Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề kiểm tra 45 phút Chương 4 Nguyên hàm Tích phân CTST

Mô tả thêm:

Hãy cùng thử sức kiểm tra đánh giá các kiến thức tổng quan với bài kiểm tra phút Chương 4: Nguyên hàm Tích phân Toán 12 sách Chân trời sáng tạo các em nhé!

  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Vận dụng cao

    Xác định giá trị tích phân

    Tích phân I = \int_{-
1}^{\frac{1}{2}}{\frac{4x - 3}{\sqrt{5 + 4x - x^{2}}}dx} có giá trị là:

    Thực hiện tính tích phân I theo hai cách như sau:

    Cách 1:

    Ta có:\left( 5 + 4x - x^{2} ight)'
= 4 - 2x4x - 3 = 5 - 2(4 -
2x).

    I =
\int_{\frac{1}{2}}^{\frac{7}{2}}{\frac{4x - 3}{\sqrt{5 + 4x - x^{2}}}dx}

    = \int_{\frac{1}{2}}^{\frac{7}{2}}{\frac{5}{\sqrt{5 + 4x - x^{2}}}dx} -
\int_{\frac{1}{2}}^{\frac{7}{2}}{\frac{2(4 - 2x)}{\sqrt{5 + 4x -
x^{2}}}dx}.

    Xét I_{1} =
\int_{\frac{1}{2}}^{\frac{7}{2}}{\frac{5}{\sqrt{5 + 4x - x^{2}}}dx} =
\int_{\frac{1}{2}}^{\frac{7}{2}}{\frac{5}{\sqrt{9 - (x -
2)^{2}}}dx}.

    Đặt x - 2 = 3sint,t \in \left\lbrack -
\frac{\pi}{2};\frac{\pi}{2} ightbrack \Rightarrow dx =
3costdt.

    Đổi cận \left\{ \begin{matrix}
x = \frac{7}{2} \Rightarrow t = \frac{\pi}{6} \\
x = \frac{1}{2} \Rightarrow t = - \frac{\pi}{6} \\
\end{matrix} ight..

    \Rightarrow I_{1} = \int_{-
\frac{\pi}{6}}^{\frac{\pi}{6}}{\frac{5.3cost}{\sqrt{9 - 9sin^{2}t}}dt} =
\frac{5\pi}{3}.

    Xét I_{2} =
\int_{\frac{1}{2}}^{\frac{7}{2}}{\frac{2(4 - 2x)}{\sqrt{5 + 4x -
x^{2}}}dx}.

    Đặt t = 5 + 4x - x^{2} \Rightarrow dt = 4
- 2x.

    Đổi cận \left\{ \begin{matrix}
x = \dfrac{1}{2} \Rightarrow t = \dfrac{27}{4} \\
x = \dfrac{7}{2} \Rightarrow t = \dfrac{27}{4} \\
\end{matrix} ight.\  \Rightarrow I_{2} = 0.

    \Rightarrow I =
\frac{5\pi}{3}.

    Cách 2: Dùng máy tính cầm tay.

  • Câu 2: Nhận biết

    Tính diện tích hình phẳng

    Tính diện tích S của hình phẳng giới hạn bởi đồ thị hàm số y = x^{2} + 2x +
1 trục hoành và hai đường thẳng x =
- 1;x = 3.

    Diện tích hình phẳng được tính như sau:

    S = \int_{- 1}^{3}{\left( x^{2} + 2x + 1
ight)dx} = \left. \ \left( \frac{x^{3}}{3} + x^{2} + x ight)
ight|_{- 1}^{3} = \frac{64}{3}.

  • Câu 3: Nhận biết

    Tìm câu sai

    Câu nào sau đây sai?

    Câu sai cần tìm là: Nếu F'(t) =
f(t) thì F^{/}\left( u(x) \right) =
f\left( u(x) \right).

  • Câu 4: Nhận biết

    Chọn khẳng định đúng

    Công thức tính diện tích S của hình phẳng giới hạn bởi hai đồ thị hàm số y = f(x);y = g(x) liên tục trên đoạn \lbrack a;bbrack và hai đường thẳng x = a;x = b;a < b

    Ta có hình phẳng giới hạn bởi \left\{
\begin{matrix}
\left( C_{1} ight):y = f(x) \\
\left( C_{2} ight):y = g(x) \\
x = a \\
x = b \\
\end{matrix} ight.S =
\int_{a}^{b}{\left| f(x) - g(x) ight|dx}.

  • Câu 5: Thông hiểu

    Tìm giá trị biểu thức

    Cho hàm số y = f(x) xác định trên tập số thực thỏa mãn f(x) >
0;\forall x\mathbb{\in R}f'(x) - 2f(x) = 0. Tính f( - 1) biết rằng f(1) = 1?

    f(x) > 0;\forall x\mathbb{\in
R} nên ta có:

    f'(x) - 2f(x) = 0 \Leftrightarrow
\frac{f'(x)}{f(x)} = 2

    \Rightarrow
\int_{}^{}{\frac{f'(x)}{f(x)}dx} = \int_{}^{}{2dx}

    \Rightarrow \exists C\mathbb{\in
R}:ln\left| f(x) ight| = 2x + C

    \Rightarrow \ln f(x) = 2x +
C

    Cho x = 1 \Rightarrow \ln f(1) = 2 + C\Rightarrow \ln1 = 2 + C \Rightarrow C = - 2

    Do đó \ln f(x) = 2x - 2 \Leftrightarrow
f(x) = e^{2x - 2} \Rightarrow f( - 1) = e^{- 4}

  • Câu 6: Vận dụng

    Tính tích phân

    Cho hai hàm số f(x) = ax^{3} + bx +
c;g(x) = bx^{3} + ax + c;(a > 0) có đồ thị như hình vẽ:

    Gọi S_{1};S_{2} là diện tích hình phẳng được gạch trong hình vẽ. Khi S_{1} + S_{2} = 3 thì \int_{0}^{1}{f(x)dx} bằng bao nhiêu?

    Phương trình hoành độ giao điểm

    (a - b)x^{3} + (b - a)x = 0

    \Leftrightarrow (a - b)\left( x^{3} - x
ight) = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = - 1 \\
x = 0 \\
\end{matrix} ight.

    Ký hiệu S_{3} là diện tích hình phẳng như hình vẽ:

    Ta có:

    S_{1} = \int_{- 1}^{0}{\left\lbrack f(x)
- g(x) ightbrack dx} = (a - b)\int_{- 1}^{0}{\left( x^{3} - x
ight)dx} = \frac{1}{4}(a - b)

    S_{2} = - \int_{- 1}^{0}{g(x)dx} = -
\int_{- 1}^{0}{\left( bx^{3} + ax + c ight)dx} = - \left( \frac{b}{4}
+ \frac{a}{2} + c ight)

    Vì vậy S_{1} + S_{2} = 3 \Leftrightarrow
\frac{1}{4}(a - b) - \left( \frac{b}{4} + \frac{a}{2} + c ight) =
3

    \Leftrightarrow a + 2b + 4c = -
12

    \Rightarrow \int_{0}^{1}{f(x)dx} =
\int_{0}^{1}{\left( ax^{3} + bx + c ight)dx} = \frac{a}{4} +
\frac{b}{2} + c = \frac{a + 2b + 4c}{4} = - 3

  • Câu 7: Nhận biết

    Tính thể tích khối tròn xoay D

    Cho hình phẳng D giới hạn bởi đường cong y = e^{x}, trục hoành và các đường thẳng x = 0;x = 1. Khối tròn xoay tạo thành khi quay D quanh trục hoành có thể tích V bằng bao nhiêu?

    Ta có:

    V = \pi\int_{0}^{1}{e^{2x}dx} = \left. \
\frac{\pi}{2}e^{2x} ight|_{0}^{1} = \frac{\pi\left( e^{2} - 1
ight)}{2}.

  • Câu 8: Thông hiểu

    Chọn hàm số thích hợp

    Cho F(x) = \frac{1}{6}.\ln\left| \frac{x -3}{x + 3} \right| + \frac{1}{12}. Hỏi F(x) là nguyên hàm của hàm số nào dưới đây?

    Cách 1: Ta có

    F'(x) = \left( \frac{1}{6}.\ln\left|
\frac{x - 3}{x + 3} ight| + \frac{1}{12} ight)'

    = \left( \frac{1}{6}.\ln|x - 3| -
\frac{1}{6}.\ln|x + 3| + \frac{1}{12} ight)'

    = \left( \frac{1}{6}.\ln|x - 3| -
\frac{1}{6}.\ln|x + 3| + \frac{1}{12} ight)'

    = \frac{1}{6}.\frac{1}{x - 3} -
\frac{1}{6}.\frac{1}{x + 3} = \frac{1}{6}.\frac{6}{x^{2} - 3^{2}} =
\frac{1}{x^{2} - 9}

    Cách 2: Thực chất đây là công thức nguyên hàm mà tôi đã giới thiệu ở bảng nguyên hàm phía trên (dòng số 6 trong bảng).

    Áp dụng công thức trên ta có ngay f(x) =
\frac{1}{x^{2} - 9}.

  • Câu 9: Nhận biết

    Tìm nguyên hàm của hàm số

    Tìm nguyên hàm của hàm số f(x) = (x +
1)(x + 2)(x + 3)?

    Ta có:

    f(x) = (x + 1)(x + 2)(x + 3) = x^{3} +
6x^{2} + 11x + 6

    \Rightarrow F(x) = \frac{x^{4}}{4} +
2x^{3} + \frac{11}{2}x^{2} + 6x + C

  • Câu 10: Thông hiểu

    Chọn đáp án đúng

    Cho \int_{- 1}^{2}{f(x)}dx = 2\int_{- 1}^{2}{g(x)}dx = - 1. Tính I = \int_{- 1}^{2}{\left\lbrack x +
2f(x) - 3g(x) \right\rbrack dx}.

    Ta có I = \int_{- 1}^{2}\left\lbrack x +
2f(x) - 3g(x) ightbrack dx

    = \int_{- 1}^{2}{xdx} + 2\int_{-
1}^{2}{f(x)}dx - 3\int_{- 1}^{2}{g(x)}dx

    \Rightarrow I = \left. \ \frac{x^{2}}{2}
ight|_{- 1}^{2} + 2.2 - 3( - 1) = \frac{3}{2} + 4 + 3 =
\frac{17}{2}

  • Câu 11: Vận dụng

    Chọn phương án đúng

    Tích phân I = \int_{0}^{1}{\frac{3 +
4x}{\sqrt{3 + 2x - x^{2}}}dx} có giá trị là:

    Ta có: \left( 3 + 3x - x^{2} ight)'
= 3 - 2x3 + 4x = 9 - 2(3 -
2x)

    \Rightarrow I = \int_{0}^{1}{\frac{3 +
4x}{\sqrt{3 + 2x - x^{2}}}dx} = \int_{0}^{1}{\frac{7 - 2(2 -
2x)}{\sqrt{3 + 2x - x^{2}}}dx}

    = \int_{0}^{1}{\frac{7}{\sqrt{3 + 2x -
x^{2}}}dx} - \int_{0}^{1}{\frac{2(2 - 2x)}{\sqrt{3 + 2x -
x^{2}}}dx}.

    Xét I_{1} = \int_{0}^{1}{\frac{7}{\sqrt{3
+ 2x - x^{2}}}dx} = \int_{0}^{1}{\frac{7}{\sqrt{4 - (x -
1)^{2}}}dx}.

    Đặt x - 1 = 2sint,t \in \left\lbrack -
\frac{\pi}{2};\frac{\pi}{2} ightbrack \Rightarrow dx =
2costdt.

    Đổi cận \left\{ \begin{matrix}
x = 0 \Rightarrow t = - \frac{\pi}{6} \\
x = 1 \Rightarrow t = 0 \\
\end{matrix} ight..

    \Rightarrow I_{1} = \int_{-\frac{\pi}{6}}^{0}{\frac{14cost}{\sqrt{4 - 4\sin^{2}t}}dt} =\frac{7\pi}{6}.

    Xét I_{2} = \int_{0}^{1}{\frac{2(2 -
2x)}{\sqrt{3 + 2x - x^{2}}}dx}.

    Đặt t = 3 + 2x - x^{2} \Rightarrow dt =
(2 - 2x)dx.

    Đổi cận\left\{ \begin{matrix}
x = 0 \Rightarrow t = 3 \\
x = 1 \Rightarrow t = 4 \\
\end{matrix} ight..

    \Rightarrow I_{2} =
\int_{3}^{4}{\frac{2}{\sqrt{t}}dt} = 4\left. \ \left( t^{\frac{1}{2}}
ight) ight|_{3}^{4} = 4\left( 2 - \sqrt{3} ight).

    I = I_{1} - I_{2} = \frac{7\pi}{6} +
4\sqrt{3} - 8.

  • Câu 12: Thông hiểu

    Tính tích phân

    Cho hàm số f(x) liên tục trên \mathbb{R}\int_{0}^{2}{\left\lbrack f(x) + 3x^{2}
ightbrack dx} = 10. Xác định giá trị của \int_{0}^{2}{f(x)dx}?

    Ta có: \int_{0}^{2}{\left\lbrack f(x) +
3x^{2} ightbrack dx} = 10 \Leftrightarrow \int_{0}^{2}{f(x)dx} = 10
- \int_{0}^{2}{3x^{2}dx}

    \Leftrightarrow \int_{0}^{2}{f(x)dx} =
10 - \left. \ x^{3} ight|_{0}^{2} = 2

  • Câu 13: Nhận biết

    Chọn đáp án đúng

    Cho \int_{}^{}{f(x)dx = F(x) +
C.} Khi đó với a ≠ 0, ta có \int_{}^{}{f(ax + b)dx}bằng:

    Ta có:\int_{}^{}{f(ax + b)dx} =
\frac{1}{a}F(ax + b) + C

  • Câu 14: Thông hiểu

    Tính giá trị của biểu thức

    Biết F(x) là nguyên hàm của f(x) = 4^{x}F(1) = \dfrac{1}{\ln2}. Khi đó giá trị F(2) bằng:

    Ta có \int_{}^{}{4^{x}dx =
\frac{1}{\ln4}.4^{x} + C = F(x)}

    F(1) = \frac{1}{\ln2} \Leftrightarrow
\frac{4}{\ln4} + C = \frac{1}{\\ln2} \Leftrightarrow C = -
\frac{1}{\ln2}.

    Do đó F(2) = \frac{1}{\ln4}.4^{2} -
\frac{1}{\ln2} = \frac{16}{2\ln2} - \frac{1}{\ln2} =
\frac{7}{\ln2}.

  • Câu 15: Nhận biết

    Tìm họ nguyên hàm của hàm số f(x) = 3x^2 + 1

    Tìm họ nguyên hàm của hàm số  f\left( x ight) = 3{x^2} + 1

     Ta có:

    \int {\left( {3{x^2} + 1} ight)dx}  = \int {3{x^2}dx}  + \int {1.dx}  = {x^3} + x + C

  • Câu 16: Nhận biết

    Tìm tích phân I

    Tích phân I = \int_{1}^{2}{\left( ax^{2}
+ \frac{b}{x} \right)dx} có giá trị là:

    Tích phân I = \int_{1}^{2}{\left( ax^{2}
+ \frac{b}{x} ight)dx} có giá trị là:

    I = \int_{1}^{2}{\left( ax^{2} +
\frac{b}{x} ight)dx} = \left. \ \left( \frac{a}{3}x^{3} + b\ln|x|
ight) ight|_{1}^{2} = \frac{7a}{3} + bln2.

    Đáp án đúng là I = \frac{7}{3}a +
bln2.

  • Câu 17: Nhận biết

    Chọn đáp án đúng

    Cho chuyển động thẳng xác định bởi phương trình S = 2t^{4} - t + 1, trong đó t được tính bằng giây và S được tính bằng mét. Vận tốc của chuyển động khi S = 2t^{4} - t + 1 là:

    Ta có v = S' = 8t^{3} -
1

    Khi t = 1 \Rightarrow v = 8 - 1 =
7(m/s).

  • Câu 18: Vận dụng cao

    Tính diện tích các cánh hoa

    Một viên gạch hoa hình vuông cạnh 40cm. Người thiết kế đã sử dụng bốn đường parabol có chung đỉnh tại tâm viên gạch để tạo ra bốn cánh hoa (được tô đen như hình vẽ dưới).

    Tính diện tích mỗi cánh hoa của viên gạch.

    Chọn hệ tọa độ như hình vẽ (1 đơn vị trên trục bằng 10cm = 1dm), các cánh hoa tạo bởi các đường parabol có phương trình y =
\frac{x^{2}}{2}, y = -
\frac{x^{2}}{2},x = -
\frac{y^{2}}{2},x =
\frac{y^{2}}{2}.

    Diện tích một cánh hoa (nằm trong góc phàn tư thứ nhất) bằng diện tích hình phẳng giới hạn bởi hai đồ thị hàm sốy = \frac{x^{2}}{2},y = \sqrt{2x} và hai đường thẳng x = 0;x = 2.

    Do đó diện tích một cánh hoa bằng

    \int_{0}^{2}{\left( \sqrt{2x} -
\frac{x^{2}}{2} \right)dx} = \left.
\ \left. \ \left( \frac{2\sqrt{2}}{3}\sqrt{(2x)^{3}} - \frac{x^{3}}{6}
\right) \right| \right|_{0}^{2}

    = \frac{4}{3}\left( dm^{2} \right) =
\frac{400}{3}\left( cm^{2} \right) = \frac{4}{3}\left( dm^{2} \right) =
\frac{400}{3}\left( cm^{2} \right).

  • Câu 19: Nhận biết

    Tìm kết luận đúng

    Gọi S là diện tích hình phẳng giới hạn bởi các đường y = 3^{x};y = 0;x = 0;x = 2. Mệnh đề nào dưới đây đúng?

    Ta có: S = \int_{0}^{2}{\left| 3^{x}
ight|dx} = \int_{0}^{2}{3^{x}dx}

  • Câu 20: Vận dụng

    Tính giá trị biểu thức

    Cho là một nguyên hàm của hàm số f\left( x ight) = \frac{{\ln x}}{x}\sqrt {{{\ln }^2}x + 1}F\left( 1 ight) = \frac{1}{3}. Tính {\left[ {F\left( e ight)} ight]^2}

     Cách 1: \int {f\left( x ight)}  = \int {\frac{{\ln x}}{x}\sqrt {{{\ln }^2}x + 1} dx = \int {\sqrt {{{\ln }^2}x + 1} .} } \frac{{\ln x}}{x}dx

    Đặt \sqrt {{{\ln }^2}x + 1}  = t

    \begin{matrix}   \Rightarrow {\ln ^2}x + 1 = {t^2} \hfill \\   \Rightarrow 2\ln x.\dfrac{1}{x}dx = 2tdt \hfill \\   \Rightarrow \dfrac{{\ln x}}{x}dx = tdt \hfill \\ \end{matrix}

    Khi đó \int {f\left( x ight)}  = \int {t.t.dt}  = \int {{t^2}dt}  = \frac{{{t^3}}}{3} + C

    => F\left( x ight) = \frac{1}{3}.{\left( {\sqrt {{{\ln }^2}x + 1} } ight)^3} + C

    Mặt khác F\left( 1 ight) = \frac{1}{3} \Leftrightarrow \frac{1}{3} = \frac{1}{3}.{\left( {\sqrt {{{\ln }^2}x + 1} } ight)^3} + C

    => C = 0

    => F\left( e ight) = \frac{1}{3}.{\left( {\sqrt {{{\ln }^2}e + 1} } ight)^3} = \frac{{2\sqrt 2 }}{3}

    => {\left[ {F\left( e ight)} ight]^2} = {\left( {\frac{{2\sqrt 2 }}{3}} ight)^2} = \frac{8}{9}

    Cách 2: F\left( e ight) - F\left( 1 ight) = \int\limits_1^e {\frac{{\ln x}}{x}.\sqrt {{{\ln }^2}x + 1} dx}. Sử dụng máy tính cầm tay để tính.

  • Câu 21: Nhận biết

    Chọn kết luận đúng

    Cho tích phân I_{1} =
\int_{a}^{b}{f(x)dx} = mI_{2} =
\int_{c}^{a}{f(x)dx} = n. Tích phân I = \int_{c}^{b}{f(x)}dx có giá trị là:

    Quy tắc “nối đuôi” cho ta:

    I =
\int_{c}^{b}{f(x)}dx = \int_{a}^{b}{f(x)}dx + \int_{c}^{a}{f(x)}dx = m +
n.

    Đáp án đúng là m + n.

  • Câu 22: Thông hiểu

    Xác định hàm số f(x)

    Nếu \int_{}^{}{f(x)dx = e^{x} + sin^2x+ C} thì f(x) là hàm nào ?

    Ta có: \left( e^{x} + sin^{2}x + C\right)^{'} = e^{x} + sin2x.

  • Câu 23: Thông hiểu

    Tính diện tích hình phẳng

    Tính diện tích hình phẳng giới hạn bởi đồ thị (C) của hàm số y = - 2x^{3} + x^{2} + x + 5 và đồ thị (C') của hàm số y = x^{2} - x + 5?

    Phương trình hoành độ giao điểm

    - 2x^{3} + x^{2} + x + 5 = x^{2} - x +
5

    \Leftrightarrow - 2x^{3} + 2x = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 1 \\
x = - 1 \\
\end{matrix} ight.

    Diện tích hình phẳng cần tìm là:

    S = \int_{- 1}^{1}{\left| 2x^{3} - 2x
ight|dx}

    = \left| \int_{- 1}^{0}{\left( 2x^{3} -
2x ight)dx} ight| + \left| \int_{0}^{1}{\left( 2x^{3} - 2x
ight)dx} ight|

    = 1

  • Câu 24: Thông hiểu

    Xác định nguyên hàm

    Tìm nguyên hàm I = \int_{}^{}{(2x -
1)e^{- x}dx}.

    Đặt u = 2x - 1 \Rightarrow du =
2dx;

    e^{- x}dx = dv \Rightarrow v = - e^{-
x}

    Lúc này ta có

    \int_{}^{}{(2x - 1)e^{- x}dx = - (2x -
1).e^{- x} + \int_{}^{}{2e^{- x}dx}}

    = - (2x - 1).e^{- x} - 2e^{- x} + C = -
(2x + 1)e^{- x} + C

  • Câu 25: Nhận biết

    Tìm công thức tính diện tích thích hợp

    Xét hình phẳng (H) giới hạn bởi các đường như hình vẽ (phần gạch sọc).

    Diện tích hình phẳng (H) được tính theo công thức

    Ta có:

    S = \int_{0}^{1}{\left| f(x) ight|dx}
+ \int_{1}^{4}{\left| g(x) ight|dx}

    = \int_{0}^{1}{f(x)dx} +
\int_{1}^{4}{g(x)dx}

  • Câu 26: Nhận biết

    Chọn phương án đúng

    Tích phân I = \int_{- 1}^{1}{\left( x^{3}
+ 3x + 2 \right)dx}có giá trị là:

    Thực hiện giải toán theo hai bước sau:

    Cách 1: I = \int_{- 1}^{1}{\left( x^{3} +
3x + 2 ight)dx} = \left. \ \left( \frac{1}{4}x^{4} + \frac{3}{2}x^{2}
+ 2x ight) ight|_{- 1}^{1} = 4.

    Cách 2: Dùng máy tính cầm tay.

  • Câu 27: Thông hiểu

    Chọn đáp án đúng

    Biết rằng \int_{3}^{4}{\frac{5x -8}{x^{2} - 3x + 2}dx} = a\ln3 + b\ln2 + c\ln5 với a;b;c là các số hữu tủ. Giá trị của 2^{a - 3b + c} bằng:

    Ta có:

    \int_{3}^{4}{\frac{5x - 8}{x^{2} - 3x +2}dx} = \int_{3}^{4}{\left( \frac{3}{x - 1} + \frac{2}{x - 2}ight)dx}

    = \left. \ 3\ln|x - 1| ight|_{3}^{4} +2\left. \ \ln|x - 2| ight|_{3}^{4}

    = 3\ln2 - 3\ln2 + 2\ln2 = - \ln2 +3\ln3

    \Rightarrow \left\{ \begin{matrix}a = 3 \\b = - 1 \\c = 0 \\\end{matrix} ight.\  \Rightarrow 2^{a - 3b + c} = 2^{6} =64

  • Câu 28: Thông hiểu

    Xét tính đúng sai của các khẳng định

    Cho hàm số y = f(x) = x^{2} - 5x +
4 có đồ thị như hình vẽ. Biết rằng đồ thị hàm số f(x) tạo với trục hoành và 2 đường thẳng x = 0,\ x = 4 một hình phẳng (H) gồm 2 phần có diện tích lần lượt là S_{1},\ S_{2}.

    Xét tính đúng, sai của các mệnh đề sau:

    a) [NB] f(x) là một nguyên hàm của hàm số g(x) = 2x -
5 trên \mathbb{R}. Đúng||Sai

    b) [TH] S_{1} =
\frac{11}{6}. Đúng||Sai

    c) [TH] S_{1} =
\int_{0}^{4}{f(x)dx} - S_{2}. Sai||Đúng

    d) [VD,VDC] Biết đường thẳng d:y = x + m( m là tham số ) cắt đồ thị y = f(x) tại hai điểm phân biệt và diện tích hình phẳng giới hạn bởi d(P) bằng \frac{4}{3}. Khi đó tổng các giá trị của tham số m bằng -4. Đúng||Sai

    Đáp án là:

    Cho hàm số y = f(x) = x^{2} - 5x +
4 có đồ thị như hình vẽ. Biết rằng đồ thị hàm số f(x) tạo với trục hoành và 2 đường thẳng x = 0,\ x = 4 một hình phẳng (H) gồm 2 phần có diện tích lần lượt là S_{1},\ S_{2}.

    Xét tính đúng, sai của các mệnh đề sau:

    a) [NB] f(x) là một nguyên hàm của hàm số g(x) = 2x -
5 trên \mathbb{R}. Đúng||Sai

    b) [TH] S_{1} =
\frac{11}{6}. Đúng||Sai

    c) [TH] S_{1} =
\int_{0}^{4}{f(x)dx} - S_{2}. Sai||Đúng

    d) [VD,VDC] Biết đường thẳng d:y = x + m( m là tham số ) cắt đồ thị y = f(x) tại hai điểm phân biệt và diện tích hình phẳng giới hạn bởi d(P) bằng \frac{4}{3}. Khi đó tổng các giá trị của tham số m bằng -4. Đúng||Sai

    a) Đúng. Ta có: f'(x) = (x^{2} - 5x +
4)' = 2x - 5\ \ \ \forall x\mathbb{\in R}

    b) Đúng. Ta có:

    S_{1} = \int_{0}^{1}{f(x)dx =
\int_{0}^{1}{(x^{2} - 5x + 4)dx =}}\frac{11}{6}

    c) Sai. Ta có

    \int_{0}^{4}{f(x)dx} =
\int_{0}^{1}{f(x)dx + \int_{1}^{4}{f(x)dx}}

    = \int_{0}^{1}{\left| f(x) ight|dx -
\int_{1}^{4}{\left| f(x) ight|dx = S_{1} - S_{2}}}

    Suy ra : S_{1} = \int_{0}^{1}{f(x)dx} +
S_{2}.

    d) Đúng.

    Phương trình hoành độ giao điểm của d và đồ thị hàm số f(x)

    x^{2} - 5x + 4 = x + m \Leftrightarrow
x^{2} - 6x + 4 - m = 0

    d(P) cắt nhau tại hai điểm phân biệt

    \Leftrightarrow \Delta' = 9 - 4 + m = m + 5
> 0 \Leftrightarrow m > - 5

    Theo Viète: x_{1} + x_{2} = 6;x_{1}x_{2}
= 4 - m ( x_{1} <
x_{2})

    Ta có

    S = \int_{x_{1}}^{x_{2}}\left( m - x^{2}
+ 6x - 4 ight)dx

    = \left. \ \left( (m - 4)x + 3x^{2} -
\frac{x^{3}}{3} ight) ight|_{x_{1}}^{x_{2}}

    = \left( (m - 4) + 3\left( x_{1} + x_{2}
ight) - \frac{1}{3}\left\lbrack \left( x_{1} + x_{2} ight)^{2} -
x_{1}x_{2} ightbrack ight)\left( x_{2} - x_{1}
ight)

    = \frac{4}{3}\sqrt{(m + 5)^{3}} =
\frac{4}{3} \Leftrightarrow m = -
4

    Vậy S = - 4.

  • Câu 29: Thông hiểu

    Chọn kết luận đúng

    Cho \int_{0}^{\frac{1}{2}}{x^{n}dx} =
\frac{1}{64}\int_{1}^{5}\frac{dx}{2x - 1} = \ln m, với n, m là các số nguyên dương. Khi đó:

    Ta có:

    \int_{0}^{\frac{1}{2}}{x^{n}dx} =
\frac{1}{64} \Rightarrow \left( \frac{1}{2} ight)^{n + 1}.\frac{1}{n +
1} = \frac{1}{64} \Rightarrow n = 3

    \int_{1}^{5}\frac{dx}{2x - 1} =
\frac{1}{2}\int_{1}^{5}\frac{d(2x - 1)}{2x - 1} = \left. \
\frac{1}{2}\ln|2x - 1| ight|_{1}^{5}

    = \frac{1}{2}ln9 - \frac{1}{2}ln1 =
ln3

    \Rightarrow m = n = 3

  • Câu 30: Thông hiểu

    Tính diện tích hình phẳng

    Diện tích hình phẳng giới hạn bởi các đường y = (x - 1)e^{2x}, trục hoành; x = 0x =
2 bằng:

    Hoành độ giao điểm của đồ thị hàm số y =
(x - 1)e^{2x} và trục hoành là nghiệm của phương trình: (x - 1)e^{2x} = 0 \Leftrightarrow x =
1

    Diện tích hình phẳng giới hạn bởi các đường là:

    S = \int_{0}^{2}{\left| (x - 1)e^{2x}
ight|dx}

    = \int_{0}^{1}{\left\lbrack (1 -
x)e^{2x} ightbrack dx} + \int_{1}^{2}{\left\lbrack (x - 1)e^{2x}
ightbrack dx}

    = \frac{1}{2}\int_{0}^{1}{(1 - x)d\left(
e^{2x} ight)} + \frac{1}{2}\int_{1}^{2}{(x - 1)d\left( e^{2x}
ight)}

    = \frac{1}{2}\left. \ (1 - x)e^{2x}
ight|_{0}^{1} + \frac{1}{2}\int_{0}^{1}{e^{2x}dx} + \frac{1}{2}\left.
\ (x - 1)e^{2x} ight|_{1}^{2} -
\frac{1}{2}\int_{1}^{2}{e^{2x}dx}

    = \frac{e^{4}}{2} - \frac{1}{2} +
\frac{1}{4}\left. \ e^{2x} ight|_{0}^{1} - \frac{1}{4}\left. \ e^{2x}
ight|_{1}^{2}

    = \frac{e^{4}}{4} + \frac{e^{2}}{2} -
\frac{3}{4}

  • Câu 31: Nhận biết

    Tìm nguyên hàm của hàm số

    Tìm nguyên hàm của hàm số f\left( x ight) = {\left( {2x + 1} ight)^{2019}} bằng:

     Ta có:

    \int {\left[ {{{\left( {2x + 1} ight)}^{2019}}} ight]dx}  = \frac{1}{2}\int {\left[ {{{\left( {2x + 1} ight)}^{2019}}} ight]d\left( {2x + 1} ight)}

    = \frac{1}{2}\frac{{{{\left( {2x + 1} ight)}^{2020}}}}{{2020}} + C = \frac{{{{\left( {2x + 1} ight)}^{2020}}}}{{4040}} + C

  • Câu 32: Vận dụng

    Tính thể tích nước

    Có một cốc thủy tinh hình trụ, bán kính trong lòng đáy cốc là 6cm, chiều cao trong lòng cốc là 10cm đang đựng một lượng nước.

    Tính thể tích lượng nước trong cốc, biết khi nghiêng cốc nước vừa lúc nước chạm miệng cốc thì đáy mực nước trùng với đường kính đáy.

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Có một cốc thủy tinh hình trụ, bán kính trong lòng đáy cốc là 6cm, chiều cao trong lòng cốc là 10cm đang đựng một lượng nước.

    Tính thể tích lượng nước trong cốc, biết khi nghiêng cốc nước vừa lúc nước chạm miệng cốc thì đáy mực nước trùng với đường kính đáy.

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 33: Thông hiểu

    Tìm thể tích khối tròn xoay

    Cho hình phẳng D giới hạn bởi đường cong y = \sqrt{2 + \sin x}, trục hoành và các đường thẳngx = 0, x = \pi. Khối tròn xoay tạo thành khi quay D quanh trục hoành có thể tích V bằng bao nhiêu?

    Thể tích khối tròn xoay được tạo nên bởi hình phẳng giới hạn bởi các đường y = \sqrt{2 + \sin x}, x = 0, x =
\pi và trục hoành khi quay quanh Ox là:

    V_{x} = \pi\int_{0}^{\pi}{\left( 2 + \sin
x ight)dx} = \left. \ \pi\left( 2x - \cos x ight) ight|_{0}^{\pi}
= 2\pi(\pi + 1) (đvtt).

  • Câu 34: Nhận biết

    Tìm kết quả đúng

    Hàm số nào sau đây là một nguyên hàm của hàm số y = \frac{1}{x \ln3}?

    Ta có: y = \log_{3}x \Rightarrow y' = \frac{1}{x \ln3}.

  • Câu 35: Vận dụng

    Chọn kết luận đúng

    Cho hàm số f(x) liên tục và có đạo hàm trên \left( 0;\frac{\pi}{2}
ight) thỏa mãn f(x) + \tan xf'(x) = \frac{x}{\cos^{3}x}. Biết rằng \sqrt{3}f\left( \frac{\pi}{3} ight) - f\left(
\frac{\pi}{6} ight) = a\pi\sqrt{3} + bln3 trong đó a;b\mathbb{\in R}. Kết luận nào sau đây đúng?

    Ta có: f(x) + \tan xf'(x) =\frac{x}{\cos^{3}x}

    \Leftrightarrow \cos xf(x) + \sin xf'(x) = \frac{x}{\cos^{2}x}

    \Leftrightarrow \left\lbrack \sin xf(x)ightbrack' = \frac{x}{\cos^{2}x}

    \Rightarrow \int_{}^{}{\left\lbrack \sin xf(x) ightbrack'dx} =\int_{}^{}{\frac{x}{\cos^{2}x}dx}

    \Rightarrow \sin xf(x) =\int_{}^{}{\frac{x}{\cos^{2}x}dx}.

    Tính I =
\int_{}^{}{\frac{x}{cos^{2}x}dx}. Đặt \left\{ \begin{matrix}u = x \\dv = \dfrac{dx}{\cos^{2}x} \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}du = dx \\v = \tan x \\\end{matrix} ight. khi đó:

    I = x\tan x - \int_{}^{}{\tan xdx} =
x\tan x - \int_{}^{}\frac{d\left( \cos x ight)}{\cos x}

    = x\tan x + \ln\left| \cos x
ight|

    \Rightarrow f(x) = \frac{x\tan x +
\ln\left| \cos x ight|}{\sin x} = \frac{x}{\cos x} + \frac{\ln\left|
\cos x ight|}{\sin x}

    Theo bài ra ta có:

    \Rightarrow \sqrt{3}f\left(\frac{\pi}{3} ight) - f\left( \frac{\pi}{6} ight) = \sqrt{3}\left(\frac{2\pi}{3} - \dfrac{2\ln2}{\sqrt{3}} ight)- \left(\frac{\pi\sqrt{3}}{9} + 2\ln\dfrac{\sqrt{3}}{2} ight) =\dfrac{5\pi\sqrt{3}}{9}\ln3

    \Rightarrow \left\{ \begin{matrix}a = \dfrac{5}{9} \\b = - 1 \\\end{matrix} ight.\  \Rightarrow a + b = - \frac{4}{9}

  • Câu 36: Vận dụng cao

    Chọn kết luận đúng

    Cho hai hàm số y = f(x) và y = g(x) không âm, có đạo hàm trên đoạn [1; 4] và thỏa mãn các hệ thức f\left( 1 ight) + g\left( 1 ight) = 4;g\left( x ight) =  - xf'\left( x ight);f\left( x ight) =  - xg'\left( x ight). Kết luận nào sau đây đúng?

    Ta có:

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {g\left( x ight) =  - xf'\left( x ight)} \\   {f\left( x ight) =  - xg'\left( x ight)} \end{array}} ight. \hfill \\   \Rightarrow f\left( x ight) + g\left( x ight) =  - x\left[ {f'\left( x ight) + g'\left( x ight)} ight] \hfill \\   \Rightarrow \dfrac{{f'\left( x ight) + g'\left( x ight)}}{{f\left( x ight) + g\left( x ight)}} = \dfrac{{ - 1}}{x} \hfill \\ \end{matrix}

    \begin{matrix}   \Rightarrow \int\limits_1^4 {\dfrac{{f'\left( x ight) + g'\left( x ight)}}{{f\left( x ight) + g\left( x ight)}}dx = \int\limits_1^4 {\dfrac{{ - 1}}{x}dx} }  \hfill \\   \Leftrightarrow \int\limits_1^4 {\dfrac{{d\left[ {f\left( x ight) + g\left( x ight)} ight]}}{{f\left( x ight) + g\left( x ight)}} = } \left. {\ln \left| x ight|} ight|_1^4 =  - \ln 4 \hfill \\   \Rightarrow \ln \left| {f\left( x ight) + g\left( x ight)} ight|_1^4 =  - \ln 4 \hfill \\   \Rightarrow \ln \left| {f\left( 4 ight) + g\left( 4 ight)} ight| - \ln \left| {f\left( 1 ight) + g\left( 1 ight)} ight| =  - \ln 4 \hfill \\   \Rightarrow \ln \left| {f\left( 4 ight) + g\left( 4 ight)} ight| = 0 \hfill \\   \Rightarrow f\left( 4 ight) + g\left( 4 ight) = 1 \hfill \\ \end{matrix}

     

  • Câu 37: Vận dụng

    Chọn đáp án đúng

    Nguyên hàm của hàm số f(x) = \dfrac{x}{(1+ x)^{5}} là

    Đặt u = x + 1 thì u' = 1.

    Khi đó

    \int_{}^{}{\frac{x}{(1 + x)^{5}}dx
= \int_{}^{}{\frac{u - 1}{u^{5}}du}}

    = \int_{}^{}{\left( \frac{1}{u} - \frac{1}{u^{5}}
ight)du = \int_{}^{}{u^{- 4}du - \int_{}^{}{u^{- 5}du}}}

    = - \frac{1}{3}.\frac{1}{u^{3}} +
\frac{1}{4}.\frac{1}{u^{4}} + C.

    Thay u = x + 1 ta được \int_{}^{}{\frac{x}{(x + 1)^{5}}dx = \frac{1}{4(x
+ 1)^{4}} - \frac{1}{3(x + 1)^{3}} + C}

  • Câu 38: Vận dụng

    Tìm nguyên hàm của hàm số

    Tìm R =
\int_{}^{}{\frac{1}{x^{2}}\sqrt{\frac{2 - x}{2 + x}}\ dx}?

    Đặt x = 2cos2t với t \in \left( 0;\frac{\pi}{2} \right)

    Ta có : \left\{ \begin{matrix}dx = - 4sin2t.dt \\\sqrt{\dfrac{2 - x}{2 + x}} = \sqrt{\dfrac{2 - 2sin2t}{2 + 2cos2t}} =\sqrt{\dfrac{4sin^{2}t}{4cos^{2}t}} = \dfrac{\sin t}{\cos t} \\\end{matrix} \right.

    \Rightarrow R = -
\int_{}^{}{\frac{1}{4cos^{2}2t}.\frac{\sin t}{\cos
t}.}4sin2t.dt = -
\int_{}^{}{\frac{2sin^{2}t}{cos^{2}2t}dt = - \int_{}^{}{\frac{1 -
cos2t}{cos^{2}2t}dt}}

    \Leftrightarrow R = -
\int_{}^{}{\frac{1}{cos^{2}2t}dt} +
\int_{}^{}{\frac{1}{cos2t}dt} = -
\frac{tan2t}{2} + \frac{1}{4}\ln\left| \frac{1 + sin2t}{1 - sin2t}
\right| + C

  • Câu 39: Nhận biết

    Tính tích phân I

    Giá trị tích phân I =
\int_{1}^{2}{\frac{1}{x^{6}}dx} bằng:

    Ta có:

    I = \int_{1}^{2}{\frac{1}{x^{6}}dx} =
\int_{1}^{2}{x^{- 6}dx} = \left. \ \frac{x^{- 5}}{- 5} ight|_{1}^{2} =
\frac{31}{125}

  • Câu 40: Thông hiểu

    Xét tính đúng sai của các khẳng định

    Một chất điểm A xuất phát từ O, chuyển động thẳng với vận tốc biến thiên theo thời gian bởi quy luật v(t)
= \frac{1}{225}t^{2} + \frac{2}{25}t\ (m/s), trong đó t (giây) là khoảng thời gian tính từ lúc A bắt đầu chuyển động. Từ trạng thái nghỉ, một chất điểm B cũng xuất phát từ O, chuyển động thẳng cùng hướng với A nhưng chậm hơn 10 giây so với A và có gia tốc bằng a\ \left( m/s^{2} \right) (a là hằng số). Sau khi B xuất phát được 15 giây thì đuổi kịp A.

    a) Vận tốc V_{B}(t) của chất điểm B đi được trong thời gian t (giây) là một nguyên hàm của gia tốc a\ \left( m/s^{2}
\right).Đúng||Sai

    b) V_{B}(t) = at.Đúng||Sai

    c) Quãng đường chất điểm A đi được trong 25 giây là 44,44(m),kết quả làm tròn đến hàng phần trăm. Sai||Đúng

    d) Vận tốc của chất điểm Btại thời điểm đuổi kịp A6,42(m/s), kết quả làm tròn đến hàng phần trăm.Đúng||Sai

    Đáp án là:

    Một chất điểm A xuất phát từ O, chuyển động thẳng với vận tốc biến thiên theo thời gian bởi quy luật v(t)
= \frac{1}{225}t^{2} + \frac{2}{25}t\ (m/s), trong đó t (giây) là khoảng thời gian tính từ lúc A bắt đầu chuyển động. Từ trạng thái nghỉ, một chất điểm B cũng xuất phát từ O, chuyển động thẳng cùng hướng với A nhưng chậm hơn 10 giây so với A và có gia tốc bằng a\ \left( m/s^{2} \right) (a là hằng số). Sau khi B xuất phát được 15 giây thì đuổi kịp A.

    a) Vận tốc V_{B}(t) của chất điểm B đi được trong thời gian t (giây) là một nguyên hàm của gia tốc a\ \left( m/s^{2}
\right).Đúng||Sai

    b) V_{B}(t) = at.Đúng||Sai

    c) Quãng đường chất điểm A đi được trong 25 giây là 44,44(m),kết quả làm tròn đến hàng phần trăm. Sai||Đúng

    d) Vận tốc của chất điểm Btại thời điểm đuổi kịp A6,42(m/s), kết quả làm tròn đến hàng phần trăm.Đúng||Sai

    a) Ta có v_{B}(t) = \int_{}^{}{a.dt} = at
+ C.

    b)v_{B}(0) = 0 \Rightarrow C = 0 \Rightarrow v_{B}(t) = at

    c)Quãng đường chất điểm A đi được trong 25 giây là

    S_{A} = \int_{0}^{25}{\ \left(
\frac{1}{225}t^{2} + \frac{2}{25}t\  \right)dt} = \left( \frac{1}{675}t^{3} + \frac{1}{25}t^{2}
\right)\ \left| \ _{\begin{matrix}
\\
0
\end{matrix}}^{\begin{matrix}
25 \\

\end{matrix}} \right.\  = 48,15(m).

    d)Quãng đường chất điểm B đi được trong 15 giây là

    S_{B} = \int_{0}^{15}{at.dt} = \frac{at^{2}}{2}|_{0}^{15} =
\frac{225a}{2}.

    Ta có 48,15 = \frac{225a}{2}
\Leftrightarrow a = 0,428.

    Vận tốc của B tại thời điểm đuổi kịp Av_{B}(15) = 0,428.15 = 6,42(m/s).

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 4 Nguyên hàm Tích phân CTST Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo