Viết PT mp vuông góc
Cho tam giác ABC với
.
Viết phương trình tổng quát của mặt phẳng
vuông góc với mặt phẳng
song song đường cao AH của tam giác ABC.
Theo đề bài, ta có: song song đường cao
Cùng nhau thử sức với bài kiểm tra 15 phút Toán 12 Chân trời sáng tạo Chương 5 Phương trình mặt phẳng, đường thẳng, mặt cầu nhé!
Viết PT mp vuông góc
Cho tam giác ABC với
.
Viết phương trình tổng quát của mặt phẳng
vuông góc với mặt phẳng
song song đường cao AH của tam giác ABC.
Theo đề bài, ta có: song song đường cao
Tính chu vi đường tròn
Đường tròn giao tuyến của
khi cắt bởi mặt phẳng (Oxy) có chu vi bằng :
Mặt cầu tâm
, bán kính
.
Ta có : .
Gọi là bán kính đường tròn (C) giao tuyến của mặt cầu
và mặt phẳng (Oxy), ta suy ra :
.
Vậy chu vi (C) bằng: .
Xác định phương trình mặt phẳng
Trong hệ tọa độ
, cho mặt cầu
và mặt phẳng
. Gọi
là mặt phẳng song song với
và cắt
theo thiết diện là đường tròn
sao cho khối nón có đỉnh là tâm của mặt cầu và đáy là hình tròn giới hạn bởi
có thể tích lớn nhất. Phương trình của mặt phẳng
là
Hình vẽ minh họa
Mặt cầu (S) có tâm I(1; −2; 3) và bán kính
Gọi r là bán kính đường tròn (C) và H là hình chiếu của I lên (Q).
Đặt IH = x ta có:
Vậy thể tích khối nón tạo được là:
Gọi ta có:
chỉ có
Ta có bảng biến thiên như sau:
Vậy khi
Mặt phẳng (Q) // (P) nên
Vậy
Vậy mặt phẳng (Q) có phương trình hoặc
Tính góc giữa hai cạnh
Trong không gian với hệ tọa độ
, cho bốn điểm
,
,
và
. Góc giữa hai cạnh
và
có số đo là:
Ta có và
.
Gọi là góc giữa hai đường thẳng
và
.
Ta có
Góc giữa 2 đường thẳng
Tính góc của hai đường thẳng
và
.
Theo đề bài, ta có (d’) và (d) có vec-tơ chỉ phương lần lượt là:
Áp dụng công thức cosin của góc giữa 2 đường thẳng, ta có:
Tìm tâm mặt cầu
Mặt cầu
có tâm là:
Phương trình mặt cầu có dạng
với
, có tâm
, bán kính
.
Mặt cầu có tâm là
Phương trình tổng quát
Cho tứ diện
có
. Phương trình tổng quát của mặt phẳng chứa AC và song song với BD là:
Theo đề bài, ta có các vecto là
Có thể chọn làm một vectơ pháp tuyến cho mặt phẳng.
Phương trình mặt phẳng này có dạng .
Mặt khác, điểm A thuộc mặt phẳng nên ta thay tọa độ điểm A vào phương trình đường thẳng trên:
Vậy phương trình cần tìm .
Tìm giá trị tham số m theo yêu cầu
Với giá trị nào của m thì mặt phẳng
cắt mặt cầu
?
Tâm
cắt
khi:
Tính góc giữa hai mặt phẳng
Cho hình lập phương
có tâm
. Gọi
là tâm của hình vuông
và điểm
sao cho
(tham khảo hình vẽ).

Khi đó sin của góc tạo bởi hai mặt phẳng (MC’D′) và (MAB) bằng
Gắn hệ tọa độ như hình vẽ:
Cạnh hình lập phương là 1, ta được tọa độ các điểm như sau:
Khi đó
Suy ra
Tìm mặt phẳng cách đều hai mặt phẳng cho trước
Trong không gian với hệ trục tọa độ
, cho hai mặt phẳng
và
. Mặt phẳng nào sau đây cách đều hai mặt phẳng (P) và (Q)?
Gọi (R) là mặt phẳng cách đều hai mặt phẳng (P) và (Q) thì
Do đó (R) có dạng .
Gọi .
Khi đó trung điểm M của đoạn AB nằm trên (R), tức .
Suy ra .
Vậy hay
.
PT mp cắt khối tứ diện
Cho tứ giác ABCD có
. Viết phương trình tổng quát của mặt phẳng (Q) song song với mặt phẳng (BCD) và chia tứ diện thành hai khối AMNF và MNFBCD có tỉ số thể tích bằng
.
Tỷ số thể tích hai khối AMNE và ABCD:
M chia cạnh BA theo tỷ số -2
Vecto pháp tuyến của
Chọn phương án thích hợp
Trong không gian
, đường thẳng
có phương trình tham số là
Đường thẳng đi qua điểm
và nhận vectơ đơn vị
làm vectơ chỉ phương nên có phương trình tham số là:
.
Tính góc giữa (P) và trục Ox
Trong không gian
, cho mặt phẳng
. Tính góc tạo bởi
với trục
?
Mặt phẳng có một vectơ pháp tuyến là
Trục có một vectơ chỉ phương là
Gọi α là góc giữa và mặt phẳng
:
Viết phương trình đường thẳng
Trong không gian với hệ tọa độ
, cho mặt phẳng
và đường thẳng
. Viết phương trình đường thẳng
nằm trong mặt phẳng
cắt đồng thời vuông góc với
?
Giao điểm I của d và (α) là nghiệm của hệ phương trình:
Mặt phẳng (α) có một vectơ pháp tuyến , đường thẳng d có một vectơ chỉ phương
Khi đó đường thẳng ∆ có một vectơ chỉ phương là
Đường thẳng ∆ qua điểm I (2; 4; −2) và có một vectơ chỉ phương nên có phương trình chính tắc:
Tìm khẳng định sai
Trong không gian với hệ toạ độ
, cho mặt phẳng
. Tìm khẳng định sai trong các mệnh đề sau:
Khẳng định sai: “ khi và chỉ khi
song song với mặt phẳng
.”
Tính góc giữa hai đường thẳng
Trong không gian với hệ tọa độ Oxyz, tính góc giữa hai đường thẳng
và
.
Ta có:
Tìm vecto pháp tuyến
Cho đường thẳng
và mặt phẳng
. Mặt phẳng (P) qua d và tạo với
một góc nhỏ nhất. Một véc tơ pháp tuyến của (P) là:

Gọi ;
H là hình chiếu vuông góc của B lên ; K là hình chiếu của H lên
.
Suy ra: cố định;
.
Mà (vì
)
Suy ra nhỏ nhất bằng
khi
.
Khi đó và có một VTCP
.
Vậy (P) có một VTPT là .
Hai đường thẳng cắt nhau
Hai đường thẳng
và
với cắt nhau tại M có tọa độ là :
Để (d’) cắt (d) tại
Chọn đáp án thích hợp
Trong không gian
, phương trình nào sau đây là phương trình của mặt cầu có tâm
và bán kính
?
Mặt cầu tâm , bán kính
có phương trình lá:
.
Xác định phương trình đường thẳng
Trong không gian với hệ tọa độ
, trục
có phương trình tham số là
Trục Ox đi qua O(0; 0; 0) và có véctơ chỉ phương nên có phương trình tham số là
.
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: