Tính xác suất để bi lấy ra đó là bi trắng. (làm tròn kết quả đến hàng phần trăm)

    Gọi A_{i} là biến cố bi lấy ra từ hộp thứ i (i = 1;2;3) là bi trắng.

    Ta thấy \left\{ A_{2};\overline{A_{2}}
\right\} là họ đầy đủ.

    Nên ta có xác suất toàn phần

    P\left( A_{3} \right) = P\left( A_{2}
\right).P\left( A_{3}|A_{2} \right) + P\left( \overline{A_{2}}
\right).P\left( A_{3}|\overline{A_{2}} \right) (*)

    Lại có \left\{ A_{1};\overline{A_{1}}
\right\} là họ đầy đủ.

    Nên ta có xác suất toàn phần:

    P\left( A_{2} \right) = P\left( A_{1}
\right).P\left( A_{2}|A_{1} \right) + P\left( \overline{A_{1}}
\right).P\left( A_{2}|\overline{A_{1}} \right)

    = \frac{5}{12}.\frac{6}{13} +
\frac{7}{12}.\frac{5}{13} = \frac{5}{12}

    Khi đó P\left( \overline{A_{2}} \right) =
1 - P\left( A_{2} \right) = \frac{7}{12}

    Do đó từ (*) ta có P\left( A_{3} \right)
= \frac{5}{12}.\frac{6}{13} + \frac{7}{12}.\frac{5}{13} = \frac{5}{12}
\approx 0,42

  • Câu 10: Vận dụng

    Ghi đáp án vào ô trống

    Áo sơ mi An Phước trước khi xuất khẩu sang Mỹ phải qua 2 lần kiểm tra, nếu cả hai lần đều đạt thì chiếc áo đó mới đủ tiêu chuẩn xuất khẩu. Biết rằng bình quân 98% sản phẩm làm ra qua được lần kiểm tra thứ nhất và 95% sản phẩm qua được lần kiểm tra đầu sẽ tiếp tục qua được lần kiểm tra thứ hai. Tìm xác suất để một chiếc áo sơ mi đủ tiêu chuẩn xuất khẩu? (kết quả làm tròn đến hàng phần trăm)

    Đáp án : 0,93

    Đáp án là:

    Áo sơ mi An Phước trước khi xuất khẩu sang Mỹ phải qua 2 lần kiểm tra, nếu cả hai lần đều đạt thì chiếc áo đó mới đủ tiêu chuẩn xuất khẩu. Biết rằng bình quân 98% sản phẩm làm ra qua được lần kiểm tra thứ nhất và 95% sản phẩm qua được lần kiểm tra đầu sẽ tiếp tục qua được lần kiểm tra thứ hai. Tìm xác suất để một chiếc áo sơ mi đủ tiêu chuẩn xuất khẩu? (kết quả làm tròn đến hàng phần trăm)

    Đáp án : 0,93

    Gọi A là biến cố “qua được lần kiểm tra đầu tiên” \Rightarrow P(A) = 0,98

    Gọi B là biến cố “qua được lần kiểm tra thứ 2” \Rightarrow P\left( B|A ight) =
0,95

    Chiếc áo sơ mi đủ tiêu chuẩn xuất khẩu phải thỏa mãn 2 điều kiện trên, hay ta đi tính P(A \cap
B).

    Ta có

    P\left( B|A ight) = \frac{P(A \cap
B)}{P(A)}

    \Rightarrow P(A \cap B) = P\left( B|A
ight).P(A) = 0,95.0,98 = \frac{931}{1000} \approx 0,93

  • Câu 11: Vận dụng

    Tính xác suất người không nhiễm bệnh

    Để phát hiện ra người nhiễm bệnh, người ta tiến hành xét nghiệm tất cả mọi người của nhóm người (trong đó 91\% người không nhiễm bệnh). Biết rằng đối với người nhiễm bệnh thì xác suất xét nghiệm có kết quả dương tính là 85\%, nhưng đối với người không nhiễm bệnh thì xác suất xét nghiệm có phản ứng dương tính là 7\%. Tính xác suất để người được chọn ra không nhiễm bệnh và không có phản ứng dương tính.

    Gọi A: “Người được chọn ra không nhiễm bệnh”.

    Và B: “Người được chọn ra có phản ứng dương tính”

    Theo bài ta có: P(A) = 0,91;P\left( B|A
ight) = 0,07;P\left( B|\overline{A} ight) = 0,85

    P\left( \overline{A} ight) = 1 - P(A)
= 0,09

     

    P\left( \overline{B}|\overline{A}
ight) = 1 - P\left( B|\overline{A} ight) = 1 - 0,85 =
0,15

    Ta có sơ đồ hình cây như sau:

    Vậy P\left( A\overline{B} ight) =
0,91.0,93 = 0,8463

  • Câu 12: Thông hiểu

    Chọn đáp án chính xác

    Lớp 10A có 35 học sinh, mỗi học sinh đều giỏi ít nhất một trong hai môn Toán hoặc Văn. Biết rằng có 23 học sinh giỏi môn Toán và 20 học sinh giỏi môn Văn. Chọn ngẫu nhiên một học sinh của lớp 10A. Tính xác suất để học sinh được chọn "không giỏi môn Văn biết rằng học sinh đó giỏi môn Toán". (Làm tròn đến hàng phần trăm).

    Trong số 23 học sinh giỏi Toán, có đúng 8 học sinh giỏi cả Toán và Văn nên số học sinh không giỏi Văn mà giỏi Toán là 23 - 8 = 15.

    Xác suất để học sinh được chọn "không giỏi môn Văn biết rằng học sinh đó giỏi môn Toán" là P = \frac{15}{23} \approx
0,65

  • Câu 13: Thông hiểu

    Chọn đáp án đúng

    Một bình đựng hạt giống có 7 hạt loại A và 6 hạt loại B. Lấy ngẫu nhiên lần thứ nhất ra 2 hạt, lần thứ hai ra một hạt. Tính xác suất để hạt giống lấy ra lần 2 là hạt loại A.

    Gọi F là biến cố hạt lấy ra lần hai là loại A. H0, H1, H2 lần lượt là biến cố hai hạt lấy ra lần thứ nhất có 0,1, 2 hạt loại B.

    {H0, H1, H2} là một hệ đầy đủ.

    Áp dụng công thức xác suất đầy đủ ta có

    P(F) = P\left( H_{0} ight).P\left(
F|H_{0} ight) + P\left( H_{1} ight).P\left( F|H_{1} ight) +
P\left( H_{2} ight).P\left( F|H_{2} ight)

    \Rightarrow P(F) =
\frac{C_{7}^{2}}{C_{13}^{2}}.\frac{5}{11} +
\frac{C_{7}^{1}.C_{6}^{1}}{C_{13}^{2}}.\frac{6}{11} +
\frac{C_{6}^{2}}{C_{13}^{2}}.\frac{7}{11} = 0,538.

  • Câu 14: Vận dụng

    Chọn đáp án đúng

    Một nhà máy sản xuất bóng đèn gồm 3 phân xưởng, phân xưởng 1 sản xuất 50% tổng số bóng đèn, phân xưởng 2 sản xuất 20% tổng số bóng đèn, phân xưởng 3 sản xuất 30% tổng số bóng đèn. Tỷ lệ phế phẩm tương ứng của các phân xưởng là 2%, 3%, 4%. Tính tỷ lệ phế phẩm chung của toàn nhà máy?

    Để xác định tỷ lệ phế phẩm chung của toàn nhà máy, ta lấy ngẫu nhiên 1 sản phẩm từ lô hàng của nhà máy.

    Tính xác suất để sản phẩm này là phế phẩm

    Gọi A_{1},A_{2},A_{3} lần lượt là các biến cố " Chọn được sản phẩm của phân xưởng 1,2,3".

    Ta có A_{1},A_{2},A_{3} là hệ biến cố xung khắc và đầy đủ.

    P\left( A_{1} ight) = 0.5,P\left(
A_{2} ight) = 0.2,P\left( A_{3} ight) = 0.3

    Gọi B là biến cố "Lấy được phế phẩm" ta có:

    P(B) = P\left( A_{1} ight)P\left(
B|A_{1} ight) + P\left( A_{2} ight)P\left( B|A_{2} ight) + P\left(
A_{3} ight)P\left( B|A_{3} ight)

    = 0.5 \times 0.02 + 0.2 \times 0.03 +
0.3 \times 0.04 = 2.8\%

    Vậy tỷ lệ phế phẩm của nhà máy là 2.8\%

  • Câu 15: Nhận biết

    Tính P(B|A)

    Cho hai biến cố AB, với P(B) =
0,8, P\left( A|B \right) =
0,7, P\left( A|\overline{B} \right)
= 0,45. Tính P\left( B|A
\right).

    Ta có: P\left( \overline{B} \right) = 1
- 0,8 = 0,2.

    Công thức Bayes:

    P\left( B|A \right) =
\frac{P(B)P\left( A|B \right)}{P(B)P\left( A|B \right) + P\left(
\overline{B} \right)P\left( A|\overline{B} \right)}

    \Rightarrow P\left( B|A \right) =
\frac{0,8.0,7}{0,8.0,7 + 0,2.0,45} = \frac{56}{65}.

  • Câu 16: Thông hiểu

    Chọn đáp án thích hợp

    Kết quả khảo sát tại một xã cho thấy có 25\% cư dân hút thuốc lá. Tỉ lệ cư dân thường xuyên gặp các vấn đề sức khoẻ về đường hô hấp trong số những người hút thuốc lá và không hút thuốc lá lần lượt là 60\%25\%, được biểu diễn ở sơ đồ hình cây sau:

    A diagram of a flowchartDescription automatically generated

    Nếu ta gặp một cư dân của xã thường xuyên gặp các vấn đề sức khoẻ về đường hô hấp thì xác suất người đó có hút thuốc lá là bao nhiêu?

    Giả sử ta gặp một cư dân của xã, gọi A là biến cố "Người đó có hút thuốc lá" và B là biến cố "Người đó thường xuyên gặp các vấn đề sức khoẻ về đường hô hấp". Ta có sơ đồ hình cây sau:

    Ảnh có chứa văn bản, ảnh chụp màn hình, Phông chữ, biểu đồMô tả được tạo tự động

    Ta có P(B) = P(A) \cdot P(B \mid A) +P(\overline{A}) \cdot P(B \mid \overline{A})= 0,15 + 0,1875 =0,3375.

    Theo công thức Bayes, ta có P(A \mid B) =
\frac{P(A)P(B \mid A)}{P(B)} = \frac{0,15}{0,3375} =
\frac{4}{9}.

  • Câu 17: Nhận biết

    Chọn mệnh đề đúng

    Cho hai biến cố AB. Chọn mệnh đề đúng?

    Ta có: P(A \cap B) = P(A).P\left( B|A
\right) = P(B).P\left( A|B \right).

  • Câu 18: Thông hiểu

    Tính xác suất để Hà được chọn vào đội tuyển

    Để được chọn vào đội tuyển học sinh giỏi môn Toán cấp thành phố, mỗi thí sinh phải vượt qua hai vòng thi. Bạn Hà tham dự cuộc tuyển chọn này. Xác suất để Hà qua được vòng thứ nhất là 0,8. Nếu qua được vòng thứ nhất thì xác suất để Hà qua được vòng thứ hai là 0,7. Xác suất để bạn Hà được chọn vào đội tuyển này là

    Gọi A là biến cố: “Hà qua được vòng thứ nhất” và B là biến cố: “Hà qua được vòng thứ hai”. Khi đó biến cố: “Hà được chọn vào đội tuyển” là AB.

    Ta có P(AB) = P(A).P\left( B\left| A
\right.\  \right) = 0,8.0,7 = 0,56.

  • Câu 19: Vận dụng

    Xác định độ tin cậy của hệ thống

    Một hệ thống được cấu tạo bởi 3 bộ phận độc lập nhau. Hệ thống sẽ hoạt động nếu ít nhất 2 trong 3 bộ phận còn hoạt động. Nếu độ tin cậy của mỗi bộ phận là 0.95 thì độ tin cậy của hệ thống là bao nhiêu?

    Gọi Bi: "Bộ phận thứ i hoạt động tốt" (i = 1, 2, 3)

    H: "Hệ thống hoạt động tốt"

    Theo giả thiết, ta thấy rằng P(Bi) = 0.95 với i = 1, 2, 3 và

    H = \overline{B_{1}}B_{2}B_{3} +
B_{1}\overline{B_{2}}B_{3} + B_{1}B_{2}\overline{B_{3}} +
B_{1}B_{2}B_{3}

    Do tính độc lập, xung khắc và đối xứng nên:

    P(H) = 3P\left( \overline{B_{1}}
ight)P\left( B_{2} ight)P\left( B_{3} ight) + P\left( B_{1}
ight)P\left( B_{2} ight)P\left( B_{3} ight)

    \Rightarrow P(H) = 3.(0,95)^{2}.(0,05) +
0,95^{3} = 99,28.

  • Câu 20: Nhận biết

    Tính P(A|B)

    Cho hai biến cố AB, với P(A) =
0,6, P(B) = 0,7, P(A \cap B) = 0,3. Tính P\left( A|B \right).

    Ta có: P\left( A|B \right) = \frac{P(A
\cap B)}{P(B)} = \frac{0,3}{0,7} = \frac{3}{7}

  • Câu 21: Vận dụng cao

    Tính xác suất để linh kiện là phế phẩm

    Một xưởng sản xuất linh kiện điện tử có hai dây chuyền A và B. Dây chuyền A sản xuất 70\% số linh kiện, dây chuyền B sản xuất 30\% số linh kiện. Tỷ lệ phế phẩm của dây chuyền A là 3\%, của dây chuyền B là 5\%. Chọn ngẫu nhiên một linh kiện. Tính xác suất để linh kiện đó là phế phẩm.

    Gọi biến cố A: “Linh kiện được sản xuất từ dây chuyền A”.

    Biến cố B: “Linh kiện được sản xuất từ dây chuyền B”.

    Biến cố H: “Linh kiện là phế phẩm”.

    Ta có P(A) = 0,7;P(B) = 0,3;P\left( H|A
\right) = 0,03;P\left( H|B \right) = 0,05

    Áp dụng công thức xác suất toàn phần, ta có xác suất để linh kiện đó là phế phẩm là:

    P(H) = P(A).P\left( H|A \right) +
P(B).P\left( H|B \right)

    = 0,7.0,03 + 0,3.0,05 = 0,036 =
3,6\%.

  • Câu 22: Nhận biết

    Tính P(A|B)

    Cho hai biến cố AB là hai biến cố độc lập, với P(A) = 0,2024; P(B) = 0,2025.

    Tính P\left( A\left| B
\right.\  \right).

    Ta có: AB là hai biến cố độc lập nên: P\left( A\left| B \right.\  \right) = P(A) =
0,2024

  • Câu 23: Thông hiểu

    Ghi lời giải bài toán vào chỗ trống

    Một bình đựng 50 viên bi kích thước, chất liệu như nhau, trong đó có 30 viên bi xanh và 20 viên bi trắng. Lấy ngẫu nhiên ra một viên bi, rồi lại lấy ngẫu nhiên ra một viên bi nữa. Tính xác suất để lấy được một viên bi xanh ở lần thứ nhất và một viên bi trắng ở lần thứ hai?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Một bình đựng 50 viên bi kích thước, chất liệu như nhau, trong đó có 30 viên bi xanh và 20 viên bi trắng. Lấy ngẫu nhiên ra một viên bi, rồi lại lấy ngẫu nhiên ra một viên bi nữa. Tính xác suất để lấy được một viên bi xanh ở lần thứ nhất và một viên bi trắng ở lần thứ hai?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 24: Thông hiểu

    Tính xác suất theo yêu cầu

    Một bình đựng 9 viên bi xanh và 7 viên bi đỏ. Lần lượt lấy ngẫu nhiên ra 2 bi, mỗi lần lấy 1 bi không hoàn lại. Tính xác suất để bi thứ 2 màu xanh nếu biết bi thứ nhất màu đỏ?

    Gọi A là biến cố “lần thứ nhất lấy được bi màu đỏ”.

    Gọi B là biến cố “lần thứ hai lấy được bi màu xanh”.

    Ta cần tìm P\left( B|A
ight)

    Không gian mẫu n(\Omega) = 16.15 cách chọn

    Lần thứ nhất lấy 1 viên bi màu đỏ có 7 cách chọn, lần thứ hai lấy 1 viên bi rong 15 bi còn lại có 15 cách chọn, do đó: P(A) = \frac{7.15}{16.15} =
\frac{7}{16}

    Lần thứ nhất lấy 1 viên bi màu đỏ có 7 cách chọn, lần thứ hai lấy 1 viên bi màu xanh có 9 cách chọn, do đó: P(A
\cap B) = \frac{7.9}{16.15} = \frac{21}{80}

    Vậy xác suất để viên bi lấy lần thứ hai là màu xanh nếu biết rằng viên bi lấy lần thứ nhất là màu đỏ là: P\left( B|A ight) = \dfrac{P(A \cap B)}{P(A)} =\dfrac{\dfrac{21}{80}}{\dfrac{7}{16}} = \dfrac{3}{5}.

  • Câu 25: Vận dụng cao

    Chọn kết quả chính xác

    Để thành lập đội tuyển quốc gia về một môn học, người ta tổ chức một cuộc thi tuyển gồm 3 vòng. Vòng thứ nhất lấy 80\% thí sinh; vòng thứ hai lấy 70\% thí sinh đã qua vòng thứ nhất và vòng thứ ba lấy 45\% thí sinh đã qua vòng thứ hai. Để vào được đội tuyển, thí sinh phải vượt qua được cả 3 vòng thi. Tính xác suất để một thí sinh bất kỳ bị loại ở vòng thứ hai, biết rằng thí sinh này bị loại?

    Gọi A_{i} là "thí sinh vượt qua vòng thứ i ' thì ta có P\left( A_{1} ight) = 0,8,P\left( A_{2} \mid
A_{1} ight) = 0,7P\left(
A_{3} \mid A_{1}A_{2} ight) = 0,45

    Gọi A là biến cố thí sinh được vào đội tuyển thì A xảy ra nếu thí sinh vượt qua cả 3 vòng, nghĩa là A =
A_{1}A_{2}A_{3}

    P(A) = P\left( A_{1}A_{2}A_{3} ight) =
P\left( A_{1} ight)P\left( A_{2} \mid A_{1} ight)P\left( A_{3} \mid
A_{1}A_{2} ight)= 0,8.0,7.0,45 = 0,252

    Gọi C là biến cố "thí sinh bị loại ở vòng 2, biết thí sinh này bị loại'.

    Ta biểu diễn C = A_{1}\overline{A_{2}}
\mid \bar{A}.

    P(C) = \frac{P\left\lbrack \left(A_{1}\overline{A_{2}} ight)\bar{A} ightbrack}{P(\bar{A})} =\frac{P\left( A_{1}\overline{A_{2}} ight)}{P(\bar{A})}A_{1}\overline{A_{2}} \subset \bar{A}

    = \frac{P\left( A_{1} ight)P\left(
\overline{A_{2}} \mid A_{1} ight)}{P(\bar{A})}= \frac{0,8.(1 - 0,7)}{1 - 0,252} \simeq
0,3208

  • Câu 26: Nhận biết

    Tính xác suất

    Cho hai biến cố AB, với P(A) =
0,8;P(B) = 0,65;P\left( A \cap \overline{B} ight) = 0,55. Tính P(A \cap B)?

    Ta có:

    P\left( A \cap \overline{B} ight) +
P(A \cap B) = P(A)

    \Rightarrow P(A \cap B) = P(A) - P\left(
A \cap \overline{B} ight) = 0,8 - 0,55 = 0,25.

  • Câu 27: Thông hiểu

    Chọn đáp án đúng

    Một bình đựng hạt giống có 7 hạt loại A và 6 hạt loại B. Lấy ngẫu nhiên lần thứ nhất ra 2 hạt, lần thứ hai ra một hạt. Biết hạt giống lấy ra lần hai loại A. Tính xác suất để hai hạt lấy ra lần thứ nhất đều loại B.

    Gọi F là biến cố hạt lấy ra lần hai là loại A. H0, H1, H2 lần lượt là biến cố hai hạt lấy ra lần thứ nhất có 0, 1, 2 hạt loại B.

    {H0, H1, H2} là một hệ đầy đủ.

    Áp dụng công thức xác suất đầy đủ ta có

    P(F) = P\left( H_{0} ight).P\left(
F|H_{0} ight) + P\left( H_{1} ight).P\left( F|H_{1} ight) +
P\left( H_{2} ight).P\left( F|H_{2} ight)

    \Rightarrow P(F) =
\frac{C_{7}^{2}}{C_{13}^{2}}.\frac{5}{11} +
\frac{C_{7}^{1}.C_{6}^{1}}{C_{13}^{2}}.\frac{6}{11} +
\frac{C_{6}^{2}}{C_{13}^{2}}.\frac{7}{11} = 0,538.

    Áp dụng công thức Bayes, ta được:

    \Rightarrow P\left( H_{2}|F ight) =\dfrac{P\left( H_{2} ight).P\left( F|H_{2} ight)}{P(F)} =\dfrac{\dfrac{C_{6}^{2}}{C_{13}^{2}}.\dfrac{7}{11}}{0,538} =0,227.

  • Câu 28: Nhận biết

    Xác định đáp án đúng

    Cho hai biến cố AB là hai biến cố độc lập, với P(A) = 0,2024;P(B) = 0,2025. Tính P\left( A|B ight)?

    Hai biến cố AB là hai biến cố độc lập nên P\left( A|B ight) = P(A) = 0,2024.

  • Câu 29: Nhận biết

    Tính P(A)

    Cho hai biến cố A,\ B thỏa mãn P\left( \overline{B} \right) = 0,2;\ P\left(
A|B \right) = 0,5;\ P\left( \left. \ A \right|\overline{B} \right) =
0,3. Khi đó, P(A) bằng

    Ta có: P(B) = 1 - P\left( \overline{B}
\right) = 0,8.

    Theo công thức xác suất toàn phần, ta có:

    P(A) = P(B).P\left( A|B \right) +
P\left( \overline{B} \right).P\left( A|\overline{B} \right)

    = 0,8.0,5 + 0,2.0,3 = 0,46.

  • Câu 30: Vận dụng

    Xét tính đúng sai của các kết luận

    Năm 2020, dịch COVID-19 bùng phát trên toàn thế giới. Các nhà khoa học đã phát triển một loại test nhanh để phát hiện virus SARS-CoV-2 gây bệnh COVID-19. Theo thống kê, khi một người nhiễm virus SARS-CoV-2 thì xác suất để test nhanh có kết quả dương tính là 90%. Tuy nhiên, khi một người không nhiễm virus, xác suất để test nhanh vẫn cho kết quả dương tính là 5%. Biết rằng tỷ lệ người nhiễm virus SARS-CoV-2 ở một quốc gia là 2% trong dân số.

    Gọi X là biến cố "một người nhiễm virus SARS-CoV-2" và Y là biến cố "một người có kết quả test nhanh dương tính".

    a) P(X) = 0,02. Đúng||Sai

    b) P(Y|X) = 0,9. Đúng||Sai

    c) P(X|Y) = 0,567. Đúng||Sai

    d) P(Y \cap X) = 0,06. Sai||Đúng

    Đáp án là:

    Năm 2020, dịch COVID-19 bùng phát trên toàn thế giới. Các nhà khoa học đã phát triển một loại test nhanh để phát hiện virus SARS-CoV-2 gây bệnh COVID-19. Theo thống kê, khi một người nhiễm virus SARS-CoV-2 thì xác suất để test nhanh có kết quả dương tính là 90%. Tuy nhiên, khi một người không nhiễm virus, xác suất để test nhanh vẫn cho kết quả dương tính là 5%. Biết rằng tỷ lệ người nhiễm virus SARS-CoV-2 ở một quốc gia là 2% trong dân số.

    Gọi X là biến cố "một người nhiễm virus SARS-CoV-2" và Y là biến cố "một người có kết quả test nhanh dương tính".

    a) P(X) = 0,02. Đúng||Sai

    b) P(Y|X) = 0,9. Đúng||Sai

    c) P(X|Y) = 0,567. Đúng||Sai

    d) P(Y \cap X) = 0,06. Sai||Đúng

    a) Ta có: P(X)là xác suất một người nhiễm virus SARS-CoV-2.
    Theo đề bài, tỷ lệ người nhiễm virus SARS-CoV-2 ở một quốc gia là 2\% = 0,02trong dân số.
    Vậy mệnh đề đúng.

    b) P(Y|X)là xác suất một người có kết quả test nhanh dương tính, với điều kiện người đó nhiễm virus SARS-CoV-2.

    Theo giả thiết, khi một người nhiễm virus SARS-CoV-2, xác suất để test nhanh có kết quả dương tính là 90\% =
0,9. Vậy mệnh đề đúng.

    c) P(X|Y) là xác suất một người nhiễm virus SARS-CoV-2, với điều kiện người đó có kết quả test nhanh dương tính.

    Ta có: P(Y|X) = 0,9.(cmt), P(X) = 0,02.

    P(Y) = P(Y|X).P(X) +
P(Y|\overline{X}).P(\overline{X}) = 0,9.0,02 + 0,05.0,98 = 0,0634.

    Thay vào công thức Bayes: P(X|Y) =
\frac{P(Y|X).P(X)}{P(Y)} = 0,567.

    Vậy mệnh đề đúng.

    d) Trong câu d, P(Y \cap X) là xác suất một người vừa nhiễm virus SARS-CoV-2 vừa có kết quả test nhanh dương tính.

    P(Y \cap X) = P(Y|X).P(X) = 0,9.0,02 =
0,05.

    Vậy mệnh đề sai.

  • Câu 31: Vận dụng cao

    Chọn đáp án đúng

    Trong học kỳ I năm học 2024 - 2025, sinh viên phải thi 4 học phần. Xác suất để sinh viên thi đạt một học phần trong mỗi lần thi đều là 0,8. Nếu thi không đạt học phần nào phải thi lại học phần đó. Tính xác suất để một sinh viên thi đạt cả 4 học phần trong đó không có học phần nào thi quá 2 lần.

    Gọi A_{i} là "đạt i học phần ở lần thi đầu".

    Khi đó, A_{0},A_{1},A_{2},A_{3},A_{4} tạo thành hệ đầy đủ và P\left( A_{i} ight) =
C_{4}^{i}.0,8^{i}.0,2^{4 - i}

    Gọi A là "đạt cả 4 học phần trong đó không có học phần nào thi quá 2 lần".

    Áp dụng công thức xác suất toàn phần ta có:

    P(A) = \sum_{i = 0}^{4}P\left( A_{i}
ight)P\left( A \mid A_{i} ight)

    = C_{4}^{0}.0,8^{0}.0,2^{4}.\left(
0,8^{4} ight) + C_{4}^{2}.0,8^{1}.0,2^{3}.\left( 0,8^{3} ight) +
C_{4}^{2}.0,8^{2}.0,2^{2}.\left( 0,8^{2} ight)

    + C_{4}^{3}.0,8^{3}.0,2^{1}.(0,8) +
C_{4}^{4}.0,8^{4}.0,2^{0}.\left( 0,8^{0} ight)

    \approx 0,8493 = 84,93\%

  • Câu 32: Nhận biết

    Tính P(A)

    Cho hai biến cố AB với P(B) =
0,8;P\left( A|B ight) = 0,7,P\left( A|\overline{B} ight) =
0,45. Tính P(A)?

    Ta có:

    P\left( \overline{B} ight) = 1 - P(B)
= 1 - 0,8 = 0,2

    Áp dụng công thức xác suất toàn phần ta có:

    P(A) = P(B).P\left( A|B ight) +
P\left( \overline{B} ight).P\left( A|\overline{B} ight)

    \Rightarrow P(A) = 0,8.0,7 + 0,2.0,45 =
0,65

  • Câu 33: Thông hiểu

    Chọn đáp án đúng

    Cho hai biến cố AB với P(B) =
0,8;P\left( A|B ight) = 0,7,P\left( A|\overline{B} ight) =
0,45. Tính P\left( B|A
ight)?

    Ta có:

    P\left( \overline{B} ight) = 1 - P(B)
= 1 - 0,8 = 0,2

    Áp dụng công thức xác suất toàn phần ta có:

    P(A) = P(B).P\left( A|B ight) +
P\left( \overline{B} ight).P\left( A|\overline{B} ight)

    Áp dụng công thức Bayes ta có:

    P\left( B|A ight) = \frac{P(B).P\left(
A|B ight)}{P(A)} = \frac{0,8.0,7}{0,65} = \frac{56}{65} \approx
0,86

  • Câu 34: Vận dụng

    Tính xác suất chọn được học sinh thỏa mãn yêu cầu

    Tại trường THPT có 20\% học sinh tham gia câu lạc bộ bơi lội, trong số học sinh đó có 85\% học sinh biết bơi ếch. Ngoài ra, có 10\% số học sinh không tham gia câu lạc bộ bơi lội cũng biết bơi ếch. Chọn ngẫu nhiên 1 học sinh của trường. Giả sử học sinh đó biết bơi ếch. Xác suất chọn được học sinh thuộc câu lạc bộ bơi lội là bao nhiêu?

    Xét các biến cố: A: "Chọn được học sinh thuộc câu lạc bộ bơi lội ";

    B: “Chọn được học sinh biết bơi ếch”.

    Khi đó P(A) = 0,2;\ \ P\left(
\overline{A} \right) = 0,8;\ \ P\left( B|A \right) = 0,85;\ \ P\left(
B|\overline{A} \right) = 0,1.

    Theo công thức xác suất toàn phần ta có:

    P(B) = P(A).P\left( B|A \right) + P\left(\overline{A} \right).P\left( B|\overline{A} \right)= 0,2.0,85 + 0,8.0,1= 0,25.

    Theo công thức Bayes, xác suất chọn được học sinh thuộc câu lạc bộ bơi lội, biết học sinh đó biết bơi ếch là:

    P\left( A|B \right) = \frac{P(A).P\left(
B|A \right)}{P(B)} = \frac{0,2.0,85}{0,25} = 0,68.

  • Câu 35: Nhận biết

    Kết luận đúng

    Giả sử AB là hai biến cố ngẫu nhiên thỏa mãn P(A) > 00 < P(B) < 1. Khi đó

    Ta có: P\left( \left. \ B \right|A
\right) = \frac{P(B)P\left( \left. \ A \right|B \right)}{P(B)P\left(
\left. \ A \right|B \right) + P\left( \overline{B} \right)P\left( \left.
\ A \right|\overline{B} \right)}

  • Câu 36: Nhận biết

    Chọn phương án đúng

    Cho hai biến cố A,\ BP(B) = 0,8;P(A \cap B) = 0,1. Kết quả của xác suất sau P(A \mid B) bằng bao nhiêu?

    Ta có: P(A \cap B) = P(B).P(A \mid
B)

    \Leftrightarrow P(A \mid B) = \frac{P(A
\cap B)}{P(B)} = \frac{0,1}{0,8} = \frac{1}{8}.

  • Câu 37: Thông hiểu

    Chọn kết quả đúng

    Một trạm chỉ phát hai tín hiệu A và B với xác suất tương ứng 0,840,16. do có nhiễu trên đường truyền nên \frac{1}{6} tín hiệu A bị méo và thu được như tín hiệu B còn \frac{1}{8} tín hiệu B bị méo và thu được như A. Tìm xác suất thu được tín hiệu A?

    Gọi A, B lần lượt là "phát ra tín hiệu A, B".

    Khi đó A, B tạo thành hệ đầy đủ.

    P(A) = 0,84;P(B) = 0,16

    Gọi C là "thu được tín hiệu A". Khi đó: P\left( C|A ight) = \frac{5}{6};P\left( C|B
ight) = \frac{1}{8}

    Áp dụng công thức xác suất toàn phần ta có:

    P(C) = P(A).P\left( C|A ight) +
P(B).P\left( C|B ight)

    \Rightarrow P(C) = 0,84.\frac{5}{6} +
0,16.\frac{1}{8} = 0,72.

    Ta cần tính P(A|C). Áp dụng công thức Bayes ta có:

    P\left( A|C ight) = \frac{P(A)P\left(C|A ight)}{P(C)} = \dfrac{0,84.\dfrac{5}{6}}{0,72} =\dfrac{35}{36}

  • Câu 38: Nhận biết

    Chọn đáp án đúng

    Cho hai biến cố A;B với P(B) = 0,6;P\left( A|B ight) = 0,7;P\left(
A|\overline{B} ight) = 0,4. Giá trị P(A) bằng:

    Ta có: P\left( \overline{B} ight) = 1 -
P(B) = 1 - 0,6 = 0,4

    Theo công thức xác suất toàn phần, ta có:

    P(A) = P(B).P\left( A|B ight) +
P\left( \overline{B} ight).P\left( A|\overline{B} ight)

    \Rightarrow P(A) = 0,6.0,7 + 0,4.0,4 =
0,58

  • Câu 39: Nhận biết

    Chọn đáp án đúng

    Cho hai biến cố AB, công thức tính xác suất toàn phần là

    Ta có: P(A) = P(B).P\left( A|B \right) +
P\left( \overline{B} \right).P\left( A|\overline{B} \right)

  • Câu 40: Vận dụng

    Tính xác suất P

    Có 3 hộp bi:

    Hộp 1: Có 3 xanh, 4 đỏ, 5 vàng.

    Hộp 2: Có 4 xanh, 5 đỏ, 6 vàng.

    Hộp 3: Có 5 xanh, 6 đỏ, 7 vàng

    Chọn ngẫu nhiên 1 hộp và từ hộp đó lấy ngẫu nhiên 3 bi. Tính xác suất để 3 bi lấy ra có 3 màu khác nhau. Trong trường hợp đó tính xác suất để 3 bi được lấy từ hộp thứ 3?

    Gọi A_{1};A_{2};A_{3} lần lượt là các biến cố “Chọn được hộp thứ 1, 2, 3” ta có hệ A_{1};A_{2};A_{3} là hệ biến cố xung khắc và đầy đủ:

    P\left( A_{1} ight) = P\left( A_{2}
ight) = P\left( A_{3} ight) = \frac{1}{3}

    Gọi C là biến cố” 3 bi lấy ra có ba màu khác nhau”

    Ta có:

    P(C) = P\left( A_{1} ight).P\left(
C|A_{1} ight) + P\left( A_{2} ight).P\left( C|A_{2} ight) +
P\left( A_{3} ight).P\left( C|A_{3} ight)

    \Rightarrow P(C) =
\frac{1}{3}.\frac{3.4.5}{C_{12}^{3}} +
\frac{1}{3}.\frac{4.5.6}{C_{15}^{3}} +
\frac{1}{3}.\frac{5.6.7}{C_{18}^{3}} \approx 26,46\%

    \Rightarrow P\left( A_{3}|C ight) =
\frac{P\left( A_{3} ight).P\left( C|A_{3} ight)}{P(C)} =
\frac{\frac{1}{3}.\frac{210}{C_{18}^{3}}}{0,2646} = 32,42\%

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 6 Xác suất có điều kiện CTST Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo