Tính giá trị biểu thức
Diện tích hình phẳng giới hạn bởi các đường
là
. Tính giá trị
?
Diện tích hình phẳng cần tìm là:
Đặt
Đổi cận . Khi đó:
hay
Hãy cùng thử sức kiểm tra đánh giá các kiến thức tổng quan với bài kiểm tra phút Chương 4: Nguyên hàm Tích phân Toán 12 sách Chân trời sáng tạo các em nhé!
Tính giá trị biểu thức
Diện tích hình phẳng giới hạn bởi các đường
là
. Tính giá trị
?
Diện tích hình phẳng cần tìm là:
Đặt
Đổi cận . Khi đó:
hay
Tính diện tích nhỏ nhất
Diện tích nhỏ nhất giới hạn bởi parabol
và đường thẳng
là:
Hoành độ giao điểm của đồ thị hai hàm số là nghiệm của phương trình
Vì nên phương trình luôn có 2 nghiệm phân biệt
với
Ta có: .
Diện tích hình phẳng giới hạn bởi (P) và (d) là:
Vậy diện tích nhỏ nhất giới hạn bởi parabol và đường thẳng
là
.
Chọn khẳng định đúng
Trong các khẳng định sau khẳng định nào đúng.
Ta có:
Khi đó:
Tính tích phân I
Tính tích phân 
Có hai cách để giải bài toán:
Cách 1: Thử bằng máy tính
Cách 2: Tích phân thành phần:
Chọn phương án thích hợp
Một tàu lửa đang chạy với vận tốc 200 m/s thì người lái tàu đạp phanh; từ thời điểm đó, tàu chuyển động chậm dần đều với vận tốc
. Trong đó t là khoảng thời gian tính bằng giây, kể từ lúc bắt đầu đạp phanh. Hỏi thời gian khi tàu đi được quãng đường 750 m (kể từ lúc bắt đầu đạp phanh) ít hơn bao nhiêu giây so với lúc tàu dừng hẳn?
Khi tàu dừng hẳn:
Xét tính đúng sai của các khẳng định
Vào năm 2014, dân số nước ta khoảng 90,7 triệu người. Giả sử, dân số nước ta sau
năm được xác định bởi hàm số
( đơn vị: triệu người), trong đó tốc độ gia tăng dân số được cho với
, với
là số năm kể từ năm 2014,
được tính bằng triệu người/năm.
a)
là một nguyên hàm của
. Đúng||Sai
b)
. Sai||Đúng
c) Theo công thức trên, tốc độ gia tăng dân số nước ta năm 2034 (làm tròn đến hàng phần mười của triệu người/năm) khoảng 1,7 triệu người/năm. Đúng||Sai
d) Theo công thức trên, dân số nước ta năm 2034 (làm tròn đến hàng đơn vị của triệu người) khoảng 120 triệu người. Đúng||Sai
Vào năm 2014, dân số nước ta khoảng 90,7 triệu người. Giả sử, dân số nước ta sau
năm được xác định bởi hàm số
( đơn vị: triệu người), trong đó tốc độ gia tăng dân số được cho với
, với
là số năm kể từ năm 2014,
được tính bằng triệu người/năm.
a)
là một nguyên hàm của
. Đúng||Sai
b)
. Sai||Đúng
c) Theo công thức trên, tốc độ gia tăng dân số nước ta năm 2034 (làm tròn đến hàng phần mười của triệu người/năm) khoảng 1,7 triệu người/năm. Đúng||Sai
d) Theo công thức trên, dân số nước ta năm 2034 (làm tròn đến hàng đơn vị của triệu người) khoảng 120 triệu người. Đúng||Sai
Ta có: là một nguyên hàm của
và
Do
Tốc độ tăng dân số của nước ta vào năm 2034 là
( triệu người/năm)
Dân số của nước ta vào năm 2034 là
( triệu người)
Tìm kết quả đúng
Hàm số nào sau đây là một nguyên hàm của hàm số
?
Ta có:
Tính diện tích hình phẳng
Tính diện tích
của hình phẳng giới hạn bởi đồ thị hàm số
trục hoành và hai đường thẳng
.
Diện tích hình phẳng được tính như sau:
.
Cho F(x) là một nguyên hàm của hàm số
Cho F(x) là một nguyên hàm của hàm số
thỏa mãn
. Tìm F(x)
Mặt khác
=>
Tìm thể tích khối tròn xoay
Tính thể tích
của khối tròn xoay được sinh ra khi xoay hình phẳng giới hạn bởi các đường
và hai đường thẳng
quanh trục
:
Thể tích của khối tròn xoay được sinh ra khi xoay hình phẳng giới hạn bởi các đường
và hai đường thẳng
quanh trục
là:
.
Tìm thể tích khối tròn xoay
Gọi
là hình phẳng giới hạn bởi các đường
. Tính thể tích vật thể tròn xoay tạo thành khi quay hình
quanh trục
?
Thể tích vật thể tròn xoay tạo thành khi quay hình quanh trục
là
.
Tính thể tích theo yêu cầu
Cắt một vật thể bởi hai mặt phẳng vuông góc với trục
tại
và
. Một mặt phẳng tùy ý vuông góc với trục
tại điểm có hoành độ
(
) cắt vật thể đó theo thiết diện là một hình chữ nhật có độ dài hai cạnh là
và
. Tính thể tích của phần vật thể giới hạn bởi hai mặt phẳng trên
Diện tích thiết diện là:
Thể tích vật thể là:
Chọn đáp án đúng
Hàm số
có nguyên hàm trên
nếu:
Hàm số có nguyên hàm trên
nếu
liên tục trên
.
Tính giá trị biểu thức
Biết tích phân
trong đó
là các số nguyên. Tính giá trị biểu thức
?
Ta có:
Khi đó
Chọn công thức đúng
Công thức diện tích hình phẳng giới hạn bởi đồ thị hàm số
,
liên tục trên đoạn
và hai đường thẳng
,
là
Diện tích hình phẳng giới hạn bởi đồ thị hàm số ,
liên tục trên đoạn
và hai đường thẳng
,
là
.
Xét tính đúng sai của các khẳng định
Một xe ô tô đang chạy đều với vận tốc
thì người lái xe đạp phanh. Từ thời điểm đó, ô tô chuyển động chậm dần đều với vận tốc thay đổi theo hàm số
, trong đó
là thời gian tính bằng giây kể từ lúc đạp phanh.
a) Khi xe dừng hẳn thì vận tốc bằng
.Đúng||Sai
b) Thời gian từ lúc người lái xe đạp phanh cho đến khi xe dừng hẳn là
.Sai||Đúng
c)
.Đúng||Sai
d) Quãng đường từ lúc đạp phanh cho đến khi xe dừng hẳn là
.Sai||Đúng
Một xe ô tô đang chạy đều với vận tốc
thì người lái xe đạp phanh. Từ thời điểm đó, ô tô chuyển động chậm dần đều với vận tốc thay đổi theo hàm số
, trong đó
là thời gian tính bằng giây kể từ lúc đạp phanh.
a) Khi xe dừng hẳn thì vận tốc bằng
.Đúng||Sai
b) Thời gian từ lúc người lái xe đạp phanh cho đến khi xe dừng hẳn là
.Sai||Đúng
c)
.Đúng||Sai
d) Quãng đường từ lúc đạp phanh cho đến khi xe dừng hẳn là
.Sai||Đúng
Để giải bài toán này, chúng ta cần làm rõ từng phần. Ô tô đang chuyển động chậm dần đều với vận tốc (m/s), trong đó t là thời gian tính từ lúc bắt đầu đạp phanh.
a) Khi xe dừng hẳn thì vận tốc bằng 0 m/s. (Đúng).
Để tìm thời gian mà ô tô dừng lại, ta đặt v=0 nghĩa là: −5t+20=0 hay t=4 (s)
Vậy khi t=4, vận tốc là 0 m/s, điều này cho thấy ô tô đã dừng lại.
b) Thời gian từ lúc người lái xe đạp phanh cho đến khi xe dừng hẳn là 5 s.
Điều này không chính xác. Từ phần (a), chúng ta đã xác định thời gian để ô tô dừng lại là 4 giây, không phải 5 giây.
c)
Công thức tích phân này là chính xác, vì:
Với C là hằng số tích phân.
d) Quãng đường từ lúc đạp phanh cho đến khi xe dừng hẳn là 400 m.
Để tính quãng đường, chúng ta cần tích phân hàm vận tốc để tìm quãng đường đi được. Quãng đường s từ t = 0 đến t=4 giây được tính bằng:
Do đó, quãng đường ô tô đi được là 40 m, không phải 400 m.
Tóm lại:
(a) Đúng.
(b) Sai, thời gian là 4 giây.
(c) Đúng.
(d) Sai, quãng đường là 40 m.
Tính diện tích hình phẳng
Diện tích hình phẳng giới hạn bởi hai đường
và
bằng:
Xét phương trình hoành độ giao điểm
Diện tích hình phẳng là:
Tìm nguyên hàm của hàm số
Tìm một nguyên hàm của hàm số
?
Ta có:
Đặt
Khi đó .
Tìm họ nguyên hàm của hàm số
Giả sử hàm số f(x) luôn xác định. Tìm họ nguyên hàm của hàm số ![]()
Chọn đáp án chính xác
Một ô tô đang chạy thì người lái đạp phanh, từ thời điểm đó, ô tô chuyển động chậm dần đều với vận tốc
trong đó
là khoảng thời gian tính bằng giây, kể từ lúc bắt đầu đạp phanh. Hỏi từ lúc đạp phanh đến khi dừng hẳn, ô tô còn di chuyển bao nhiêu mét?
Khi dừng hẳn
Do đó từ lúc đạp phanh đến khi dừng hẳn, ô tô đi được:
Tìm họ nguyên hàm của hàm số
Họ nguyên hàm của hàm số
là:
Ta có:
Khi đó:
Xác định họ nguyên hàm của hàm số
Họ nguyên hàm của hàm số
là:
Đặt
Tìm họ nguyên hàm của hàm số
Họ nguyên hàm của hàm số
là
Phân tích
Ta có:
Khi đó , đồng nhất hệ số thì ta được
Giải chi tiết
Ta có
Đáp số bài tập kiểm tra khả năng vận dụng:
Tìm họ nguyên hàm của hàm số
Họ nguyên hàm của hàm số
là:
Ta có:
Chọn đáp án đúng
Tích phân
bằng:
Ta có:
.
Chọn đáp án đúng
Theo phương pháp đổi biến số
, nguyên hàm của
là:
Ta có:
.
Đặt .
.
Tính tỉ số hai cạnh
Một cổng chào có dạng hình Parabol chiều cao
, chiều rộng chân đế
. Người ta căng hai sợi dây trang trí
,
nằm ngang đồng thời chia hình giới hạn bởi Parabol và mặt đất thành ba phần có diện tích bằng nhau (xem hình vẽ bên). Tỉ số
bằng

Chọn hệ trục tọa độ như hình vẽ.

Phương trình Parabol có dạng
.
đi qua điểm có tọa độ
suy ra:
.
Từ hình vẽ ta có: .
Diện tích hình phẳng giới bạn bởi Parabol và đường thẳng là
.
Diện tích hình phẳng giới hạn bởi Parabol và đường thẳng
là
Từ giả thiết suy ra .
Vậy .
Tìm các giá trị thực của tham số m
Tìm tất cả các giá trị thực của tham số
thỏa mãn
?
Ta có:
Chọn đáp án đúng
Một vật chuyển động trong 3 giờ với vận tốc v (km/h) phụ thuộc thời gian t (h) có đồ thị là một phần của đường parabol có đỉnh
và trục đối xứng song song với trục tung như hình dưới. Tính quãng đường s mà vật di chuyển được trong 3 giờ đó.

Ta tìm được phương trình của parabol là
Như vậy, quãng đường s mà vật di chuyển được trong 3 giờ là:
Chọn đáp án đúng
Tích phân
có giá trị bằng
Ta có:
Ta thử bằng máy tính để tìm ra kết quả.
Chọn đáp án đúng
Tìm nguyên hàm của hàm số
.
Ta có
Tính tích phân I
Tích phân
có giá trị là:
Xét tích phân
Đặt: .
Đổi cận.
.
Đáp án đúng là .
Tìm nguyên hàm của hàm số
Tìm nguyên hàm của hàm số ![]()
Ta có:
Xác định thể tích của vật
Vật thể
giới hạn bởi mặt phẳng có phương trình
và
. Cắt vật thể
với mặt phẳng vuông góc với trục
tại điểm có hoành độ bằng
ta được thiết diện có diện tích bằng
. Thể tích của vật thể
:
Thể tích của vật thể B là:
Chọn đáp án đúng
Tích phân
có gái trị là:
Xét tích phân
Ta nhận thấy: .
Ta dùng đổi biến số.
Đặt .
Đổi cận .
.
Đáp án đúng là .
Tính giá trị biểu thức T
Gọi F(x) là một nguyên hàm của hàm số
, F(x) thỏa mãn F(X) + F(-2) = 0,5. Tính F(2) + F(-3)
Ta có:
=>
=>
=>
Khi đó:
Theo bài ra ta có: F(x) + F(-2) = 0,5
=>
=>
=>
Chọn kết luận đúng
Tích phân
được phân tích thành:
Ta có: .
Đáp án đúng là .
Chọn công thức tính diện tích hình phẳng
Cho đồ thị hàm số
như hình vẽ:

Diện tích
của hình phẳng được giới hạn bởi đồ thị hàm số
và trục
(phần gạch sọc) được tính bởi công thức
Từ đồ thị hàm số ta thấy
Do đó:
Chọn đáp án đúng
Nếu
thì
bằng:
Ta có:
Ghi đáp án vào ô trống
Trong không gian với hệ tọa độ
, cho khối cầu
, mặt phẳng
có phương trình
cắt khối cầu
thành hai phần. Tính thể tích của phần không chứa tâm của mặt cầu
.
Trong không gian với hệ tọa độ
, cho khối cầu
, mặt phẳng
có phương trình
cắt khối cầu
thành hai phần. Tính thể tích của phần không chứa tâm của mặt cầu
.
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: