Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề kiểm tra 45 phút Chương 3 Các số đặc trưng đo mức độ phân tán cho mẫu số liệu ghép nhóm CTST

Mô tả thêm:

Hãy cùng thử sức kiểm tra đánh giá các kiến thức tổng quan với bài kiểm tra phút Chương 3: Các số đặc trưng đo mức độ phân tán cho mẫu số liệu ghép nhóm Toán 12 sách Chân trời sáng tạo các em nhé!

  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Vận dụng

    Xác định tính đúng sai của các nhận định

    Biểu đồ sau mô tả kết quả điều tra về điểm trung bình năm học của học sinh hai trường A và B.

    Biểu đồ sau mô tả kết quả điều tra về điểm trung bình năm học của học sinh hai trường A và B. (ảnh 1)

    a) Giá trị đại điện cho mỗi nhóm và bảng tần số ghép nhóm của mẫu số liệu trên là:

    Đúng||Sai

    b) Khoảng tứ phân vị của mẫu số liệu ghép nhóm của trường A là 2,275. Đúng||Sai

    c) Khoảng tứ phân vị của mẫu số liệu ghép nhóm của trường B là 1.526. Sai||Đúng

    d) Nếu so sánh theo khoảng tứ phân vị của mẫu số liệu ghép nhóm thì học sinh trường A có điểm trung bình đồng đều hơn trường B. Sai||Đúng

    Đáp án là:

    Biểu đồ sau mô tả kết quả điều tra về điểm trung bình năm học của học sinh hai trường A và B.

    Biểu đồ sau mô tả kết quả điều tra về điểm trung bình năm học của học sinh hai trường A và B. (ảnh 1)

    a) Giá trị đại điện cho mỗi nhóm và bảng tần số ghép nhóm của mẫu số liệu trên là:

    Đúng||Sai

    b) Khoảng tứ phân vị của mẫu số liệu ghép nhóm của trường A là 2,275. Đúng||Sai

    c) Khoảng tứ phân vị của mẫu số liệu ghép nhóm của trường B là 1.526. Sai||Đúng

    d) Nếu so sánh theo khoảng tứ phân vị của mẫu số liệu ghép nhóm thì học sinh trường A có điểm trung bình đồng đều hơn trường B. Sai||Đúng

    A.B.C.D.ĐÚNGĐÚNGSAISAI

    a) Giá trị đại diện của nhóm [5; 6) là 5,5.

    Giá trị đại diện của nhóm [6; 7) là 6,5.

    Giá trị đại diện của nhóm [7; 8) là 7,5.

    Giá trị đại diện của nhóm [8; 9) là 8,5.

    Giá trị đại diện của nhóm [9; 10) là 9,5.

    Từ biểu đồ, ta có bảng tần số ghép nhóm sau:

    b) Xét mẫu số liệu của trường A:

    Cỡ mẫu nA = 4 + 5 + 3 + 4 + 2 = 18.

    Gọi x_{1};...;x_{18}là mẫu số liệu gốc về điểm trung bình năm học của học sinh trường A được xếp theo thứ tự không giảm.

    Ta có

    x_{1};...;x_{4} \in [5; 6),

    x_{5};...;x_{9} \in [6; 7),

    x_{10};...;x_{12} \in [7; 8),

    x_{13};...;x_{16} \in [8; 9),

    x_{17};x_{18} \in [9; 10).

    Tứ phân vị thứ nhất của mẫu số liệu gốc là x_{5} \in [6; 7). Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là: Q_{1} = 6
+ \frac{\frac{18}{4} - 4}{5}(7 - 6) = 6,1

    Tứ phân vị thứ ba của mẫu số liệu gốc là x_{14} \in [8; 9). Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là: Q_{3} = 8 +
\frac{\frac{3.18}{4} - (4 + 5 + 3)}{4}(9 - 8) = 8,375

    Khoảng tứ phân vị của mẫu số liệu ghép nhóm là: ∆Q = Q3 – Q1 = 8,375 – 6,1 = 2,275.

    Xét mẫu số liệu của trường B:

    Cỡ mẫu nB = 2 + 5 + 4 + 3 + 1 = 15.

    Gọi y_{1};...;y_{20}là mẫu số liệu gốc về điểm trung bình năm học của học sinh trường B được xếp theo thứ tự không giảm.

    Ta có

    y_{1};y_{2} \in [5; 6),

    y_{3};...;y_{7} \in [6; 7),

    y_{8};...;y_{11} \in [7; 8),

     y_{12};...;y_{14} \in [8; 9),

    y_{15} \in [9; 10).

    Tứ phân vị thứ nhất của mẫu số liệu gốc là y_{4} \in [6; 7). Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là: Q_{\
_{1}}' = 6 + \frac{\frac{15}{4} - 2}{5}(7 - 6) = 6,35

    Tứ phân vị thứ ba của mẫu số liệu gốc là y_{12} \in [8; 9). Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là:  Q_{\
_{3}}' = 8 + \frac{\frac{3.15}{4} - (2 + 5 + 4)}{3}(9 - 8) =
\frac{97}{12}

    Khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \Delta_{\ _{Q}}' = Q_{\ _{3}}' - Q_{\
_{1}}' = \frac{97}{12} - 6,35 \approx 1,73

    d) Vì ∆Q = 2,275 > ∆'Q ≈ 1,73 nên nếu so sánh theo khoảng tứ phân vị của mẫu số liệu ghép nhóm thì học sinh trường B có điểm trung bình đồng đều hơn.

  • Câu 2: Thông hiểu

    Xác định tính đúng sai của từng phương án

    Tìm hiểu thời gian (đơn vị: giờ) sử dụng điện thoại di động của một nhóm bạn trẻ thu được kết quả sau như sau:

    Thời gian

    [0; 5)

    [5; 10)

    [10; 15)

    [15; 20)

    [20; 25)

    [25; 30)

    Số bạn

    2

    6

    8

    9

    3

    2

    Xác định tính đúng sai của các đáp án dưới đây?

    a) Khoảng biến thiên của mẫu số liệu ghép nhóm này là 25. Sai||Đúng

    b) Nhóm chứa tứ phân vị thứ 3 là [15; 20). Đúng||Sai

    c) Số trung bình của thống kê là 10. Sai||Đúng

    d) Khoảng tứ phân của mẫu số liệu ghép nhóm này lớn hơn 10. Sai||Đúng

    Đáp án là:

    Tìm hiểu thời gian (đơn vị: giờ) sử dụng điện thoại di động của một nhóm bạn trẻ thu được kết quả sau như sau:

    Thời gian

    [0; 5)

    [5; 10)

    [10; 15)

    [15; 20)

    [20; 25)

    [25; 30)

    Số bạn

    2

    6

    8

    9

    3

    2

    Xác định tính đúng sai của các đáp án dưới đây?

    a) Khoảng biến thiên của mẫu số liệu ghép nhóm này là 25. Sai||Đúng

    b) Nhóm chứa tứ phân vị thứ 3 là [15; 20). Đúng||Sai

    c) Số trung bình của thống kê là 10. Sai||Đúng

    d) Khoảng tứ phân của mẫu số liệu ghép nhóm này lớn hơn 10. Sai||Đúng

    Ta có

    Thời gian

    [0; 5)

    [5; 10)

    [10; 15)

    [15; 20)

    [20; 25)

    [25; 30)

    Giá trị đại diện

    2,5

    7,5

    12,5

    17,5

    22,5

    17,5

    Số bạn

    2

    6

    8

    9

    3

    2

    a) Sai: Khoảng biến thiên của mẫu số liệu ghép nhóm là R = 30 - 0 = 30.

    b) Đúng:

    16 < \frac{3n}{4} = \frac{3.30}{4}
= \frac{90}{4} = 22,5 < 25 nên nhóm chứa tứ phân vị thứ 3 là [15;20).

    c) Sai: Thời gian sử dụng điện thoại trung bình là:

    \overline{x} = \frac{2.2,5 + 6.7,5 +
8.12,5 + 9.17,5 + 3.22,5 + 2.27,5}{30} = \frac{43}{3} \approx
14,3

    d) Sai: Ta có: \frac{n}{4} =
7,5;\frac{n}{2} = 15;\frac{3n}{4} = 22,5

    \left\{ \begin{matrix}
  {Q_1} = 5 + \dfrac{{\dfrac{{30}}{4} - 2}}{6}.5 = 9,58 \hfill \\
  {Q_3} = 15 + \dfrac{{\dfrac{{90}}{4} - 16}}{9}.5 \approx 18,61 \hfill \\ 
\end{matrix}  ight. \Rightarrow \Delta Q = {Q_3} - {Q_1} \approx 9,03 < 10

  • Câu 3: Nhận biết

    Chọn đáp án thích hợp

    Dũng là học sinh rất giỏi chơi rubik, bạn có thể giải nhiều loại khối rubik khác nhau. Trong một lần tập luyện giải khối rubik 3 x 3, bạn Dũng đã tự thống kê lại thời gian giải rubik trong 25 lần giải liên tiếp ở bảng sau:

    Thời gian giải rubik (giây)

    [8; 10)

    [10; 12)

    [12; 14)

    [14; 16)

    [16; 18)

    Số lần

    4

    6

    8

    4

    3

    Khoảng biến thiên của mẫu số liệu ghép nhóm nhận giá trị nào trong các giá trị dưới đây?

    Khoảng biến thiên của mẫu số liệu là: 18 - 8 = 10 (giây).

  • Câu 4: Thông hiểu

    Chọn phát biểu đúng

    Hai mẫu số lię̂u ghép nhóm M_{1},M_{2} có bảng tần số ghép nhóm như sau:

    M_{1}

    Nhóm

    \lbrack 8;10)

    [10;12)

    \lbrack 12;14)

    \lbrack 14;16)

    \lbrack 16;18)

    Tần số

    3

    4

    8

    6

    4

    M_{2}

    Nhóm

    \lbrack 8;10)

    [10;12)

    \lbrack 12;14)

    \lbrack 14;16)

    \lbrack 16;18)

    Tằn số

    6

    8

    16

    12

    8

    Gọi s_{1},s_{2} lần lượt là độ lệch chuẩn của mẫu số liệu ghép nhóm M_{1},M_{2}. Phát biểu nào sau đây là đúng?

    Dùng máy tính casio tính được độ lệch chuẩn: \left\{ \begin{matrix}
s_{1} \approx 2,444913086 \\
s_{2} \approx 2,444913086 \\
\end{matrix} ight.

  • Câu 5: Thông hiểu

    Chọn phương án đúng

    Mức thưởng Tết cho các nhân viên của 2 tổ tại một công ty được thống kê trong bảng sau:

    Mức thưởng Tết (triệu đồng)

    \lbrack 5;\ 10) \lbrack 10;\ 15) \lbrack 15;\ 20) \lbrack 20;\ 25) \lbrack 25;\ 30)

    Số nhân viên tổ A

    40

    25

    20

    10

    5

    Số nhân viên tổ B

    50

    30

    20

    10

    0

    Gọi R_{1};\ R_{2} tương ứng là khoảng biến thiên của mẫu số liệu ghép nhóm về mức thưởng Tết của các nhân viên Tổ A và Tổ B. Chọn phương án đúng?

    Ta có: R_{1} = a_{k + 1} - a_{1} = 30 - 5
= 25.

    R_{2} = a_{k + 1} - a_{1} = 25 - 5 =
20.

    Vậy R_{1} > R_{2}.

  • Câu 6: Thông hiểu

    Tìm độ lệch chuẩn của mẫu số liệu ghép nhóm

    Thống kê doanh thu (đơn vị: triệu đô la) của 20 công ty sản xuất ô tô trong năm 2023, người ta có bảng sau:

    A close up of numbersDescription automatically generated

    Tính độ lệch chuẩn của mẫu số liệu ghép nhóm trên.

    Chọn giá trị đại diện cho mẫu số liệu, ta có:

    A close-up of a tableDescription automatically generated

    Điểm trung bình là:

    \overline{x} = \frac{5 \cdot 10 + 5 \cdot
30 + 6 \cdot 50 + 2 \cdot 70 + 2 \cdot 90}{20} = 41.

    Phương sai là:

    S^{2} = \frac{1}{20}\left\lbrack 5 \cdot
(10)^{2} + 5 \cdot (30)^{2} + 6 \cdot (50)^{2} + 2 \cdot (70)^{2} + 2
\cdot (90)^{2} \right\rbrack - (41)^{2} = 619.

    Độ lệch chuẩn: S = \sqrt{619} \approx
24,88.

  • Câu 7: Thông hiểu

    Tìm tứ phân vị thứ ba của mẫu số liệu ghép nhóm

    Điểm kiểm tra khảo sát môn Tiếng Anh của lớp 11A được ghi trong bảng số liệu ghép nhóm như sau:

    Điểm

    [0; 20)

    [20; 40)

    [40; 60)

    [60; 80)

    [80; 100)

    Số học sinh

    5

    9

    12

    10

    6

    Khi đó giá trị tứ phân vị thứ ba là:

    Ta có:

    Điểm

    [0; 20)

    [20; 40)

    [40; 60)

    [60; 80)

    [80; 100)

     

    Số học sinh

    5

    9

    12

    10

    6

    N = 42

    Tần số tích lũy

    5

    14

    26

    36

    42

     

    Cỡ mẫu N = 42 \Rightarrow \frac{3N}{4} =
31,5

    => Nhóm chứa Q_{3} là [60; 80)

    (Vì 31,5 nằm giữa hai tần số tích lũy 26 và 36)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 60;m = 26,f = 10;c = 80
- 60 = 20

    \Rightarrow Q_{3} = l +\dfrac{\dfrac{3N}{4} - m}{f}.c = 60 + \frac{31,5 - 26}{10}.20 =71.

  • Câu 8: Vận dụng

    Chọn đáp án đúng

    Điều tra về khối lượng \mathbf{27} củ khoai tây (đơn vị: gam) thu hoạch tại nông trường, ta có kết quả sau:

    Nhóm

    Tần số

    Tần số tích lũy

    \lbrack 74;\ \ 80) 4 4
    \lbrack 80;\ \ 86) 6 10
    \lbrack 86;\ \ 92) 3 13
    \lbrack 98;\ \ 104) 4 17
    \lbrack 92;\ \ 98) 3 20
    \lbrack 104;\ \ 110) 7 27
    n = 27

    Khoảng biến thiên và khoảng tứ phân vị của mẫu số liệu ghép nhóm trên lần lượt là

    Trong mẫu số liệu ghép nhóm trên, ta có: đầu mút trái của nhóm 1 là a_{1} = 74, đầu mút phải của nhóm 6 là a_{7} = 110. Vậy khoảng biến thiên của mẫu số liệu ghép nhóm đó là: R =
a_{7} - a_{1} = 110 - 74 = 36(gam)

    Số phần tử của mẫu là n = 27

    Ta có: \frac{n}{4} = \frac{27}{4} =
6,754 < 6,75 <
10. Suy ra nhóm 2 là nhóm đầu tiên có tần số tích luỹ lớn hơn hoặc bằng 6,75. Xét nhóm 2 là nhóm \lbrack 80;\ \ 86)s = 80; h =
6; n_{2} = 6 và nhóm 1 là nhóm \lbrack 74;\ \ 80)cf_{1} = 4.

    Áp dụng công thức, ta có tứ phân vị thứ nhất là:

    Q_{1} = 80 + \left( \frac{6,75 - 4}{6}
\right).6 = 82,75(gam)

    Ta có: \frac{3n}{4} = \frac{3.27}{4} =
20,2520 < 20,25 <
27. Suy ra nhóm 6 là nhóm đầu tiên có tần số tích luỹ lớn hơn hoặc bằng 20,25.

    Xét nhóm 6 là nhóm \lbrack 104;\ \
109)t = 104; l = 6; n_{6}
= 7 và nhóm 5 là nhóm \lbrack 98;\
\ 104)cf_{5} = 20.

    Áp dụng công thức, ta có tứ phân vị thứ ba là:

    Q_{3} = 104 + \left( \frac{20,25 - 20}{7}
\right).6 = \frac{1459}{14} \approx 104,2(gam)

    Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm đã cho là:

    \Delta_{Q} = Q_{3} - Q_{1} \approx 104,2
- 82,75 = 21,45 (gam)

  • Câu 9: Nhận biết

    Tìm đường kính trung bình

    Kiểm lâm thực hiện đo đường kính của một số cây thân gỗ tại hai khu vực A và B thu được kết quả như sau:

    Đường kính (cm)

    [30; 32)

    [32; 34)

    [34; 36)

    [36; 38)

    [38; 40)

    A

    25

    28

    20

    10

    7

    B

    22

    27

    19

    18

    14

    Đường kính trung bình của cây tại hai khu vực A và B lần lượt là:

    Ta có:

    Đường kính (cm)

    [30; 32)

    [32; 34)

    [34; 36)

    [36; 38)

    [38; 40)

    Giá trị đại diện

    31

    33

    35

    37

    39

    A

    25

    28

    20

    10

    7

    B

    22

    27

    19

    18

    14

    Suy ra

    \overline{x_{A}} = \frac{25.31 + 38.33 +
20.35 + 10.37 + 7.39}{100} = 33,72

    \overline{x_{B}} = \frac{25.31 + 27.33 +
19.35 + 18.37 + 14.39}{100} = 34,2

  • Câu 10: Nhận biết

    Chọn phương án thích hợp

    Để đo mức độ phân tán về nhiệt độ không khí trung bình các tháng của năm 2023 tại Hà Nội, đại lượng thích hợp là

    Đại lượng đo mức độ phân tán của mẫu số liệu là phương sai.

  • Câu 11: Vận dụng

    Tính giá trị của biểu thức

    Một giống cây xoan đào được trồng tại hai địa điểm A và B. Người ta thống kê đường kính thân của một số cây xoan đào 5 năm tuổi ở bảng sau. Gọi phương sai đường kính thân của một số cây xoan đào 5 năm tuổi ở địa điểm A và địa điểm B lần lượt là S_{A}^{2} và S_{B}^{2}. Tính T = \left| S_{A}^{2} - S_{B}^{2} \right| bằng bao nhiêu?

    Đường kính (cm)

    \lbrack
30;32) \lbrack
32;34) \lbrack
34;36) \lbrack
36;38) \lbrack
38;40)

    Số cây trồng ở địa điểm A

    25

    38

    20

    10

    9

    Số cây trồng ở địa điểm B

    22

    27

    19

    14

    14

    Ta lập bảng theo giá trị đại diện như sau:

    Đường kính (cm)

    \lbrack
30;32) \lbrack
32;34) \lbrack
34;36) \lbrack
36;38) \lbrack
38;40)

    Giá trị đại diện

    31

    33

    35

    37

    39

    Số cây trồng ở địa điểm A

    25

    38

    20

    10

    9

    Số cây trồng ở địa điểm B

    22

    27

    19

    14

    14

    Cỡ mẫu: n_{A} = 25 + 38 + 20 + 10 + 7 =
100; n_{B} = 22 + 27 + 19 + 18 + 14
= 100

    Đường kính trung bình của thân cây xoan đào trồng tại địa điểm A là:

    {\overline{x}}_{A} = \frac{25 \cdot 31 +
38 \cdot 33 + 20 \cdot 35 + 10 \cdot 37 + 7 \cdot 39}{100} =
33,72

    Phương sai của mẫu số liệu ghép nhóm vè̀ đường kính của thân cây xoan đào trồng tại địa điểm A là:

    S_{A}^{2} = \frac{1}{100}\left( 25 \cdot
31^{2} + 38 \cdot 33^{2} + 20 \cdot 35^{2} + 10 \cdot 37^{2} + 7 \cdot
39^{2} \right) - (33,72)^{2} \approx 5,40

    Đường kính trung bình của thân cây xoan đào trồng tại địa điểm B là:

    {\overline{x}}_{B} = \frac{22 \cdot 31 +
27 \cdot 33 + 19 \cdot 35 + 18 \cdot 37 + 14 \cdot 39}{100} =
34,5

    Phương sai của mẫu số liệu ghép nhóm về đường kính của thân cây xoan đào trồng tại địa điểm B là:

    S_{B}^{2} = \frac{1}{100}\left( 22 \cdot
31^{2} + 27 \cdot 33^{2} + 19 \cdot 35^{2} + 18 \cdot 37^{2} + 14 \cdot
39^{2} \right) - (34,5)^{2} = 7,31

    Vậy \left| S_{A}^{2} - S_{B}^{2} \right|
= |5,40 - 7,31| = 1,91

  • Câu 12: Nhận biết

    Tìm số trung bình

    Thống kê mức lương (đơn vị: triệu đồng) của nhân viên hai phân xưởng A và B được ghi lại trong bảng sau:

    Mức lương

    [5; 6)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

    Phân xưởng A

    4

    5

    5

    4

    2

    Phân xưởng B

    3

    6

    5

    5

    1

    Số trung bình của mẫu số liệu ghép nhóm của đối tương A và đối tượng B lần lượt là:

    Ta có:

    Mức lương

    [5; 6)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

     

    Giá trị đại diện

    5,5

    6,5

    7,5

    8,5

    9,5

     

    Phân xưởng A

    4

    5

    5

    4

    2

    N = 20

    Phân xưởng B

    3

    6

    5

    5

    1

    N’ = 20

    Số trung bình của mẫu số liệu ghép nhóm của đối tượng A là:

    \overline{x_{A}} = \frac{4.5,5 + 5.6,5 +
5.7,5 + 4.8,5 + 2.9,5}{20} = 7,25

    Số trung bình của mẫu số liệu ghép nhóm của đối tượng B là:

    \overline{x_{B}} = \frac{3.5,5 + 6.6,5 +
5.7,5 + 5.8,5 + 1.9,5}{20} = 7,25

  • Câu 13: Thông hiểu

    Tìm khoảng biến thiên của mẫu số liệu

    Kết quả đo chiều cao một nhóm các học sinh nam (đơn vị: cm) lớp 11 được thống kê như sau:

    160

    161

    161

    162

    162

    162

    163

    163

    163

    164

    164

    164

    164

    165

    165

    165

    165

    165

    166

    166

    166

    166

    167

    167

    168

    168

    168

    168

    169

    169

    170

    171

    171

    172

    172

    174

    Chuyển mẫu dữ liệu trên sang mẫu dữ liệu ghép nhóm gồm 4 nhóm số liệu theo các nửa khoảng có độ dài bằng nhau. Khi đó khoảng biến thiên của mẫu số liệu sau khi ghép nhóm là:

    Khoảng biến thiên là 174 - 160 =
14

    Để chia số liệu thành 4 nhóm theo các nửa khoảng có độ dài bằng nhau, ta chia các nhóm có độ dài bằng 4.

    Ta sẽ chọn đầu mút phải của nhóm cuối cùng là 176.

    Khi đó ta có các nhóm là: \lbrack
160;164),\lbrack 164;168),\lbrack 168;172),\lbrack 172;176)

    Vậy bảng dữ liệu ghép nhóm đúng là:

    Vậy khoảng biến thiên của mẫu số liệu sau khi ghép nhóm là R = 176 - 160 = 16.

  • Câu 14: Nhận biết

    Tìm số trung bình của mẫu số liệu ghép nhóm

    Thống kê quãng đường một xe taxi công nghệ đi mỗi ngày (đơn vị: km) như sau:

    Quãng đường ((km)

    [50; 100)

    [100; 150)

    [150; 200)

    [200; 250)

    [250; 300)

    Số ngày

    5

    10

    9

    4

    2

    Tìm số trung bình của mẫu số liệu ghép nhóm?

    Ta có:

    Quãng đường ((km)

    [50; 100)

    [100; 150)

    [150; 200)

    [200; 250)

    [250; 300)

    Giá trị đại diện

    75

    125

    175

    225

    275

    Số ngày

    5

    10

    9

    4

    2

    Số trung bình của mẫu số liệu ghép nhóm:

    \overline{x} = \frac{5.75 + 10.125 +
9.175 + 4.225 + 2.275}{30} = 155

  • Câu 15: Nhận biết

    Tìm khoảng biến thiên của mẫu số liệu ghépnhóm

    Biểu đồ sau biểu diễn tốc độ tăng trưởng GDP của Nhật Bản trong giai đoạn 1990 đến 2005. Hãy tìm khoảng biến thiên của mẫu số liệu đó.

    15 Bài tập Các số liệu đặc trưng đo mức độ phân tán cho mẫu số liệu không ghép nhóm (có đáp án) | Cánh diều Trắc nghiệm Toán 10

    Ta có giá trị lớn nhất của mẫu số liệu là 5,1 và giá trị nhỏ nhất của mẫu số liệu là 0,4

    ⇒ R = 5,1 – 0,4 = 4,7.

  • Câu 16: Thông hiểu

    Xác định tứ phân vị thứ nhất

    Kết quả điều tra tổng thu nhập trong năm 2024 của một số hộ gia đình ở thành phố Nha Trang được ghi lại ở bảng sau:

    Tổng thu nhập (triệu đồng)

    [200; 250)

    [250; 300)

    [300; 350)

    [350; 400)

    [400; 450)

    Số hộ gia đình

    24

    62

    34

    21

    9

    Khoảng tứ phân vị thứ nhất là

    Số hộ gia đình được khảo sát (cỡ mẫu) là n = 24 + 62 + 34 + 21 + 9 = 150.

    Gọi x_{1};x_{2};...;x_{150} là tổng thu nhập trong năm 2024 của 150 hộ gia đình được xếp theo thứ tự không giảm.

    Ta có:

    x_{1};...;x_{24} \in \lbrack
200;250)

    x_{25};...;x_{86} \in \lbrack
300;350)

    x_{87};...;x_{120} \in \lbrack
300;350)

    x_{121};...;x_{141} \in \lbrack
350;400)

    x_{142};...;x_{150} \in \lbrack
400;450)

    Do đó, đối với dãy số liệu x_{1};x_{2};...;x_{150} thì

    Tứ phân vị thứ nhất Q_{1} là x_{38} \in \lbrack 250;300). Do đó, tứ phân thứ nhất của mẫu số liệu ghép nhóm là:

    Q_{1} = 250 + \frac{\frac{150}{4} -
24}{62}(300 - 250) = \frac{16175}{62}

  • Câu 17: Thông hiểu

    Tìm phương sai của mẫu dữ liệu ghép nhóm

    Một bệnh viện thống kê lại số cân nặng của 20 bé sơ sinh trong bảng sau:

    Cân nặng (kg)

    \lbrack 2,7;3,0) \lbrack 3,0;3,3) \lbrack 3,3;3,6) \lbrack 3,6;3,9) \lbrack 3,9;4,2)

    Số

    3

    6

    5

    4

    2

    Phương sai của mẫu số liệu ghép nhóm là:

    Ta có bảng sau:

    Giá trị đại diện

    2,85

    3,15

    3,45

    3,75

    4,05

    Tần số

    3

    6

    5

    4

    2

    Số trung bình:

    \overline{x} = \frac{1}{20}(3.2,85 +
6.3,15 + 5.3,45 + 4.3,75 + 2.4,05) = 3,39

    Phương sai của mẫu dữ liệu ghép nhóm là:

    s^{2} = \frac{1}{20}(3.2,85^{2} +
6.3,15^{2} + 5.3,45^{2}+ 4.3,75^{2} + 2.4,05^{2}) - 3,39^{2} =0,1314

  • Câu 18: Nhận biết

    Chọn kết luận đúng

    Xét mẫu số liệu ghép nhóm có tứ phân vị thứ nhất, tứ phân vị thứ hai, tứ phân vị thứ ba lần lượt là Q_{1}; Q_{2}; Q_{3}. Khoảng tứ phân vị của mẫu số liệu ghép nhóm đó bằng

    Khoảng tứ phân vị của mẫu số liệu ghép nhóm là Q_{3} - Q_{1}.

  • Câu 19: Nhận biết

    Tính thời gian trung bình của mẫu số liệu

    Kết quả khảo sát thời gian sử dụng liên tục (đơn vị: giờ) từ lúc sạc đầy cho đến khi hết của pin một số loại máy tính xách tay được mô tả như sau:

    Tính thời gian sử dụng pin trung bình?

    Ta có:

    Thời gian (giờ)

    [7,2; 7,4)

    [7,4; 7,6)

    [7,6; 7,8)

    [7,8; 8,0)

    Giá trị đại diện

    7,3

    7,5

    7,7

    7,9

    Số máy vi tính

    2

    4

    7

    5

    Thòi gian trung bình là:

    \overline{x} = \frac{2.7,3 + 4.7,5 +
7.7,7 + 5.7,9}{18} = \frac{23}{3} \approx 7,7 giờ

  • Câu 20: Vận dụng

    Ghi đáp án vào ô trống

    Cho bảng thống kê lượng mưa (đơn vị: mm) đo được vào tháng 6 từ năm 2023 đến 2024 tại khu vực A:

    341,4

    187,1

    242,2

    522,9

    251,4

    432,2

    200,7

    388,6

    258,4

    288,5

    298,1

    413,5

    413,5

    332

    421

    475

    400

    305

    520

    147

    Chia mẫu số liệu thành 4 nhóm với nhóm đầu tiên [140; 240). Tìm khoảng tứ phân vị của mẫu số liệu ghép nhóm?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho bảng thống kê lượng mưa (đơn vị: mm) đo được vào tháng 6 từ năm 2023 đến 2024 tại khu vực A:

    341,4

    187,1

    242,2

    522,9

    251,4

    432,2

    200,7

    388,6

    258,4

    288,5

    298,1

    413,5

    413,5

    332

    421

    475

    400

    305

    520

    147

    Chia mẫu số liệu thành 4 nhóm với nhóm đầu tiên [140; 240). Tìm khoảng tứ phân vị của mẫu số liệu ghép nhóm?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 21: Nhận biết

    Tìm khoảng biến thiên của mẫu số liệu

    Xác định cỡ mẫu của mẫu số liệu ghép nhóm sau?

    Đối tượng

    Tần số

    [150; 155)

    5

    [155; 160)

    18

    [160; 165)

    40

    [165; 170)

    26

    [170; 175)

    8

    [175; 180)

    3

    Khoảng biến thiên của mẫu số liệu ghép nhóm đã cho là R = 180 - 150 = 30.

  • Câu 22: Nhận biết

    Chọn đáp án đúng

    Đại lượng nào đo độ phân tán của nửa giữa của mẫu số liệu, không bị ảnh hưởng nhiều bởi các giá trị ngoại lệ trong mẫu số liệu?

    Khoảng tứ phân vị dùng để đo độ phân tán của nửa giữa của mẫu số liệu, không bị ảnh hưởng nhiều bởi các giá trị ngoại lệ trong mẫu số liệu.

  • Câu 23: Thông hiểu

    Tính độ lệch chuẩn của mẫu số liệu

    Năng suất lúa (đơn vị: tấn/ha) của một số thửa ruộng được ghi lại trong bảng sau:

    Năng suất

    [5,5; 5,7)

    [5,7; 5,9)

    [5,9; 6,1)

    [6,1; 6,3)

    [6,3; 6,5)

    [6,5; 6,7)

    Số thửa ruộng

    3

    4

    6

    5

    5

    2

    Xác định độ lệch chuẩn của mẫu số liệu ghép nhóm?

    Ta có:

    Năng suất

    [5,5; 5,7)

    [5,7; 5,9)

    [5,9; 6,1)

    [6,1; 6,3)

    [6,3; 6,5)

    [6,5; 6,7)

    Số thửa ruộng

    3

    4

    6

    5

    5

    2

    Tần số tích lũy

    3

    7

    13

    18

    23

    25

    Số trung bình của mẫu số liệu ghép nhóm:

    \overline{x} = \frac{3.5,6 + 4.5,8 +
6.6,0 + 5.6,2 + 5.6,4 + 2,6,6}{25} = 6,088

    Phương sai của mẫu số liệu ghép nhóm là:

    S^{2} = \frac{1}{25}\left( 3.5,6^{2} +
4.5,8^{2} + 6.6,0^{2} + 5.6,2^{2} + 5.6,4^{2} + 2,6,6^{2} ight) -
6,088^{2} \approx 0,086656

    Vậy độ lệch chuẩn của mẫu số liệu ghép nhóm là S = \sqrt{S^{2}} \approx 0,3

  • Câu 24: Thông hiểu

    Xác định trung vị của mẫu số liệu ghép nhóm

    Điểm thi giữa kỳ 1 môn toán của một lớp học sinh khối 11 thu được mẫu số liệu ghép nhóm sau:

    Điểm thi

    [1,5; 4,5)

    [4,5; 7,5)

    [7,5; 10,5)

    Số học sinh

    7

    18

    10

    Trung vị của mẫu số liệu ghép nhóm trên là

    Cỡ mẫu là n = 7 + 18 + 10 =
35.

    Gọi x_{1},x_{2},\ldots,x_{35} là số điểm của 35 học sinh và giả sử dãy này được sắp xếp theo thứ tự không giảm. Khi đó, trung vị là x_{18} thuộc nhóm \lbrack 4,5;7,5).

    Ta xác định được n = 35,n_{m} = 18,C =
7,u_{m} = 4,5,u_{m + 1} = 7,5.

    Trung vị của mẫu số liệu ghép nhóm là:

    M_{e} = 4,5 + \dfrac{\dfrac{35}{2} -7}{18}(7,5 - 4,5) = 6,25.

  • Câu 25: Thông hiểu

    Xét tính đúng sai của các nhận định

    Cho mẫu số liệu dưới dạng bảng sau

    Xét tính đúng/sai các mệnh đề sau:

    a. Giá trị đại diện của lớp \lbrack
36;41) là 38,5. Đúng||Sai

    b. Công thức tính số trung bình là \overline{x} = \frac{18,5.4 + 23,5.6 + 28,5.8 +
33,5.18 + 38,5.4}{40}. Đúng||Sai

    c. Số trung bình là 30. Đúng||Sai

    d. Phương sai của mẫu số liệu là S^2 = 32,75. Đúng||Sai

    Đáp án là:

    Cho mẫu số liệu dưới dạng bảng sau

    Xét tính đúng/sai các mệnh đề sau:

    a. Giá trị đại diện của lớp \lbrack
36;41) là 38,5. Đúng||Sai

    b. Công thức tính số trung bình là \overline{x} = \frac{18,5.4 + 23,5.6 + 28,5.8 +
33,5.18 + 38,5.4}{40}. Đúng||Sai

    c. Số trung bình là 30. Đúng||Sai

    d. Phương sai của mẫu số liệu là S^2 = 32,75. Đúng||Sai

    (a) giá trị đại diện của lớp \lbrack 36;41) là 38,5.

    » Chọn ĐÚNG.

    (b) Công thức tính số trung bình là

    \overline{x} = \frac{18,5.4 + 23,5.6 + 28,5.8 +
33,5.18 + 38,5.4}{40}.

    » Chọn ĐÚNG.

    (c) số trung bình là 30.

    số trung bình là \overline{x} =
\frac{18,5.4 + 23,5.6 + 28,5.8 + 33,5.18 + 38,5.4}{40} =
30.

    » Chọn ĐÚNG.

    (d) phương sai của mẫu số liệu là S^{2} = 32,75.

    Phương sai của mẫu số liệu là:

    S^{2} =\frac{1}{40}[4(18,5 - 30)^{2} + 6(23,5 - 30)^{2} + 8(28,5 -30)^{2}+ 18(33,5 - 30)^{2} + 4(38,5 - 30)^{2} ] =32,75

    » Chọn ĐÚNG.

  • Câu 26: Thông hiểu

    Tính phương sai của mẫu số liệu ghép nhóm

    Dũng là học sinh rất giỏi chơi rubik, bạn có thể giải nhiều loại khối rubik khác nhau. Trong một lần tập luyện giải khối rubik 3 \times 3, bạn Dũng đã tự thống kê lại thời gian giải rubik trong 25 lần giải liên tiếp ở bảng sau:

    Phương sai của mẫu số liệu ghép nhóm có giá trị gần nhất với giá trị nào dưới đây?

    Ta có:

    Giá trị đại diện

    9

    11

    13

    15

    17

    Số lần

    4

    _6

    8

    4

    3

    Số trung bình: \overline{x} = \frac{4.9 +
6.11 + 8.13 + 4.15 + 3.17}{25} = 12,68

    Phương sai:

    s^{2} = \lbrack 4.(9 - 12,68)^{2} +6.(11 - 12,68)^{2} + 8.(13 - 12,68)^{2}+ 4.(15 - 12,68)^{2} + 3.(17 -12,68)^{2}\rbrack.\frac{1}{25} \approx 5,98

  • Câu 27: Nhận biết

    Chọn đáp án đúng

    Điều tra cân nặng của 50 bé trai 6 tháng tuổi, người ta được kết quả ở bảng sau. Khoảng biến thiên của mẫu số liệu ghép nhóm là bao nhiêu?

    Nhóm

    [80;100)

    [100;120)

    [120;140)

    [140;160)

    [160;180)

    [180;200)

    Tần số

    3

    5

    6

    8

    6

    2

    n = 30

    Khoảng biến thiên của mẫu số liệu ghép nhóm là:

    200 – 80 = 120

  • Câu 28: Thông hiểu

    Xác định độ lệch chuẩn của mẫu số liệu đã cho

    Một bác tài xế thống kê lại độ dài quãng đường (đơn vị: km) bác đã lái xe mỗi ngày trong một tháng ở bảng sau:

    Độ dài quãng đường (km)Số ngày510942

    Độ dài quãng đường (km)

    \lbrack 50;\ 100) \lbrack 100;\ 150) \lbrack 150;\ 200) \lbrack 200;\ 250) \lbrack 250;\ 300)

    Số ngày

    5

    10

    9

    4

    2

    Độ lệch chuẩn của mẫu số liệu ghép nhóm là (làm tròn đến hàng phần trăm)

    + Cỡ mẫu: n = 30.

    Độ dài quãng đường (km)

    \lbrack 50;\ 100) \lbrack 100;\ 150) \lbrack 150;\ 200) \lbrack 200;\ 250) \lbrack 250;\ 300)

    Giá trị đại diện

    75

    125

    175

    225

    275

    Số ngày

    5

    10

    9

    4

    2

    + Số trung bình của mẫu số liệu ghép nhóm là:

    \overline{x} = \frac{75.5 + 125.10 +
175.9 + 225.4 + 275.2}{30} = 155.

    + Phương sai của mẫu số liệu ghép nhóm là

    S^{2} = \frac{1}{30}(75^{2}.5 +
125^{2}.10 + 175^{2}.9+ 225^{2}.4 + 275^{2}.2) - 155^{2} =
3100.

    + Độ lệch chuẩn của mẫu số liệu ghép nhóm là: S = \sqrt{3100} \approx 55,68.

  • Câu 29: Nhận biết

    Chọn công thức đúng

    Xét mẫu số liệu ghép nhóm cho ở bảng dưới đây. Gọi \overline{x} là số trung bình cộng của mẫu số liệu ghép nhóm. Độ lệch chuẩn của mẫu số liệu ghép nhóm đó được tính bằng công thức nào trong các công thức sau?

    Độ lệch chuẩn của mẫu số liệu ghép nhóm được tính bởi công thức:

    • s = \sqrt {\frac{{{n_1}{{\left( {{x_1} - \bar x} \right)}^2} + {n_2}{{\left( {{x_2} - \bar x} \right)}^2} + ... + {n_m}{{\left( {{x_m} - \bar x} \right)}^2}}}{n}} .
  • Câu 30: Nhận biết

    Tìm khoảng biến thiên

    Thống kê thời gian sử dụng mạng xã hội trong ngày của các bạn học sinh tổ 1 và tổ 2 lớp 12A thu được bảng sau:

    Tìm khoảng biến thiên R_{1},\
R_{2}cho thời gian sử dụng mạng xã hội của tổ 1 và tổ 2.

    Khoảng biến thiên của mẫu số liệu ghép nhóm của tổ 1: R_{1} = 90

    Khoảng biến thiên của mẫu số liệu ghép nhóm của tổ 2: R_{2} = 60

  • Câu 31: Thông hiểu

    Tính phương sai của mẫu số liệu

    Điểm kiểm tra khảo sát môn Tiếng Anh của lớp 11A được ghi trong bảng số liệu ghép nhóm như sau:

    Điểm

    [0; 20)

    [20; 40)

    [40; 60)

    [60; 80)

    [80; 100)

    Số học sinh

    5

    9

    12

    10

    6

    Phương sai của mẫu số liệu là:

    Ta có:

    Điểm

    [0; 20)

    [20; 40)

    [40; 60)

    [60; 80)

    [80; 100)

    Giá trị đại diện

    10

    30

    50

    70

    90

    Số học sinh

    5

    9

    12

    10

    6

    Số trung bình: \overline{x} = \frac{5.10
+ 9.30 + 12.50 + 10.70 + 6.90}{42} = \frac{360}{7}

    Phương sai: S^{2} = \frac{1}{42}\left(
5.10^{2} + 9.30^{2} + 12.50^{2} + 10.70^{2} + 6.90^{2} ight) - \left(
\frac{360}{7} ight)^{2} \approx 598

  • Câu 32: Thông hiểu

    Xác định tính đúng sai của các nhận định

    Cho bảng mẫu số liệu ghép nhóm về điểm môn Toán của hai lớp 12A12B được cho như sau:

    Trong các khẳng định sau, khẳng định nào đúng, khẳng định nào sai?

    a) Khoảng biến thiên cho điểm môn Toán của lớp 12A7. Sai||Đúng

    b) Khoảng biến thiên cho điểm môn Toán của lớp 12B6. Đúng||Sai

    c) Nhóm chứa tứ phân vị thứ nhất của lớp 12A là nhóm \lbrack 6;7). Đúng||Sai

    d) Nhóm chứa tứ phân vị thứ ba của lớp 12B là nhóm \lbrack 7;8). Sai||Đúng

    Đáp án là:

    Cho bảng mẫu số liệu ghép nhóm về điểm môn Toán của hai lớp 12A12B được cho như sau:

    Trong các khẳng định sau, khẳng định nào đúng, khẳng định nào sai?

    a) Khoảng biến thiên cho điểm môn Toán của lớp 12A7. Sai||Đúng

    b) Khoảng biến thiên cho điểm môn Toán của lớp 12B6. Đúng||Sai

    c) Nhóm chứa tứ phân vị thứ nhất của lớp 12A là nhóm \lbrack 6;7). Đúng||Sai

    d) Nhóm chứa tứ phân vị thứ ba của lớp 12B là nhóm \lbrack 7;8). Sai||Đúng

    a) Ta có khoảng biến thiên của điểm môn Toán của lớp 12AR_{1}
= 10 - 4 = 6.

    Mệnh đề sai.

    b) Khoảng biến thiên cho điểm môn Toán của lớp 12BR_{2}
= 9 - 3 = 6.

    Mệnh đề đúng.

    c) Ta có n = 1 + 3 + 13 + 11 + 5 + 3 =
36.

    Gọi x_{1},...,\ x_{36} là điểm của 36 học sinh lớp 12A được sắp xếp theo thứ tự tăng dần. Tứ phân vị thứ ba có số liệu gốc là x_{9} nên nhóm chứa phân vị thứ nhất là nhóm \lbrack 6;7).

    Mệnh đề đúng.

    d) Ta có n = 1 + 3 + 13 + 11 + 5 + 3 =
36. Gọi x_{1},...,\ x_{36} là điểm của 36 học sinh lớp 12B được sắp xếp theo thứ tự tăng dần.

    Tứ phân vị thứ ba có số liệu gốc là x_{27} nên nhóm chứa phân vị thứ ba là nhóm \lbrack 6;7).

    Mệnh đề sai.

  • Câu 33: Nhận biết

    Tính chiều cao trung bình

    Kết quả đo chiều cao của 50 cây keo trong vườn được thống kê lại trong bảng sau:

    Chiều cao (cm)

    [120; 122)

    [122; 124)

    [124; 126)

    [126; 128)

    [128; 130)

    Số cây

    16

    4

    3

    6

    21

    Tính chiều cao trung bình của 50 cây keo trên?

    Cỡ mẫu N = 50

    Chiều cao (cm)

    [120; 122)

    [122; 124)

    [124; 126)

    [126; 128)

    [128; 130)

    Giá trị đại diện

    121

    123

    125

    127

    129

    Số cây

    16

    4

    3

    6

    21

    Chiều cao trung bình là:

    \overline{x} = \frac{16.121 + 4.123 +
3.125 + 6.127 + 21.129}{50} = 125,28.

  • Câu 34: Nhận biết

    Tính khoảng biến thiên

    Thống kê chiều cao (đơn vị: cm) của các bạn học sinh nữ của lớp 12A ở bảng sau:

    Chiều cao

    [150; 155)

    [150; 155)

    [150; 155)

    [150; 155)

    [150; 155)

    Số học sinh

    2

    4

    10

    0

    1

    Xác định khoảng biến thiên của chiều cao của các bạn học sinh nữ lớp 12A?

    Khoảng biến thiên của chiều cao của các bạn học sinh nữ lớp 12A là 175 – 155 = 20 (cm)

  • Câu 35: Nhận biết

    Tìm khoảng biến thiên của mẫu số liệu gốc

    Thời gian hoàn thành bài kiểm tra của học sinh lớp 12A được cho trong bảng sau:

    Thời gian (phút)

    [25; 30)

    [30; 35)

    [35; 40)

    [40; 45)

    Số học sinh

    8

    16

    4

    2

    Nếu biết học sinh hoàn thành bài kiểm tra sớm nhất mất 27 phút và muộn nhất mất 43 phút thì khoảng biến thiên của mẫu số liệu gốc bằng bao nhiêu?

    Khoảng biến thiên của mẫu số liệu gốc là R = 43 - 27 = 16

  • Câu 36: Vận dụng

    Xét tính đúng sai của các khẳng định

    Khảo sát thời gian dành cho việc tự học ở nhà mỗi ngày của học sinh lớp 12A1 và 12A2 của trường trung học phổ thông X, thu được mẫu số liệu ghép nhóm sau:

    s

    Xét tính đúng sai của các kết luận sau?

    a) Khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian dành cho việc tự học ở nhà mỗi ngày của học sinh lớp 12A2 là 180 phút. Đúng||Sai

    b) Khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian dành cho việc tự học ở nhà mỗi ngày của học sinh lớp 12A1 và 12A2 bằng nhau. Đúng||Sai

    c) Khoảng tứ phân vị của mẫu số liệu ghép nhóm về thời gian dành cho việc tự học ở nhà mỗi ngày của học sinh lớp 12A1 là 65 phút. Đúng||Sai

    d) Dựa vào khoảng tứ phân vị thì thời gian dành cho việc tự học ở nhà mỗi ngày của học sinh lớp 12A1 phân tán hơn so với lớp 12A2. Sai||Đúng

    Đáp án là:

    Khảo sát thời gian dành cho việc tự học ở nhà mỗi ngày của học sinh lớp 12A1 và 12A2 của trường trung học phổ thông X, thu được mẫu số liệu ghép nhóm sau:

    s

    Xét tính đúng sai của các kết luận sau?

    a) Khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian dành cho việc tự học ở nhà mỗi ngày của học sinh lớp 12A2 là 180 phút. Đúng||Sai

    b) Khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian dành cho việc tự học ở nhà mỗi ngày của học sinh lớp 12A1 và 12A2 bằng nhau. Đúng||Sai

    c) Khoảng tứ phân vị của mẫu số liệu ghép nhóm về thời gian dành cho việc tự học ở nhà mỗi ngày của học sinh lớp 12A1 là 65 phút. Đúng||Sai

    d) Dựa vào khoảng tứ phân vị thì thời gian dành cho việc tự học ở nhà mỗi ngày của học sinh lớp 12A1 phân tán hơn so với lớp 12A2. Sai||Đúng

    a) Đúng

    Khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian dành cho việc tự học ở nhà mỗi ngày của học sinh lớp 12A2 là 180 - 0 = 180 (phút).

    b) Đúng

    Khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian dành cho việc tự học ở nhà mỗi ngày của học sinh lớp 12A1 là 240 - 60 = 180(phút).

    Nên khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian dành cho việc tự học ở nhà mỗi ngày của học sinh lớp 12A1 và 12A2 bằng nhau.

    c) Đúng

    Xét mẫu số liệu ghép nhóm của lớp 12A1:

    Cỡ mẫu là: n = 5 + 20 + 15 =
40

    Gọi x_{1},\ ...,x_{40} là thời gian dành cho việc tự học ở nhà mỗi ngày của học sinh lớp 12A1 và giả sử dãy số liệu gốc này đã được sắp xếp theo thứ tự tăng dần.

    Tứ phân vị thứ nhất của mẫu số liệu gốc là \frac{x_{10} + x_{11}}{2}.

    Do x_{10}x_{11} đều thuộc nhóm \lbrack 120;180) nên nhóm này chứa Q_{1}.

    Q_{1} = 120 + \frac{\frac{40}{4} -
5}{20}.60 = 135

    Tứ phân vị thứ ba của mẫu số liệu gốc là \frac{x_{30} + x_{31}}{2}.

    Do x_{30}x_{31} đều thuộc nhóm \lbrack 180;240) nên nhóm này chứa Q_{3}.

    Q_{3} = 180 + \frac{\frac{3.40}{4} -
25}{15}.60 = 200

    Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm về thời gian dành cho việc tự học ở nhà mỗi ngày của học sinh lớp 12A1 là:

    \Delta Q = Q_{3} - Q_{1} = 200 - 135 =
65 phút.

    d) Sai

    Xét mẫu số liệu ghép nhóm của lớp 12A2:

    Cỡ mẫu là: n = 9 + 12 + 18 =
39

    Gọi y_{1},...,y_{39} là thời gian dành cho việc tự học ở nhà mỗi ngày của học sinh lớp 12A2 và giả sử dãy số liệu gốc này đã được sắp xếp theo thứ tự tăng dần.

    Tứ phân vị thứ nhất của mẫu số liệu gốc là y_{ 10}.

    Do y_{10} thuộc nhóm \lbrack 60;120) nên nhóm này chứa Q_{1}.

    Q_{1} = 60 + \frac{\frac{39}{4} -
9}{12}.60 = 63,75

    Tứ phân vị thứ ba của mẫu số liệu gốc là y_{30}.

    Do y_{30} thuộc nhóm \lbrack 120;180) nên nhóm này chứa Q_{3}.

    Q_{3} = 120 + \frac{\frac{3.39}{4} -
21}{18}.60 = 147,5

    Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm về thời gian dành cho việc tự học ở nhà mỗi ngày của học sinh lớp 12A2 là:

    \Delta Q = Q_{3} - Q_{1} = 147,5 - 63,75
= 83,75

    Dựa vào khoảng tứ phân vị thì thời gian dành cho việc tự học ở nhà mỗi ngày của học sinh lớp 12A2 phân tán hơn so với lớp 12A1.

  • Câu 37: Nhận biết

    Tìm mốt của mẫu số liệu ghép nhóm

    Cho mẫu số liệu điểm môn Toán của một nhóm học sinh như sau:

    Điểm

    \lbrack 6;7)

    \lbrack 7;8)

    \lbrack 8;9)

    \lbrack 9;10brack

    Số học sinh

    8

    7

    10

    5

    Mốt của mẫu số liệu (kết quả làm tròn đến hàng phần trăm) là:

    Nhóm chứa Mốt là \lbrack
8;9).

    Mốt của mẫu số liệu là M_{e} = 8 +
\frac{10 - 7}{10 - 7 + 10 - 5}(9 - 8) \approx 8,38

  • Câu 38: Nhận biết

    Chọn đáp án đúng

    Cho mẫu số liệu ghép nhóm với bộ ba tứ phân vị lần lượt là Q_{1} = 11,5; Q_{2} = 14,5; Q_{3} = 21,3. Khi đó khoảng tứ phân vị của mẫu số liệu trên là

    Khoảng tứ phân vị của mẫu số liệu là: \Delta Q = Q_{3} - Q_{1} = 21,3 - 11,5 =
9,8.

  • Câu 39: Thông hiểu

    Tính khoảng tứ phân vị của mẫu số liệu

    Kiểm tra điện lượng của một số viên pin tiểu do một hãng sản xuất thu được kết quả sau.

    Điện lượng (nghìn mAh)

    [0,9; 0,95)

    [0,95; 1,0)

    [0,1; 1,05)

    [1,05; 1,1)

    [1,1; 1,15)

    Số viên pin

    10

    20

    35

    15

    5

    Hãy tìm khoảng tứ phân vị của mẫu số liệu ghép nhóm này? (Làm tròn các kết quả đến hàng phần trăm)

    Ta có:

    Điện lượng (nghìn mAh)

    [0,9; 0,95)

    [0,95; 1,0)

    [1,0; 1,05)

    [1,05; 1,1)

    [1,1; 1,15)

    Số viên pin

    10

    20

    35

    15

    5

    Tần số tích lũy

    10

    30

    65

    80

    85

    Cỡ mẫu N = 85

    \frac{N}{4} = \frac{85}{4}

    => Nhóm chứa Q_{1} là [0,95; 1,0)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 0,95;m = 10,f = 20;c = 1
- 0,95 = 0,05

    \Rightarrow {Q_1} = l + \dfrac{{\dfrac{N}{4} - m}}{f}.c = 0,95 + \dfrac{{\dfrac{{85}}{4} - 10}}{{20}}.0,05 \approx 0,98

    \frac{3N}{4} = \frac{3.85}{4} =
\frac{255}{4}

    => Nhóm chứa Q_{3} là [1,0; 1,05)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 1,0;m = 30,f = 35;c =
1,05 - 1,0 = 0,05

    \Rightarrow Q_{3} = l +\dfrac{\dfrac{3N}{4} - m}{f}.c = 1,0 + \dfrac{\dfrac{255}{4} - 30}{35}.0,05\approx 1,05.

    Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm là \Delta_{Q} = Q_{3} - Q_{1} \approx
0,07

  • Câu 40: Nhận biết

    Chọn đáp án đúng

    Cho mẫu số liệu ghép nhóm thống kê có phương sai bằng là 4. Độ lệch chuẩn của mẫu số liệu ghép nhóm là:

    Độ lệch chuẩn là: s = \sqrt{4} =
2.

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 3 Các số đặc trưng đo mức độ phân tán cho mẫu số liệu ghép nhóm CTST Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo