Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề kiểm tra 15 phút Chương 5 Phương trình mặt phẳng, đường thẳng, mặt cầu CTST

Mô tả thêm:

Cùng nhau thử sức với bài kiểm tra 15 phút Toán 12 Chân trời sáng tạo Chương 5 Phương trình mặt phẳng, đường thẳng, mặt cầu nhé!

  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Vận dụng

    Xác định phương trình mặt phẳng

    Trong không gian Oxyz, cho điểm M(3;2;1). Viết phương trình mặt phẳng đi qua M và cắt các trục x'Ox,\ y'Oy,\ z'Oz lần lượt tại các điểm A,B,C sao cho M là trực tâm của tam giác ABC?

    Xét tứ diện OABC có các cạnh OA, OB, OC đôi một vuông góc với nhau.

    Ta có: \left\{
\begin{matrix}
AB\bot CM \\
AB\bot OC \\
\end{matrix} ight.\  \Rightarrow AB\bot(COM) \Rightarrow AB\bot
OM

    Chứng minh tương tự, ta được AC ⊥ OM.

    Từ đó OM ⊥ (ABC).

    Suy ra phương trình mặt phẳng (ABC) đi qua M(3; 2; 1) và nhận \overrightarrow{OM} = (3;2;1) làm vectơ pháp tuyến là:

    3(x - 3) + 2(y - 2) + z - 1 =
0

    \Leftrightarrow 3x + 2y + z - 14 = \
0

  • Câu 2: Thông hiểu

    Tính tổng tất cả các tham số m

    Trong không gian Oxyz, cho mặt cầu (S):x^{2} + y^{2} + z^{2} - 4x - 2y + 2z
- 19 = 0 và mặt phẳng (P):2x - y -
2z + m + 3 = 0, với m là tham số. Gọi T là tập hợp tất cả các giá trị thực của tham số m để mặt phẳng (P) cắt mặt cầu (S) theo một đường tròn có chu vi 6\pi. Tổng giá trị của tất cả các phần tử thuộc T bằng:

    Mặt cầu (S):(x - 2)^{2} + (y - 1)^{2} +
(z + 1)^{2} = 25 có tâm I(2; 1; −1) và bán kính R = 5.

    Mặt phẳng (P) cắt mặt cầu (S) theo đường tròn có chu vi bằng 6π nên bán kính đường tròn bằng r = 3.

    Do đó khoảng cách từ tâm I của mặt cầu đến mặt phẳng là:

    d\left( I;(P) ight) = \sqrt{R^{2} -
r^{2}} = 4

    \Leftrightarrow \frac{|4 - 1 + 2 + m +
3|}{3} = 4

    \Leftrightarrow |m + 8| = 12
\Leftrightarrow \left\lbrack \begin{matrix}
m = 4 \\
m = - 20 \\
\end{matrix} ight.

    Vậy tổng giá trị của các phần tử thuộc T bằng −16.

  • Câu 3: Thông hiểu

    Tính cosin góc giữa d và Oy

    Trong không gian với hệ tọa độ Oxyz, gọi d là đường thẳng đi qua O, thuộc mặt phẳng (Oyz) và cách điểm M(1; - 2;1) một khoảng nhỏ nhất. Côsin của góc giữa d và trục tung bằng

    Hình vẽ minh họa

    Gọi H; K lần lượt là hình chiếu của M trên mặt phẳng (Oyz) và trên đường thẳng d.

    Ta có: \left\{ \begin{matrix}
d(M;d) = MK \geq MH = 1 \\
H(0; - 2;1) \\
\end{matrix} ight.

    Suy ra d(M;d) nhỏ nhất khi H \equiv K. Khi đó d có một vecto chỉ phương là \overrightarrow{OH} = (0; -
2;1)

    Khi đó: \cos(d;Oy) = \frac{\left|
\overrightarrow{OH}.\overrightarrow{j} ight|}{\left|
\overrightarrow{OH} ight|.\left| \overrightarrow{j} ight|} =
\frac{2}{\sqrt{5}}

  • Câu 4: Thông hiểu

    Tính giá trị biểu thức

    Trong không gian với hệ tọa độ Oxyz, cho 2 đường thẳng \Delta_{1} :\left\{ \begin{matrix}x = 3 + t \\y = 1 + t \\z = 1 + 2t \\\end{matrix}(t \in \mathbb{R}); ight. \Delta_{2}:\frac{x + 2}{2} =\frac{y - 2}{5} = \frac{z}{-1} và điểm M(0;3;0). Đường thẳng d đi qua M, cắt \Delta_{1} và vuông góc với \Delta_{2} có một vectơ chỉ phương là \overrightarrow{u} = (4;a;b). Tính T = a + b

    Hình vẽ minh họa

    Gọi (P) là mặt phẳng chứa M\Delta_{1}.

    Lấy A(3;1;1) \in \Delta_{1}.

    Mặt phẳng (P) có véc-tơ pháp tuyến vuông góc với các véc-tơ \overrightarrow{MA} = (3; - 2;1){\overrightarrow{u}}_{\Delta_{1}} =
(1;1;2).

    Ta có \left\lbrack
\overrightarrow{MA},{\overrightarrow{u}}_{\Delta_{1}} ightbrack = (
- 5; - 5;5).

    Một trong các véc-tơ pháp tuyến của mặt phẳng (P){\overrightarrow{n}}_{(P)} = (1;1; -
1).

    Đường thẳng d nằm trong mặt phẳng (P) và vuông góc với \Delta_{2}\overrightarrow{u_{d}} = \left\lbrack
\overrightarrow{n_{(P)}};\overrightarrow{u_{\Delta_{2}}} ightbrack =
(4; - 1;3)

    Vậy a = - 1;b = 3 \Rightarrow T = a + b =
2.

  • Câu 5: Nhận biết

    Chọn đáp án thích hợp

    Phương trình nào sau đây không phải là phương trình mặt cầu?

    Phương trình ở các đáp án (x - 1)^{2} +
(y - 1)^{2} + (z - 1)^{2} = 6, (2x
- 1)^{2} + (2y - 1)^{2} + (2z + 1)^{2} = 6, (x + y)^{2} = 2xy - z^{2} + 3 - 6x đều thỏa mãn điều kiện phương trình mặt cầu. Ví dụ:

    (2x - 1)^{2} + (2y - 1)^{2} + (2z +
1)^{2} = 6

    \Leftrightarrow \left( x - \frac{1}{2}
\right)^{2} + \left( y - \frac{1}{2} \right)^{2} + \left( z +
\frac{1}{2} \right)^{2} = \frac{3}{2}.

    (x + y)^{2} = 2xy - z^{2} + 3 -
6x\Leftrightarrow x^{2} + y^{2} + z^{2} +
6x - 3 = 0.

  • Câu 6: Nhận biết

    Chọn đáp án đúng

    Trong không gian với hệ tọa độ Oxyz,  phương trình đường thẳng \Delta đi qua điểm A(2;-1; 3) và vuông góc với mặt phẳng (Oxz) là.

    (Oxz) có vectơ pháp tuyến \overrightarrow j  = \left( {0;1;0} ight)

     \Delta  vuông góc với (Oxz) nên d có vectơ chỉ phương \overrightarrow {{a_\Delta }}  = \overrightarrow j  = \left( {0;1;0} ight)

     \Delta  đi qua điểm A và có vectơ chỉ phương \overrightarrow {{a_\Delta }}

    Vậy phương trình tham số của  \Delta  là \left\{ \begin{matrix}
x = 2 \\
y = - 1 + t \\
z = 3 \\
\end{matrix} ight.\ .

     

  • Câu 7: Vận dụng

    Xác định phương trình đường thẳng

    Trong không gian Oxyz, cho mặt phẳng (P): x − 4y + z + 1 = 0 và hai điểm A(1; 0; 2), B(2; 5; 3). Đường thẳng d đi qua điểm A và song song với mặt phẳng (P) sao cho khoảng cách từ điểm B đến đường thẳng d nhỏ nhất có phương trình là

    Giả sử đường thẳng d có vectơ chỉ phương là \overrightarrow{u} = (1;b;c)

    Phương trình đường thẳng d có dạng \left\{ \begin{matrix}
x = 1 + t \\
y = bt \\
z = 2 + ct \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)

    Do đường thẳng d k (P) nên 1 - 4b + c = 0
\Rightarrow c = 4b - 1.

    Khoảng cách từ B đến đường thẳng d là:

    d(B;d) = \frac{\left| \overrightarrow{u}
\land \overrightarrow{AB} ight|}{\left| \overrightarrow{u} ight|} =
\frac{\sqrt{378b^{2} - 216b + 54}}{\sqrt{17b^{2} - 8b + 2}}

    Xét hàm số f(b) = \frac{378b^{2} - 216b +
54}{17b^{2} - 8b + 2}

    f'(b) = \frac{648b^{2} -
324b}{\left( 17b^{2} - 8b + 2 ight)^{2}} \Rightarrow f'(b) = 0
\Leftrightarrow \left\lbrack \begin{matrix}
b = 0 \\
b = \frac{1}{2} \\
\end{matrix} ight.

    Ta có bảng biến thiên như sau:

    Dựa vào bảng biến thiên ta được khoảng cách từ B đến d nhỏ nhất tại b = \frac{1}{2}

    Khi đó \overrightarrow{u} = \left(
1;\frac{1}{2};1 ight), chọn \overrightarrow{u} = (2;1;2).

    Phương trình đường thẳng d:\frac{x -
3}{2} = \frac{y - 1}{1} = \frac{z - 2}{2} hay \frac{x - 3}{2} = \frac{1 - y}{- 1} = \frac{z -
4}{2}.

  • Câu 8: Nhận biết

    Giao điểm 3 mp

    Ba mặt phẳng x + 2y - z - 6 = 0,2x - y + 3z + 13 = 0,3x - 2y + 3z + 16 = 0 cắt nhau tại điểm A. Tọa độ của điểm A đó là:

     Tọa độ giao điểm của ba mặt phẳng là nghiệm của hệ phương trình :

    \left\{ \begin{array}{l}x + 2y - z - 6 = 0\left( 1 ight)\\2x - y + 3z + 13 = 0\left( 2 ight)\\3x - 2y + 3z + 16 = 0\left( 3 ight)\end{array} ight.

    Giải (1),(2) tính x,y theo z được x =  - z - 4;y = z + 5.

    Thế vào phương trình (3) được z=-3 , từ đó có x =  - 1,y = 2

    Vậy  A(-1,2,-3).

  • Câu 9: Vận dụng

    Chọn kết quả chính xác

    Cho hình chóp tứ giác đều S.ABCD có AB =
a;SA = a\sqrt{2}. Gọi G là trọng tâm tam giác SCD. Góc giữa đường thẳng BG với đường thẳng SA bằng:

    Gọi O = AC ∩ BD

    Tam giác SAO vuông nên suy ra SO =
\sqrt{SA^{2} - AO^{2}} = \frac{a\sqrt{6}}{2}

    Gắn tọa độ như hình vẽ:

    Ta có: \left\{ \begin{matrix}A(0;0;0),B(a;0;0),C(a;a;0) \\D(0;a;0),O\left( \dfrac{a}{2};\dfrac{a}{2};0 ight),S\left(\dfrac{a}{2};\dfrac{a}{2};\dfrac{a\sqrt{6}}{2} ight) \\\end{matrix} ight.

    Vì G là trọng tâm tam giác SCD nên G\left(
\frac{a}{2};\frac{5a}{6};\frac{a\sqrt{6}}{6} ight)

    Ta có: \left\{ \begin{matrix}\overrightarrow{AS} = \left( \dfrac{a}{2};\dfrac{a}{2};\dfrac{a\sqrt{6}}{2}ight) = \dfrac{a}{2}\left( 1;1;\sqrt{6} ight) \\\overrightarrow{BG} = \left( -\dfrac{a}{2};\dfrac{5a}{6};\dfrac{a\sqrt{6}}{6} ight) = \dfrac{a}{6}\left(- 3;5;\sqrt{6} ight) \\\end{matrix} ight.

    Góc giữa đường thẳng BG với đường thẳng SA bằng:

    \cos(BG;SA) = \frac{\left|
\overrightarrow{AS}.\overrightarrow{BG} ight|}{BG.AS} = \frac{| - 3 +
5 + 6|}{\sqrt{40}.\sqrt{8}} = \frac{\sqrt{5}}{5}

    Vậy đáp án cần tìm là: \arccos\frac{\sqrt{5}}{5}.

  • Câu 10: Nhận biết

    Chọn đáp án thích hợp

    Trong không gian với hệ trục tọa độ Oxyz, phương trình nào sau đây không phải là phương trình của một mặt cầu?

    Phương trình (S):x^{2} + y^{2} + z^{2} -
2ax - 2by - 2cz + d = 0 là phương trình của một mặt cầu nếu a^{2} + b^{2} + c^{2} - d >
0.

    Vậy phương trình không phải phương trình mặt cầu là:

    x^{2} + y^{2} + z^{2} - 2x + 4y - 4z +
10 = 0

  • Câu 11: Thông hiểu

    Xác định đường kính của mặt cầu

    Trong không gian với hệ toạ độ Oxyz, cho ba điểm A(1;2; - 4),B(1; - 3;1),C(2;2;3). Tính đường kính l của mặt cầu (S) đi qua ba điểm trên và có tâm nằm trên mặt phẳng (Oxy)?

    Gọi tâm mặt cầu là I(x;y;0)

    Ta có:

    \left\{ \begin{matrix}
IA = IB \\
IA = IC \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
\sqrt{(x - 1)^{2} + (y - 2)^{2} + 4^{2}} = \sqrt{(x - 1)^{2} + (y +
3)^{2} + 1^{2}} \\
\sqrt{(x - 1)^{2} + (y - 2)^{2} + 4^{2}} = \sqrt{(x - 2)^{2} + (y -
2)^{2} + 3^{2}} \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
(y - 2)^{2} + 4^{2} = (y + 3)^{2} + 1 \\
x^{2} - 2x + 1 + 16 = x^{2} - 4x + 4 + 9 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
10y = 10 \\
2x = - 4 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
y = 1 \\
x = - 2 \\
\end{matrix} ight.

    \Rightarrow l = 2R = 2\sqrt{( - 3)^{2} +
( - 1)^{2} + 4^{2}} = 2\sqrt{26}.

  • Câu 12: Vận dụng cao

    Tính tổng b và c

    Trong không gian Oxyz cho tứ diện với điểm A(1;2;2),B( - 1;2; - 1),C(1;6;
- 1)D( - 1;6;2). Biết mặt phẳng qua B, C và tâm mặt cầu nội tiếp tứ diện ABCD có một vectơ pháp tuyến là ( - 1;b;c). Tổng b + c

    Ta có phương trình các mặt phẳng như sau:

    (ABC): 6x - 3y - 4z + 8 = 0

    (BCD):6x - 3y + 4z + 16 = 0

    (CDA):6x + 3y + 4z - 20 = 0

    (ABD):6x + 3y - 4z - 4 = 0

    Gọi I(a';b';c') là tâm mặt cầu nội tiếp tứ diện DABC

    Do đó:

    I nằm cùng phái với A đối với (DBC) suy ra: 6a' - 3b' + 4c' + 16 > 0.

    I nằm cùng phía với B đối với (DAC) suy ra: 6a' + 3b' + 4c' + 20 <
0.

    I nằm cùng phía với C đối với (DAB) suy ra: 6a' + 3b' - 4c' - 4 >
0.

    I nằm cùng phía với D đối với (ABC) suy ra: 6a' - 3b' - 4c' + 8 <
0.

    Suy ra:

    \left\{ \begin{matrix}
d\left( I;(DAB) \right) = d\left( I;(DAC) \right) \\
d\left( I;(DAB) \right) = d\left( I;(DBC) \right) \\
d\left( I;(DAB) \right) = d\left( I;(ABC) \right)
\end{matrix} \right.

    \Leftrightarrow \left\{ \begin{matrix}
|6a' + 3b' - 4c' - 4| = |6a' + 3b' + 4c' - 20|
\\
|6a' + 3b' - 4c' - 4| = |6a' - 3b' + 4c' + 16|
\\
|6a' + 3b' - 4c' - 4| = |6a' - 3b' - 4c' + 8|
\end{matrix} \right.

    \Leftrightarrow \left\{ \begin{matrix}
6a' + 3b' - 4c' - 4 = - \left( 6a' + 3b' + 4c' -
20 \right) \\
6a' + 3b' - 4c' - 4 = 6a' - 3b' + 4c' + 16 \\
6a' + 3b' - 4c' - 4 = - \left( 6a' - 3b' - 4c' +
8 \right)
\end{matrix} \right.

    \Leftrightarrow \left\{ \begin{matrix}
a' = 0 \\
b' = 4 \\
c' = \frac{1}{2}
\end{matrix} \right.

    Suy ra: I\left( 0;4;\frac{1}{2}
\right),\overrightarrow{BI} = \left( 1;2;\frac{3}{1}
\right),\overrightarrow{BC} = (2;4;0)

    \left\lbrack
\overrightarrow{BI},\overrightarrow{BC} \right\rbrack = ( -
3;3;0)cùng phương với \overrightarrow{n} = ( - 1;1;0).

    Suy ra (BCI) có một VTPT là \overrightarrow{n} = ( - 1;1;0) = ( -
1;b;c).

    Vậy b + c = 1.

  • Câu 13: Vận dụng cao

    Tính giá trị của biểu thức

    Trong không gian hệ tọa độ Oxyz, cho điểm A(1;4;5), B(3;4;0), C(2; - 1;0) và mặt phẳng (P):3x - 3y - 2z - 12 = 0. Gọi M(a;b;c) thuộc (P) sao cho MA^{2} + MB^{2} + 3MC^{2} đạt giá trị nhỏ nhất. Tính tổng a + b + c.

    Giả sử I(x;y;z) là điểm thỏa mãn \overrightarrow{IA} + \overrightarrow{IB} +
3\overrightarrow{IC} = \overrightarrow{0}.

    Khi đó \left\{ \begin{matrix}
\overrightarrow{IA} = (1 - x;4 - y;5 - z) \\
\overrightarrow{IB} = (3 - x;4 - y; - z) \\
\overrightarrow{IC} = (2 - x; - 1 - y; - z) \\
\end{matrix} \right.

    \overrightarrow{IA} + \overrightarrow{IB}
+ 3\overrightarrow{IC} = (10 - 5x;5 - 5y;5 - 5z);

    \overrightarrow{IA} + \overrightarrow{IB}
+ 3\overrightarrow{IC} = \overrightarrow{0} \Leftrightarrow \left\{
\begin{matrix}
x = 2 \\
y = 1 \\
z = 1 \\
\end{matrix} \right.\  \Rightarrow I(2;1;1);

    MA^{2} + MB^{2} + 3MC^{2} =
{\overrightarrow{MA}}^{2} + {\overrightarrow{MB}}^{2} +
3{\overrightarrow{MC}}^{2}

    = \left( \overrightarrow{MI} +
\overrightarrow{IA} \right)^{2} + \left( \overrightarrow{MI} +
\overrightarrow{IB} \right)^{2} + 3\left( \overrightarrow{MI} +
\overrightarrow{IC} \right)^{2}

    = 5MI^{2} + 2\overrightarrow{MI}\left(
\overrightarrow{IA} + \overrightarrow{IB} + 3\overrightarrow{IC} \right)
+ IA^{2} + IB^{2} + IC^{2}

    = 5MI^{2} + IA^{2} + IB^{2} +
IC^{2} (vì \overrightarrow{IA} +
\overrightarrow{IB} + 3\overrightarrow{IC} =
\overrightarrow{0})

    Vì I cố định nên MA^{2} + MB^{2} +
3MC^{2} đạt giá trị nhỏ nhất khi MI nhỏ nhất, khi đó M là hình chiếu vuông góc của I lên (P).

    Gọi \Delta là đường thẳng qua I và vuông góc với (P)

    Phương trình đường thẳng \Delta:\left\{
\begin{matrix}
x = 2 + 3t \\
y = 1 - 3t \\
z = 1 - 2t \\
\end{matrix} \right..

    Tọa độ của M là nghiệm hệ phương trình:

    \left\{ \begin{matrix}x = 2 + 3t \\y = 1 - 3t \\z = 1 - 2t \\3x - 3y - 2z - 12 = 0 \\\end{matrix} \right.\  \Leftrightarrow \left\{ \begin{matrix}t = \dfrac{1}{2} \\x = \dfrac{7}{2} \\y = - \dfrac{1}{2} \\x = 0 \\\end{matrix} \right.

    \Rightarrow M\left( \frac{7}{2}; -
\frac{1}{2};0 \right) \Rightarrow a + b + c = 3

  • Câu 14: Thông hiểu

    Viết phương trình mặt phẳng

    Trong không gian với hệ trục tọa độ Oxyz, gọi (P)là mặt phẳng chứa trục Oy và tạo với mặt phẳng y + z + 1 = 0 góc 60^{0}. Phương trình mặt phẳng (P) là:

    +) Mặt phẳng (P)chứa trục Oy nên có dạng: Ax + Cz = 0\ \ \ \ (A^{2} + C^{2} \neq
0).

    +) Mặt phẳng (P) tạo với mặt phẳng y + z + 1 = 0 góc 60^{0} nên cos60^{0} = \frac{\left|
\overrightarrow{n_{(P)}}.\overrightarrow{n_{(Q)}} \right|}{\left|
\overrightarrow{n_{(P)}} \right|.\left| \overrightarrow{n_{(Q)}}
\right|}.

    \Leftrightarrow \frac{1}{2} =
\frac{|C|}{\sqrt{A^{2} + C^{2}}.\sqrt{2}} \Leftrightarrow \sqrt{A^{2} +
C^{2}} = \sqrt{2}|C|

    \Leftrightarrow A^{2} - C^{2} = 0
\Leftrightarrow \left\lbrack \begin{matrix}
A = C \\
A = - C \\
\end{matrix} \right.

    Phương trình mặt phẳng (P) là: \left\lbrack \begin{matrix}
x - z = 0 \\
x + z = 0 \\
\end{matrix} \right.

  • Câu 15: Nhận biết

    Tìm góc giữa hai đường thẳng

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng

    \Delta:\left\{ \begin{matrix}
x = t \\
y = 5 - 2t \\
z = 14 - 3t \\
\end{matrix} \right.\Delta':\left\{ \begin{matrix}
x = 1 - 4t \\
y = 2 + t \\
z = - 1 + 5t \\
\end{matrix} \right.. Xác định góc giữa hai đường thẳng \Delta\Delta'.

    Đường thẳng \Delta có VTCP \overrightarrow{u} = (1; - 2; - 3), \Delta' có VTCP \overrightarrow{u'} = ( - 4;1;5).

    Gọi \varphi là góc giữa hai đường thẳng \Delta\Delta'.

    Ta có \cos\varphi = \left| \cos\left(
\overrightarrow{u},\overrightarrow{u'} \right) \right|

    =
\frac{\left| 1.( - 4) + ( - 2).1 + ( - 3).5 \right|}{\sqrt{1^{2} + ( -
2)^{2} + ( - 3)^{2}}.\sqrt{( - 4)^{2} + 1^{2} + 5^{2}}} =
\frac{\sqrt{3}}{2}

    \rightarrow \varphi = 30^{0}.

  • Câu 16: Nhận biết

    Mp qua 3 điểm

    Phương trình tổng quát của mặt phẳng qua A(3,-1, 2), B(4, -2, -1), C(2, 0, 2) là:

     Theo đề bài, ta có được các vecto sau:

    \begin{array}{l}\overrightarrow {AB}  = \left( {1, - 1, - 3} ight),\overrightarrow {AC}  = \left( { - 1,1,0} ight);\\ \Rightarrow \left[ {\overrightarrow {AB,} \overrightarrow {AC} } ight] = \left( {3,3,0} ight) = 3(1,1,0) = 3\overrightarrow n \end{array}

    Vì mặt phẳng đi qua 3 điểm nên VTPT của mp là tích có hướng của \vec{AB}\vec{AC} .

    Chọn \overrightarrow n  = \left( {1,1,0} ight) làm một vectơ pháp tuyến.

    Phương trình mp (ABC)có dạng x+y+D=0

    (ABC) là mp qua A  \Leftrightarrow 3 - 1 + D = 0 \Leftrightarrow D =  - 2

    Vậy phương trình (ABC): x + y -2=0.

  • Câu 17: Thông hiểu

    Viết phương trình tham số của đường thẳng

    Trong không gian Oxyz, cho điểm A(1;2;3) và mặt phẳng (P):2x + y - 4z + 1 = 0. Đường thẳng (d) qua điểm A, song song với mặt phẳng (P), đồng thời cắt trục Oz. Viết phương trình tham số của đường thẳng (d).

    Gọi B = d \cap Oz \Rightarrow B(0;0;b)
\Rightarrow \overrightarrow{AB} = ( - 1; - 2;\ b - 3)

    Lại có d\ //(P)\  \Rightarrow
\overrightarrow{AB}\bot\overrightarrow{n_{(P)}} = (2;1; -
4)

    Do đó \overrightarrow{AB}.\overrightarrow{n_{(P)}} = 0
\Leftrightarrow - 2 - 2 - 4b + 12 = 0 \Leftrightarrow b = 2

    \Rightarrow \overrightarrow{AB} = ( - 1;
- 2 - 1)

    Do đó, (d) là đường thẳng qua B(0; 0; 2) và nhận \overrightarrow{u} = (1;2;1) làm vectơ chỉ phương. Nên (d) có phương trình: \left\{
\begin{matrix}
x = t \\
y = 2t \\
z = 2 + t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight).

  • Câu 18: Nhận biết

    Xác định điểm không thuộc đường thẳng

    Trong không gian Oxyz, đường thẳng \Delta:\frac{x - 1}{2} = \frac{y +
2}{1} = \frac{z}{- 1} không đi qua điểm nào dưới đây?

    Ta có \frac{- 1 - 1}{2} eq \frac{2 +
2}{1} eq \frac{0}{- 1} nên điểm (
- 1;2;0) không thuộc đường thẳng \Delta.

  • Câu 19: Thông hiểu

    Viết phương trình mặt phẳng

    Trong không gian Oxyz, cho điểm M(1;\ 0;\ 2) và mặt phẳng(P):2x - y + 3z + 5 = 0. Mặt phẳng đi qua M và song song với (P) có phương trình là:

    Mặt phẳng cần tìm song song với (P) nên có dạng: 2x - y + 3z + d = 0

    Do mặt phẳng qua M(1;\ 0;\ 2) nên ta có 2.1 - 0 + 3.2 + d = 0 = > d = -
8

    Vậy phương trình mặt phẳng cần tìm là 2x
- y + 3z - 8 = 0.

  • Câu 20: Nhận biết

    Tính góc giữa hai mặt phẳng

    Trong không gian Oxyz cho hai mặt phẳng (P):x + z + 4 = 0,(Q):x - 2y + 2z
+ 4 = 0. Góc giữa hai mặt phẳng (P);(Q) bằng:

    Ta có: (P):x + z + 4 = 0 có 1 vectơ pháp tuyến là \overrightarrow{n_{1}} =
(1;0;1)

    (Q):x - 2y + 2z + 4 = 0 có 1 vectơ pháp tuyến là \overrightarrow{n_{2}} =
(1; - 2;2)

    Khi đó:

    \cos\left( (P);(Q) ight) = \cos\left(
\overrightarrow{n_{1}};\overrightarrow{n_{2}} ight)= \frac{\left|
\overrightarrow{n_{1}}.\overrightarrow{n_{2}} ight|}{\left|
\overrightarrow{n_{1}} ight|.\left| \overrightarrow{n_{2}} ight|} =
\frac{1}{\sqrt{2}}

    \Rightarrow \left( (P);(Q) ight) =
45^{0}

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 5 Phương trình mặt phẳng, đường thẳng, mặt cầu CTST Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo