Chọn đáp án đúng
Cho hai biến cố
có
. Xác định
?
Theo công thức tính xác suất có điều kiện ta có:
Vì và
là hai biến cố xung khắc và
nên theo tính chất của xác suất ta có:
Cùng nhau thử sức với bài kiểm tra 15 phút Toán 12 Chân trời sáng tạo Chương 6 Xác suất có điều kiện nhé!
Chọn đáp án đúng
Cho hai biến cố
có
. Xác định
?
Theo công thức tính xác suất có điều kiện ta có:
Vì và
là hai biến cố xung khắc và
nên theo tính chất của xác suất ta có:
Tính xác suất của biến cố
Gieo lần lượt hai con xúc xắc cân đối và đồng chất. Tính xác suất để tổng số chấm xuất hiện trên hai con xúc xắc bằng 6. Biết rằng con xúc xắc thứ nhất xuất hiện mặt 4 chấm.
Gọi A là biến cố “con xúc xắc thứ nhất xuất hiện mặt 4 chấm”.
Gọi B là biến cố “Tổng số chấm xuất hiện trên 2 con xúc xắc bằng 6”.
Khi con xúc xắc thứ nhất đã xuất hiện mặt 4 chấm thì thì lần thứ hai xuất hiện 2 chấm thì tổng hai lần xuất hiện là 6 chấm thì .
Xét tính đúng sai của các kết luận
Một kho hàng có
sản phẩm loại I và
sản phẩm loại II, trong đó có
sản phẩm loại I bị hỏng,
sản phẩm loại II bị hỏng. Các sản phẩm có kích thước và hình dạng như nhau. Một khách hàng chọn ngẫu nhiên 1 sản phẩm. Xét các biến cố:
A: "Khách hàng chọn được sản phẩm loại I ";
: "Khách hàng chọn được sản phẩm không bị hỏng".
Các mệnh đề sau đúng hay sai?
a)
. Đúng||Sai
b)
. Đúng||Sai
c)
. Đúng||Sai
d)
. Sai||Đúng
Một kho hàng có
sản phẩm loại I và
sản phẩm loại II, trong đó có
sản phẩm loại I bị hỏng,
sản phẩm loại II bị hỏng. Các sản phẩm có kích thước và hình dạng như nhau. Một khách hàng chọn ngẫu nhiên 1 sản phẩm. Xét các biến cố:
A: "Khách hàng chọn được sản phẩm loại I ";
: "Khách hàng chọn được sản phẩm không bị hỏng".
Các mệnh đề sau đúng hay sai?
a)
. Đúng||Sai
b)
. Đúng||Sai
c)
. Đúng||Sai
d)
. Sai||Đúng
a) Đúng
Ta có:.
b) Đúng
Ta có:.
c) Đúng
Ta có:.
Theo công thức xác suất toàn phần, ta có:
.
d) Sai
Theo công thức Bayes, ta có: .
Tính xác suất có điều kiện
Trong hộp có
bút bi xanh và
bút bi đen, các chiếc bút có cùng kích thước và khối lượng. An lấy ngẫu nhiên
chiếc bút từ trong hộp, không trả lại. Sau đó bạn Bình lấy ngẫu nhiên một trong
chiếc bút còn lại. Tính xác suất để An lấy được bút xanh và Bình lấy được bút đen.
Xét hai biến cố sau:
A: “An lấy được bút xanh.”
B: “Bình lấy được bút đen.”
Ta cần tính . Vì
nên
.
Nếu A xảy ra tức là An lấy được bút xanh thì trong hộp còn bút bi với
bút đen. Vậy
.
Theo công thức nhân xác suất: .
Tính xác suất để chọn được phế phẩm
Hai máy tự động sản xuất cùng một loại chi tiết, trong đó máy I sản xuất
máy II sản xuất
tổng sản lượng. Tỉ lệ phế phẩm của các máy lần lượt là
và
Chọn ngẫu nhiên
sản phẩm từ kho. Tính xác suất để chọn được phế phẩm?
Gọi là biến cố “Sản phẩm được chọn do máy I sản xuất”
là biến cố “Sản phẩm được chọn do máy II sản xuất”
B là biến cố “Sản phẩm được chọn là phế phẩm”
Ta có:
,
,
,
Xét tính đúng sai của các khẳng định
Bạn An đang làm đề ôn tập theo ba mức độ dễ, trung bình và khó. Xác suất để An hoàn thành câu dễ là
; hoàn thành câu trung bình là
và hoàn thành câu khó là
. Làm đúng mỗi một câu dễ An được
điểm, làm đúng mỗi câu trung bình An được
điểm và làm đúng mỗi câu khó An được
điểm. Hãy cho biết các khẳng định sau đây đúng hay sai?
a) Xác suất để An làm ba câu thuộc ba loại và đúng cả ba câu là
. Sai||Đúng
b) Khi An làm 3 câu thuộc 3 loại khác nhau. Xác suất để An làm đúng 2 trong số 3 câu là
. Sai||Đúng
c) Khi An làm 3 câu thì xác suất để An làm đúng 3 câu đủ ba loại cao hơn xác suất An làm sai 3 câu ở mức độ trung bình. Đúng||Sai
d) Xác suất để An làm 5 câu và đạt đúng 2 điểm lớn hơn
. Sai||Đúng
Bạn An đang làm đề ôn tập theo ba mức độ dễ, trung bình và khó. Xác suất để An hoàn thành câu dễ là
; hoàn thành câu trung bình là
và hoàn thành câu khó là
. Làm đúng mỗi một câu dễ An được
điểm, làm đúng mỗi câu trung bình An được
điểm và làm đúng mỗi câu khó An được
điểm. Hãy cho biết các khẳng định sau đây đúng hay sai?
a) Xác suất để An làm ba câu thuộc ba loại và đúng cả ba câu là
. Sai||Đúng
b) Khi An làm 3 câu thuộc 3 loại khác nhau. Xác suất để An làm đúng 2 trong số 3 câu là
. Sai||Đúng
c) Khi An làm 3 câu thì xác suất để An làm đúng 3 câu đủ ba loại cao hơn xác suất An làm sai 3 câu ở mức độ trung bình. Đúng||Sai
d) Xác suất để An làm 5 câu và đạt đúng 2 điểm lớn hơn
. Sai||Đúng
Gọi A là biến cố An làm đúng câu dễ
B là biến cố An làm đúng câu trung bình
C là biến cố An làm đúng câu khó.
Khi đó A, B, C độc lập với nhau.
a) Xác suất để An làm ba câu thuộc ba loại trên và đúng cả ba câu là:
. Khẳng định Sai.
b) Xác suất để An làm đúng 2 trong số 3 câu là:
Khẳng định Sai.
c) Xác suất để An làm đúng 3 câu đủ ba loại là:
Xác suất An làm sai 3 câu mức độ trung bình. .
Khẳng định Đúng.
d) Để An làm 5 câu và đạt đúng 2 điểm có các trường hợp sau:
TH1: Đúng 4 câu khó và câu còn lại sai
TH2: Đúng 3 câu khó và đúng 2 câu trung bình
Vậy xác suất cần tìm là
Khẳng định Sai.
Chọn đáp án đúng
Cho hai biến cố
với
. Giá trị
bằng:
Ta có:
Theo công thức xác suất toàn phần, ta có:
Kết luận đúng
Giả sử
và
là hai biến cố ngẫu nhiên thỏa mãn
và
. Khi đó
Ta có:
Tính xác suất có điều kiện
Cho hai biến cố
và
là hai biến cố độc lập, với
,
. Tính
.
Theo bài ra ta có:
và
là hai biến cố độc lập nên:
Xác định giá trị P(A)
Cho hai biến cố
và
với
,
,
. Tính
.
Ta có .
Công thức xác suất toàn phần:
.
Tìm kết quả đúng
Cho hai biến cố
và
, với
. Tính
?
Ta có:
.
Ghi kết quả bài toán vào ô trống
Áo sơ mi G9 trước khi xuất khẩu sang Mỹ phải qua 2 lần kiểm tra, nếu cả hai lần đều đạt thì chiếc áo đó mới đủ tiêu chuẩn xuất khẩu. Biết rằng bình quân 95% sản phẩm làm ra qua được lần kiểm tra thứ nhất, và 92% sản phẩm qua được lần kiểm tra đầu sẽ tiếp tục qua được lần kiểm tra thứ hai. Xác suất để 1 chiếc áo sơ mi đủ tiêu chuẩn xuất khẩu là
với
là phân số tối giản. Tính ![]()
Đáp án: 937
Áo sơ mi G9 trước khi xuất khẩu sang Mỹ phải qua 2 lần kiểm tra, nếu cả hai lần đều đạt thì chiếc áo đó mới đủ tiêu chuẩn xuất khẩu. Biết rằng bình quân 95% sản phẩm làm ra qua được lần kiểm tra thứ nhất, và 92% sản phẩm qua được lần kiểm tra đầu sẽ tiếp tục qua được lần kiểm tra thứ hai. Xác suất để 1 chiếc áo sơ mi đủ tiêu chuẩn xuất khẩu là
với
là phân số tối giản. Tính ![]()
Đáp án: 937
Gọi A là biến cố “qua được lần kiểm tra đầu tiên”
Gọi B là biến cố “qua được lần kiểm tra thứ 2”
Chiếc áo sơ mi đủ tiêu chuẩn xuất khẩu phải thỏa mãn 2 điều kiện A và B hay ta đi tính
Ta có:
Suy ra
Tính P(B|A)
Cho hai biến cố
và
, với
,
,
. Tính
.
Ta có: .
Công thức Bayes:
.
Tính xác suất
Cho hai biến cố
với
. Tính
?
Ta có:
Chọn kết quả đúng
Một trạm chỉ phát hai tín hiệu A và B với xác suất tương ứng
và
. do có nhiễu trên đường truyền nên
tín hiệu A bị méo và thu được như tín hiệu B còn
tín hiệu B bị méo và thu được như A. Tìm xác suất thu được tín hiệu A?
Gọi A, B lần lượt là "phát ra tín hiệu A, B".
Khi đó A, B tạo thành hệ đầy đủ.
Gọi C là "thu được tín hiệu A". Khi đó:
Áp dụng công thức xác suất toàn phần ta có:
.
Ta cần tính P(A|C). Áp dụng công thức Bayes ta có:
Tính xác suất theo yêu cầu
Một loại linh kiện do hai nhà máy số I và số II cùng sản xuất. Tỉ lệ phế phẩm của các nhà máy I và II lần lượt là
và
. Trong một lô linh kiện để lẫn lộn
sản phẩm của nhà máy số I và 120 sản phẩm của nhà máy số II. Một khách hàng lấy ngẫu nhiên một linh kiện từ lô hàng đó. Giả sử linh kiện được lấy ra là linh kiện phế phẩm. Xác suất linh kiện đó do nhà máy nào sản xuất là cao hơn?
Xét hai biến cố sau: : ‘‘Linh kiện lấy ra do nhà máy I sản xuất”,
: ‘‘Linh kiện lấy ra là phế phẩm”
Trong lô linh kiện có tổng cộng linh kiện nên
;
.
Vì tỉ lệ phế phẩm của các nhà máy I và II lần lượt là và
nên
Khi đó: .
Ta có sơ đồ cây:

Khi linh kiện lấy ra là phế phẩm thì xác suất linh kiện đó do nhà máy I sản xuất là và xác suất linh kiện đó do nhà máy II sản xuất là
.
Áp dụng công thức Bayes, ta có:
.
Suy ra .
Vậy xác suất linh kiện đó do nhà máy II sản xuất là cao hơn.
Chọn đáp án thích hợp
Kết quả khảo sát tại một xã cho thấy có
cư dân hút thuốc lá. Tỉ lệ cư dân thường xuyên gặp các vấn đề sức khoẻ về đường hô hấp trong số những người hút thuốc lá và không hút thuốc lá lần lượt là
và
, được biểu diễn ở sơ đồ hình cây sau:

Nếu ta gặp một cư dân của xã thường xuyên gặp các vấn đề sức khoẻ về đường hô hấp thì xác suất người đó có hút thuốc lá là bao nhiêu?
Giả sử ta gặp một cư dân của xã, gọi là biến cố "Người đó có hút thuốc lá" và
là biến cố "Người đó thường xuyên gặp các vấn đề sức khoẻ về đường hô hấp". Ta có sơ đồ hình cây sau:

Ta có .
Theo công thức Bayes, ta có .
Tính xác suất của biến cố
Một công ty may mặc có hai hệ thống máy chạy độc lập với nhau. Xác suất để hệ thống máy thứ nhất hoạt động tốt là 95%, xác suất để hệ thống máy thứ hai hoạt động tốt là 85%. Công ty chỉ có thể hoàn thành đơn hàng đúng hạn nếu ít nhất một trong hai hệ thống máy hoạt động tốt. Xác suất để công ty hoàn thành đúng hạn là
Gọi A là biến cố: "Hệ thống máy thứ nhất hoạt động tốt".
B là biến cố: "Hệ thống máy thứ hai hoạt động tốt".
C là biến cố: "Công ty hoàn thành đúng hạn".
Ta có là biến cố: "Hệ thống máy thứ nhất hoạt động không tốt".
là biến cố: "Hệ thống máy thứ hai hoạt động không tốt".
là biến cố: "Công ty hoàn thành không đúng hạn".
Vì và
là hai biến cố độc lập nên
và
là hai biến cố độc lập
Mà
.
Chọn công thức đúng
Nếu
là hai biến cố bất kì thì
Công thức cần tìm là:
Xác định tính đúng sai của từng phương án
Cho hai biến cố
và
, với
.
a)
Đúng||Sai
b)
Đúng||Sai
c)
Sai|| Đúng
d)
Sai|| Đúng
Cho hai biến cố
và
, với
.
a)
Đúng||Sai
b)
Đúng||Sai
c)
Sai|| Đúng
d)
Sai|| Đúng
a) Ta có:
b)
c)
d)
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: