Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề kiểm tra 45 phút Chương 2 Vectơ và hệ tọa độ trong không gian CTST

Mô tả thêm:

Hãy cùng thử sức kiểm tra đánh giá các kiến thức tổng quan với bài kiểm tra phút Chương 2: Vectơ và hệ tọa độ trong không gian Toán 12 sách Chân trời sáng tạo các em nhé!

  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Nhận biết

    Chọn đáp án đúng

    Điều kiện cần và đủ để ba vectơ \overrightarrow{a};\overrightarrow{b};\overrightarrow{c} không đồng phẳng là:

    Ba vectơ \overrightarrow{a};\overrightarrow{b};\overrightarrow{c} đồng phẳng khi và chỉ khi giá của chúng cùng song song với một mặt phẳng.

  • Câu 2: Nhận biết

    Xác định tọa độ vectơ

    Trong không gian Oxyz, cho \overrightarrow{a} = 2\overrightarrow{i} +
\overrightarrow{k} - 3\overrightarrow{j}. Tọa độ vectơ \overrightarrow{a} là:

    Ta có: \overrightarrow{i} =
(1;0;0);\overrightarrow{j} = (0;1;0);\overrightarrow{k} =
(0;0;1)

    Theo bài ra ta có: \overrightarrow{a} =
2\overrightarrow{i} + \overrightarrow{k} - 3\overrightarrow{j} suy ra tọa độ vectơ \overrightarrow{a} = (2;
- 3;1).

  • Câu 3: Vận dụng

    Chọn đáp án đúng

    Trong không gian với hệ trục tọa độ Oxyz cho vectơ \overrightarrow{OM} có độ dài \left| \overrightarrow{OM} ight| = 1, gọi \alpha;\beta;\gamma lần lượt là góc tạo bởi ba vectơ đơn vị \overrightarrow{i};\overrightarrow{j};\overrightarrow{k} trên ba trục Ox;Oy;Oz và vectơ \overrightarrow{OM}. Khi đó tọa độ điểm M là:

    Gọi M(x;y;z) \Rightarrow
\overrightarrow{OM} = (x;y;z)\overrightarrow{i} = (1;0;0),\overrightarrow{j} =
(0;1;0),\overrightarrow{k} = (0;0;1)

    \left\{ \begin{matrix}\cos\alpha = \dfrac{\overrightarrow{OM}.\overrightarrow{i}}{\left|\overrightarrow{OM} ight|.\left| \overrightarrow{i} ight|} = x \\\cos\beta = \dfrac{\overrightarrow{OM}.\overrightarrow{j}}{\left|\overrightarrow{OM} ight|.\left| \overrightarrow{j} ight|} = y \\\cos\gamma = \dfrac{\overrightarrow{OM}.\overrightarrow{k}}{\left|\overrightarrow{OM} ight|.\left| \overrightarrow{k} ight|} = z \\\end{matrix} ight.\  \Rightarrow M\left( \cos\alpha;\cos\beta;\cos\gammaight)

  • Câu 4: Nhận biết

    Tìm tọa độ hình chiếu điểm A

    Trong không gian Oxyz, hình chiếu vuông góc của điểm A(1\ ;\ 2\ ;\
3) trên mặt phẳng (Oxz)

    Tọa độ hình chiếu của điểm A trên mặt phẳng (Oxz) là: (1;0;3).

  • Câu 5: Thông hiểu

    Chọn đáp án đúng

    Cho lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi G là trọng tâm tam giác AB'C. Khẳng định nào sau đây đúng?

    Hình vẽ minh họa

    Ta có:

    \overrightarrow{BA} +
\overrightarrow{BC} + \overrightarrow{BB'} =
\overrightarrow{BD'}

    Do G là trọng tâm tam giác AB'C suy ra \overrightarrow{BA} + \overrightarrow{BC} +
\overrightarrow{BB'} = 3\overrightarrow{BG} \Leftrightarrow
\overrightarrow{BD'} = 3\overrightarrow{BG}

  • Câu 6: Thông hiểu

    Chọn đáp án đúng

    Trong không gian Oxyz, cho tọa độ ba điểm A( - 1; -
2;3),B(0;3;1),C(4;2;2). Tính cosin góc \widehat{BAC}?

    Ta có: \left\{ \begin{matrix}
\overrightarrow{AB} = (1;5; - 2) \\
\overrightarrow{AC} = (5;4; - 1) \\
\end{matrix} ight..

    \cos\widehat{BAC} = \cos\left(
\overrightarrow{AB};\overrightarrow{AC} ight) =
\frac{\overrightarrow{AB}.\overrightarrow{AC}}{\left|
\overrightarrow{AB} ight|.\left| \overrightarrow{AC} ight|} =
\frac{5 + 20 + 2}{\sqrt{30}.\sqrt{42}} =
\frac{9}{2\sqrt{35}}

  • Câu 7: Nhận biết

    Chọn mệnh đề sai

    Mệnh đề nào sau đây sai?

    Hai vectơ có độ dài bằng nhau và cùng hướng thì hai vectơ đó bằng nhau.

  • Câu 8: Vận dụng cao

    Tìm tọa độ tâm đường tròn nội tiếp tam giác

    Trong không gian Oxyz, cho hai điểm M(2;2;1),N\left( -
\frac{8}{3};\frac{4}{3};\frac{8}{3} ight). Tọa độ tâm đường tròn nội tiếp tam giác OMN là:

    Ta có bài toán sau

    Trong tam giác ABC, gọi I là tâm đường nội tiếp tam giác ABC ta có: a\overrightarrow{IA} + b\overrightarrow{IB}
+ c\overrightarrow{IC} = \overrightarrow{0} với BC = a;AC = b;AB = c

    Hình vẽ minh họa

    Gọi A’ là chân đường phân giác kẻ từ A

    \Rightarrow \overrightarrow{BA} =
\frac{c}{b}\overrightarrow{A'C} \Leftrightarrow
b\overrightarrow{BA'} + c\overrightarrow{CA'} =
\overrightarrow{0}\ \ \ (1)

    \overrightarrow{IA} =\dfrac{c}{A'B}\overrightarrow{A'I} = \dfrac{c}{\dfrac{ac}{b +c}}\overrightarrow{A'I} = \dfrac{b +c}{a}\overrightarrow{A'I}

    \Leftrightarrow a\overrightarrow{IA} +
(b + c)\overrightarrow{IA'} = \overrightarrow{0}

    \Leftrightarrow a\overrightarrow{IA} +
b\overrightarrow{IB} + c\overrightarrow{IC} + b\overrightarrow{BA'}
+ c\overrightarrow{CA'} = \overrightarrow{0}

    \Leftrightarrow a\overrightarrow{IA} +
b\overrightarrow{IB} + c\overrightarrow{IC} =
\overrightarrow{0}

    Áp dụng công thức trong tam giác OMN ta có:

    OM.\overrightarrow{IN} +
ON.\overrightarrow{IM} + MN.\overrightarrow{IO} =
\overrightarrow{0}

    \Rightarrow \left\{ \begin{matrix}x_{I} = \dfrac{OM.x_{n} + ON.x_{M} + MN.x_{O}}{OM + ON + MN} = 0 \\y_{I} = \dfrac{OM.y_{n} + ON.y_{M} + MN.y_{O}}{OM + ON + MN} = 1 \\z_{I} = \dfrac{OM.z_{n} + ON.z_{M} + MN.z_{O}}{OM + ON + MN} = 1 \\\end{matrix} ight.\  \Rightarrow I(0;1;1)

    Vậy đáp án cần tìm là (0;1;1)

  • Câu 9: Vận dụng cao

    Ghi đáp án đúng vào ô trống

    Cho tam giác ABC có ba góc đều là góc nhọn. Gọi Glà trọng tâm tam giác ABC, Hlà chân đường cao hạ từ A xuống cạnh BC thỏa mãn: \overrightarrow{BH} =\frac{1}{5}\overrightarrow{BC}. Điểm I đi động trên BC sao cho \overrightarrow{BI} =\frac{m}{n}\overrightarrow{BC}(Trong đó \frac{m}{n} là phân số tối giản, m,\ n\mathbb{\in Z},\ n eq 0). Tính giá trị biểu thức Q = m + n khi độ dài véc tơ \overrightarrow{IA} +\overrightarrow{GC} đạt giá trị nhỏ nhất.

    Đáp án: 9

    Đáp án là:

    Cho tam giác ABC có ba góc đều là góc nhọn. Gọi Glà trọng tâm tam giác ABC, Hlà chân đường cao hạ từ A xuống cạnh BC thỏa mãn: \overrightarrow{BH} =\frac{1}{5}\overrightarrow{BC}. Điểm I đi động trên BC sao cho \overrightarrow{BI} =\frac{m}{n}\overrightarrow{BC}(Trong đó \frac{m}{n} là phân số tối giản, m,\ n\mathbb{\in Z},\ n eq 0). Tính giá trị biểu thức Q = m + n khi độ dài véc tơ \overrightarrow{IA} +\overrightarrow{GC} đạt giá trị nhỏ nhất.

    Đáp án: 9

    Hình vẽ minh họa

    Gọi Plà trung điểm của AC, E là điểm đối xứng của P qua G.

    Khi đó tứ giác AGCE có hai đường chéo cắt nhau tại trung điểm của mỗi đường nên AGCE là hình bình hành.

    \Rightarrow \overrightarrow{GC} =\overrightarrow{AE}.

    + Dựng EF\bot BC\ \ (F \inBC).

    Ta có: \left| \overrightarrow{IA} +\overrightarrow{GC} ight| = \left| \overrightarrow{IA} +\overrightarrow{AE} ight| = \left| \overrightarrow{IE} ight| = IE\geq EF.

    Do đó \left| \overrightarrow{IA} +\overrightarrow{GC} ight| nhỏ nhất khi I \equiv F.

    + Ta có: \overrightarrow{BH} =\frac{1}{5}\overrightarrow{BC} \Rightarrow \overrightarrow{HC} =\frac{4}{5}\overrightarrow{BC}.

    + Gọi Q là hình chiếu vuông góc của P lên BC (Q \inBC).

    Ta có:

    \frac{BP}{BE} = \frac{3GP}{BP + PE} =\frac{3GP}{3GP + GP} = \frac{3}{4}.

    + Do PQ // EF(vì cùng vuông góc với BC).

    Nên \Delta BPQ\Delta BEF đồng dạng

    \Rightarrow \frac{BQ}{BF} = \frac{BP}{BE}= \frac{3}{4} \Rightarrow\overrightarrow{BF} = \frac{4}{3}\overrightarrow{BQ}.

    + \Delta AHCP là trung điểm ACPQ // AH (do cùng vuông góc với BC).

    \Rightarrow PQ là đường trung bình.

    Khi đó, Q là trung điểm HC hay \overrightarrow{HQ} =\frac{1}{2}\overrightarrow{HC} =\frac{2}{5}\overrightarrow{BC}.

    \overrightarrow{BF} =\frac{4}{3}\overrightarrow{BQ} = \frac{4}{3}(\overrightarrow{BH} +\overrightarrow{HQ}) = \frac{4}{3}(\frac{1}{5}\overrightarrow{BC} +\frac{2}{5}\overrightarrow{BC}) =\frac{4}{5}\overrightarrow{BC}

    Vậy M = 4 + 5 = 9.

  • Câu 10: Nhận biết

    Chọn mệnh đề đúng

    Cho tứ diện ABCD. Gọi G là trọng tâm tam giác BCD. Điểm M xác định bởi công thức \overrightarrow{AM} = \overrightarrow{AB} +
\overrightarrow{AC} + \overrightarrow{AD}. Mệnh đề nào sau đây đúng?

    Do G là trọng tâm tam giác BCD nên \overrightarrow{AB} + \overrightarrow{AC} +
\overrightarrow{AD} = 3\overrightarrow{AG}

    \Rightarrow \overrightarrow{AM} =
3\overrightarrow{AG}

    Vậy mệnh đề đúng là “M thuộc tia AGAM = 3AG”.

  • Câu 11: Vận dụng

    Chọn mệnh đề đúng

    Cho tam giác ABC vuông tại A và có hai đỉnh B;C nằm trên mặt phẳng (P). Gọi A' là hình chiếu vuông góc của đỉnh A lên (P). Trong các mệnh đề sau, mệnh đề nào đúng?

    Nếu A nằm trên (P) tức A’ trùng với A thì tam giác A’BC có góc A vuông, nếu A không nằm trên (P) thì

    \overrightarrow{A'B}.\overrightarrow{A'C}
= \overrightarrow{A'A}.\overrightarrow{A'C} +
\overrightarrow{AB}.\overrightarrow{A'C}

    =
\overrightarrow{AB}.\overrightarrow{A'C} =
\overrightarrow{AB}.\left( \overrightarrow{A'A} +
\overrightarrow{AC} ight)

    =
\overrightarrow{AB}.\overrightarrow{A'A} = -
\overrightarrow{AB}.\overrightarrow{AA'} < 0 suy ra góc \widehat{BA'C} là góc tù.

  • Câu 12: Thông hiểu

    Tìm tọa độ điểm Q

    Trong hệ trục tọa độ Oxyz, cho các điểm M(1; - 1;1)\ ,\ \ N(2;0; - 1)\ ,\ \
P( - 1;2;1). Xét điểm Q sao cho tứ giác MNPQ là một hình bình hành. Tọa độ Q

    Gọi Q(x;y;z). Ta có \overrightarrow{MN} = (1;1; - 2)\ \ ,\ \ \ \
\overrightarrow{QP} = ( - 1 - x;2 - y;1 - z).

    Tứ giác MNPQ là một hình bình hành \Leftrightarrow \overrightarrow{MN} =
\overrightarrow{QP}

    \Leftrightarrow \left\{ \begin{matrix}
1 = - 1 - x \\
1 = 2 - y \\
- 2 = 1 - z \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = - 2 \\
y = 1 \\
z = 3 \\
\end{matrix} ight.\ .

    Vậy, Q( - 2;1;3).

  • Câu 13: Nhận biết

    Tìm tọa độ điểm M

    Trong không gian Oxyz, cho điểm M thỏa mãn \overrightarrow{MO} = 3\overrightarrow{k} -
2\overrightarrow{i} + 4\overrightarrow{j}. Tọa độ điểm M bằng

    Ta có: \overrightarrow{MO} =3 \overrightarrow{k} - 2\overrightarrow{i} + 4\overrightarrow{j}\Rightarrow M(2; - 4; - 3)

     

  • Câu 14: Nhận biết

    Tính tích vô hướng hai vectơ

    Trong không gian Oxyz, cho các điểm A(2;1;4),B( - 2;2;6),C(6;0; -
1). Tích \overrightarrow{AB}.\overrightarrow{AC} bằng:

    Ta có: \left\{ \begin{matrix}
\overrightarrow{AB} = ( - 4;1; - 10) \\
\overrightarrow{AC} = (4; - 1; - 5) \\
\end{matrix} ight.. Khi đó \overrightarrow{AB}.\overrightarrow{AC} =
33.

  • Câu 15: Thông hiểu

    Tìm tọa độ điểm P

    Trong không gian Oxyz, cho hai điểm M(2;1;2), N(4; 2; 1), tọa độ điểm P thuộc trục Oz sao cho M;N; Pthẳng hàng là

    Vì điểm Pthuộc trục Oz nên P có tọa độ P(0;0;z).

    Ta có \overrightarrow{MN}(2;1; -
1); \overrightarrow{NP}( - 4; - 2;z
- 1)

    M;\ N;\ P thẳng hàng\Leftrightarrow\overrightarrow{MN};\overrightarrow{NP} cùng phương

    \Leftrightarrow \frac{- 4}{2} = \frac{-
2}{1} = \frac{z - 1}{- 1} \Leftrightarrow z - 1 = 2 \Leftrightarrow z =
3

    Vậy điểm P(0;0;3).

  • Câu 16: Nhận biết

    Tìm số thực m thỏa mãn điều kiện

    Trong không gian với hệ trục tọa độ Oxyz, cho \overrightarrow{u} = (2; - 1;1)\overrightarrow{v} = (0; - 3; - m). Tìm số thực m sao cho tích vô hướng \overrightarrow{u}.\overrightarrow{v} =
1.

    Ta có: \overrightarrow{u}.\overrightarrow{v} = 1
\Leftrightarrow 3 - m = 1 \Leftrightarrow m = 2.

  • Câu 17: Nhận biết

    Tính giá trị biểu thức

    Trong không gian với hệ tọa độ Oxyz, gọi a,b,c lần lượt là khoảng cách từ điểm M(1;3;2) đến ba mặt phẳng tọa độ (Oxy), (Oyz),(Oxz). Tính P
= a + b^{2} + c^{3} ?

    Với A\left( x_{o}\ ;\ y_{o}\ ;\ z_{o}
ight) \in (Oxyz).

    Khi đó d\left(
A\ ,\ (Oxy) ight) = z_{o}, d\left( A\ ,\ (Oxz) ight) = y_{o}, d\left( A\ ,\ (Oyz) ight) =
x_{o}.

    Theo bài ra ta có:

    a = d\left( M;(Oxy)
ight) = 2;b = d\left( M\ ;(Oyz)
ight) = 1, c = d\left( \ M\
;(Oxz) ight) = 3.

    P = a + b^{2} + c^{3} = 2 + 1^{2} + 3^{3}
= 30.

  • Câu 18: Nhận biết

    Tính giá trị biểu thức

    Trên hệ trục tọa độ Oxyz, cho \overrightarrow{a} = (3; - 1;2), \overrightarrow{b} = ( - 2;1;3), tích \overrightarrow{a}.\overrightarrow{b} bằng

    Ta có \overrightarrow{a}.\overrightarrow{b} = 3.( - 2) +
( - 1).1 + 2.3 = - 6 - 1 + 6 = - 1

  • Câu 19: Thông hiểu

    Tính giá trị biểu thức

    Trong không gian hệ trục tọa độ Oxyz, cho tọa độ ba điểm A( - 1;2; - 3),B(1;0;2),C(x;y; - 2) thẳng hàng. Khi đó giá trị của biểu thức x +y là:

    Ta có: \left\{ \begin{matrix}\overrightarrow{AB} = (2; - 2;5) \\\overrightarrow{AC} = (x + 1;y - 2;1) \\\end{matrix} ight.. Vì A; B; C thẳng hàng nên \overrightarrow{AB};\overrightarrow{AC} cùng phương

    \Leftrightarrow \dfrac{x + 1}{2} =\dfrac{y - 2}{- 2} = \dfrac{1}{5} \Leftrightarrow \left\{ \begin{matrix}x = - \dfrac{3}{5} \\y = \dfrac{8}{5} \\\end{matrix} ight.\  \Rightarrow x + y = 1

  • Câu 20: Thông hiểu

    Chọn khẳng định đúng

    Trong không gian Oxyz, cho vectơ \overrightarrow{OA} = \overrightarrow{i} -
2\overrightarrow{k}. Tọa độ điểm A là:

    Ta có: \overrightarrow{OA} =
\overrightarrow{i} - 2\overrightarrow{k} \Leftrightarrow A(0;1; -
2)

  • Câu 21: Thông hiểu

    Chọn phát biểu đúng

    Trong không gian tọa độ Oxyz, cho hai điểm A(1;0;0), B(5;0;0). Gọi (H) là tập hợp các điểm M trong không gian thỏa mãn \overrightarrow{MA}.\overrightarrow{MB} =
0. Khẳng định nào sau đây là đúng?

    Gọi I là trung điểmAB \Rightarrow I(3;0;0).

    Ta có :

    \overrightarrow{MA}.\overrightarrow{MB} =
0 \Leftrightarrow \left( \overrightarrow{MI} + \overrightarrow{IA}
ight).\left( \overrightarrow{MI} + \overrightarrow{IB} ight) =
0

    \Leftrightarrow \left(
\overrightarrow{MI} + \overrightarrow{IA} ight).\left(
\overrightarrow{MI} - \overrightarrow{IA} ight) = 0

    \Leftrightarrow MI^{2} - IA^{2} = 0
\Leftrightarrow MI^{2} = IA^{2} \Leftrightarrow MI = \frac{1}{2}AB =
\frac{1}{2}.|5 - 1| = 2.

    Suy ra tập hợp điểm M trong không gian là mặt cầu tâm I, bán kính bằng 2.

    Vậy (H) là một mặt cầu có bán kính bằng 2.

  • Câu 22: Nhận biết

    Chọn đáp án đúng

    Cho tứ diện ABCD với AB\bot AC,\ \ AB\bot BD. Gọi P,\ \ Q lần lượt là trung điểm của ABCD. Góc giữa PQAB là?

    Ta có: \overrightarrow{AB}.\overrightarrow{PQ}
\Rightarrow AB\bot PQ

    Vậy góc giữa PQAB90^{0}.

  • Câu 23: Thông hiểu

    Chọn đáp án đúng

    Trong không gian Oxyz, cho tọa độ ba điểm A(1;2;3),B(2;1;5),C(2;4;2). Góc giữa hai đường thẳng ABAC

    Ta có: \left\{ \begin{matrix}
\overrightarrow{AB} = (1; - 1;2) \\
\overrightarrow{AC} = (1;2; - 1) \\
\end{matrix} ight..

    \Rightarrow \cos\left(
\overrightarrow{AB};\overrightarrow{AC} ight) =
\frac{\overrightarrow{AB}.\overrightarrow{AC}}{\left|
\overrightarrow{AB} ight|.\left| \overrightarrow{AC} ight|} =
\frac{1}{2}

    \Rightarrow \left(
\overrightarrow{AB};\overrightarrow{AC} ight) = (AB;AC) =
60^{0}

  • Câu 24: Nhận biết

    Xác định tọa độ điểm A

    Trong không gian Oxyz, cho \overrightarrow{AO} = \overrightarrow{i} -
2\overrightarrow{j} + 3\overrightarrow{k}. Tọa độ của điểm A

    Ta có: \overrightarrow{AO} =
\overrightarrow{i} - 2\overrightarrow{j} + 3\overrightarrow{k} = (1; -
2;3)

    Khi đó A( - 1;2; - 3)

  • Câu 25: Thông hiểu

    Phân tích vectơ

    Cho lăng trụ tam giác ABC.A'B'C'\overrightarrow{AA'} =
\overrightarrow{a},\overrightarrow{\ AB} = \overrightarrow{b,}\
\overrightarrow{AC} = \overrightarrow{c}. Hãy phân tích (biểu thị) vectơ \overrightarrow{B'C} qua các vectơ \overrightarrow{a},\ \
\overrightarrow{b},\ \ \overrightarrow{c}.

    Hình vẽ minh họa

    Theo quy tắc hình bình hành ta có:

    \overrightarrow{B'C} =
\overrightarrow{B'B} + \overrightarrow{B'C'} = -
\overrightarrow{AA'} + \overrightarrow{BC}

    = - \overrightarrow{a} +
\overrightarrow{AC} - \overrightarrow{AB} = - \overrightarrow{a} -
\overrightarrow{b} + \overrightarrow{c}

  • Câu 26: Vận dụng

    Ghi đáp án vào ô trống

    Phòng khách của một ngôi nhà được thiết kế có dạng hình hộp chữ nhật với chiều dài 10\ m, chiều rộng 6\ m và cao 4\ m. Người ta trang trí một chiếc đèn chùm I ngay tại chính giữa trần nhà. Để đảm bảo độ sáng cho căn phòng, chủ nhà còn thiết kế thêm một bóng đèn tròn J treo chính giữa bức tường 6\ m và cách trần nhà 1\ m. Hỏi hai chiếc bóng đèn I,Jcách nhau bao nhiêu m? (Làm tròn đến hàng phần mười).

    Đáp án: 5,1

    Đáp án là:

    Phòng khách của một ngôi nhà được thiết kế có dạng hình hộp chữ nhật với chiều dài 10\ m, chiều rộng 6\ m và cao 4\ m. Người ta trang trí một chiếc đèn chùm I ngay tại chính giữa trần nhà. Để đảm bảo độ sáng cho căn phòng, chủ nhà còn thiết kế thêm một bóng đèn tròn J treo chính giữa bức tường 6\ m và cách trần nhà 1\ m. Hỏi hai chiếc bóng đèn I,Jcách nhau bao nhiêu m? (Làm tròn đến hàng phần mười).

    Đáp án: 5,1

    Hình vẽ minh họa

    Chọn hệ trục tọa độ như hình vẽ. Khi đó ta có tọa độ các điểm A(6;0;0),B(0;10;0),C(0;0;4).

    Từ đó ta suy ra tọa độ các điểm D(6;10;0),F(6;10;4).

    Đèn chùm I được đặt tại vị trí chính giữa trần nhà có dạng hình chữ nhật nên vị trí đặt là trung điểm của hai đường chéo CFEG nên ta có I(3;5;4)

    Gọi J_{1} là hình chiếu của bóng đèn J lên nền nhà. Khi đó J_{1} là trung điểm của BD nên J_{1}(3;10;0), do đó J(3;10;3).

    Vậy ta tính được

    \overrightarrow{IJ} = (0;5; - 1)
\Rightarrow IJ = \left| \overrightarrow{IJ} ight| = \sqrt{5^{2} + ( -
1)^{2}} = \sqrt{26} \approx 5,1\ (m)

  • Câu 27: Thông hiểu

    Tính giá trị biểu thức

    Trong không gian Oxyz, cho điểm A( - 3; - 1; - 1). Hình chiếu vuông góc của A trên mặt phẳng (Oyz) là điểm A'(x;y;z). Khi đó giá trị 2x + y + z bằng:

    Hình chiếu vuông góc của A( - 3; - 1; -
1) trên mặt phẳng (Oyz)A'(0; - 1; - 1)

    Suy ra 2x + y + z = - 2.

  • Câu 28: Vận dụng

    Xác định toạ độ của vectơ biểu diễn độ dịch chuyển

    Để theo dõi hành trình của một chiếc máy bay, ta có thể lập hệ toạ độ Oxyz có gốc O trùng với vị trí của trung tâm kiểm soát không lưu, mặt phẳng (Oxy) trùng với mặt đất với trục Ox hướng về phía tây, trục Oy hướng về phía nam và trục Oz hướng thẳng đứng lên trời. Sau khi cất cánh và đạt độ cao nhất định, chiếc máy bay duy trì hướng bay về phía nam với tốc độ không đổi là 890\ km/h trong nửa giờ. Xác định toạ độ của vectơ biểu diễn độ dịch chuyển của chiếc máy bay trong nửa giờ đó đối với hệ toạ độ đã chọn, biết rằng đơn vị đo trong không gian Oxyzđược lấy theo kilômét.

    A sunset over a cityDescription automatically generated with medium confidence

    Quãng đường máy bay bay được với vận tốc 890km/h trong nửa giờ là:

    890.\frac{1}{2} = 445(km)

    Vì máy bay duy trì hướng bay về phía nam nên tọa độ của vectơ biểu diễn độ dịch chuyển của chiếc máy bay trong nửa giờ đó với hệ tọa độ đã chọn là (0;445;0).

  • Câu 29: Nhận biết

    Tính tích vô hướng

    Cho hai véc tơ \overrightarrow{a} = (1; -
2;3), \overrightarrow{b} = ( -
2;1;2). Khi đó, tích vô hướng \left( \overrightarrow{a} + \overrightarrow{b}
\right).\overrightarrow{b} bằng

    Ta có:

    \overrightarrow{a} + \overrightarrow{b} =
( - 1; - 1;5)

    \Rightarrow \left(
\overrightarrow{a} + \overrightarrow{b} ight).\overrightarrow{b} = -
1.( - 2) + ( - 1).1 + 5.2 = 11.

  • Câu 30: Nhận biết

    Tìm tọa độ vectơ

    Biết rằng \overrightarrow{a} =
(0;1;3)\overrightarrow{b} = ( -
2;3;1). Tính \overrightarrow{x} =3\overrightarrow{a} + 2\overrightarrow{b}?

    Ta có: \left\{ \begin{matrix}
3\overrightarrow{a} = (0;3;9) \\
2\overrightarrow{b} = ( - 4;6;2) \\
\end{matrix} ight.\  \Rightarrow \overrightarrow{x} =
3\overrightarrow{a} + 2\overrightarrow{b} = ( - 4;9;11)

  • Câu 31: Thông hiểu

    Tìm tọa độ điểm C

    Tứ giác MNPQ là hình bình hành biết tọa độ các điểm M(1;2;3),N(2; -
3;1),P(3;1;2). Tìm tọa độ điểm Q?

    Giả sử điểm Q(x;y;z) khi đó \left\{ \begin{matrix}
\overrightarrow{QP} = (x - 3;y - 1;z - 2) \\
\overrightarrow{MN} = ( - 1;5;2) \\
\end{matrix} ight.

    ta có MNPQ là hình bình hành nên \overrightarrow{QP} =
\overrightarrow{MN}

    \Leftrightarrow \left\{ \begin{matrix}
x - 3 = - 1 \\
y - 1 = 5 \\
z - 2 = 2 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 2 \\
y = 6 \\
z = 4 \\
\end{matrix} ight.. Vậy tọa độ điểm Q(2;6;4).

  • Câu 32: Vận dụng

    Chọn đáp án đúng

    Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1;2;3)B(5;0;1). Điểm M thỏa mãn MA.\overrightarrow{MA} = -
4MB.\overrightarrow{MB} có tọa độ là:

    Từ giả thiết MA.\overrightarrow{MA} = -
4MB.\overrightarrow{MB} \Rightarrow \overrightarrow{MA} = -
4\frac{MB}{MA}.\overrightarrow{MB} nên ba điểm M;B;A thẳng hàng và A;B nằm khác phía so với điểm M do - 4\frac{MB}{MA} âm.

    Lại có MA.\overrightarrow{MA} = -
4MB.\overrightarrow{MB}

    \Rightarrow \left(
MA.\overrightarrow{MA} \right)^{2} = \left( 4MB.\overrightarrow{MB}
\right)^{2}

    \Rightarrow MA^{4} = 16MB^{4} \Rightarrow
MA = 2MB.

    \Rightarrow \overrightarrow{MA} = -
2\overrightarrow{MB}.

    Gọi tọa độ M(x;y;z), khi đó

    \left\{ \begin{matrix}
1 - x = - 2(5 - x) \\
2 - y = - 2(0 - y) \\
3 - z = - 2(1 - z) \\
\end{matrix} \right.\  \Leftrightarrow \left\{ \begin{matrix}
x = \frac{11}{3} \\
y = \frac{2}{3} \\
z = \frac{5}{3} \\
\end{matrix} \right.

  • Câu 33: Nhận biết

    Chọn đáp án thích hợp

    Trong không gian với hệ trục tọa độ Oxyz cho hai điểm A( - 2;3;4),B(8; - 5;6). Hình chiếu vuông góc của trung điểm I của đoạn AB trên mặt phẳng (Oyz) là điểm nào dưới đây?

    Vì I là trung điểm của đoạn AB nên I(3; -
1;5).

    Khi đó hình chiếu của I lên (Oyz) là M(0; - 1;5).

  • Câu 34: Vận dụng

    Chọn kết quả đúng nhất

    Cho tam giác ABC, thì công thức tính diện tích nào sau đây là đúng nhất.

    Ta có:

    S_{ABC} = \frac{1}{2}ABAC\sin A =
\frac{1}{2}\sqrt{AB^{2}AB^{2}sin^{2}A}

    = \frac{1}{2}\sqrt{AB^{2}AC^{2}\left( 1
- cos^{2}A \right)}

    = \frac{1}{2}\sqrt{AB^{2}AC^{2} - \left(
\overrightarrow{AB}.\overrightarrow{AC} \right)^{2}}.

  • Câu 35: Nhận biết

    Chọn khẳng định đúng

    Trong không gian cho hai đường thẳng a;b lần lượt có vectơ chỉ phương \overrightarrow{u};\overrightarrow{v}. Gọi \alpha là góc giữa hai đường thẳng a;b. Khẳng định nào sau đây đúng?

    Khẳng định đúng: “Nếu a\bot b thì \overrightarrow{u}.\overrightarrow{v} =
\overrightarrow{0}”.

  • Câu 36: Vận dụng cao

    Tìm điều kiện của các hệ số a; b; c

    Cho hình chóp S.ABC. Lấy các điểm A';B';C' lần lượt thuộc các tia SA;SB;SC sao cho \frac{SA}{SA'} = a;\frac{SB}{SB'} =
b;\frac{SC}{SC'} = c trong đó a;b;c là các hệ số biến thiên. Để mặt phẳng (A'B'C') đi qua trọng tâm của tam giác ABC thì tổng các hệ số bằng bao nhiêu?

    Hình vẽ minh họa

    Gọi G là trọng tâm tam giác ABC suy ra \overrightarrow{GA} + \overrightarrow{GB} +
\overrightarrow{GC} = \overrightarrow{0}

    Khi đó 3\overrightarrow{GS} +
\overrightarrow{SA} + \overrightarrow{SB} + \overrightarrow{SC} =
\overrightarrow{0}\overrightarrow{SA} =
a\overrightarrow{SA'};\overrightarrow{SB} =
b\overrightarrow{SB'};\overrightarrow{SC} =
c\overrightarrow{SC'}

    Suy ra 3\overrightarrow{SG} =
a\overrightarrow{SA'} + b\overrightarrow{SB'} +
c\overrightarrow{SC'}

    \Leftrightarrow \overrightarrow{SG} =
\frac{a}{3}\overrightarrow{SA'} +
\frac{b}{3}\overrightarrow{SB'} +
\frac{c}{3}\overrightarrow{SC'}

    Vì mặt phẳng (A'B'C') đi qua trọng tâm của tam giác ABC suy ra \overrightarrow{GA'};\overrightarrow{GB'};\overrightarrow{GC'} đồng phẳng.

    Do đó tồn tại ba số l;m;n sao cho l^{2} + m^{2} + n^{2} eq 0) và l\overrightarrow{GA'} +
m\overrightarrow{GB'} + n\overrightarrow{GC'} =
\overrightarrow{0}

    \Leftrightarrow l\left(
\overrightarrow{GS} + \overrightarrow{SA'} ight) + m\left(
\overrightarrow{GS} + \overrightarrow{SB'} ight) + n\left(
\overrightarrow{GS} + \overrightarrow{SC'} ight) =
\overrightarrow{0}s

    \Leftrightarrow (l + m +
n)\overrightarrow{SG} = l\overrightarrow{SA'} +
m\overrightarrow{SB'} + n\overrightarrow{SC'}

    \Leftrightarrow \overrightarrow{SG} =
\frac{l}{l + m + n}\overrightarrow{SA'} + \frac{m}{l + m +
n}\overrightarrow{SB'} + \frac{n}{l + m +
n}\overrightarrow{SC'}

    \Leftrightarrow
\frac{a}{3}\overrightarrow{SA'} +
\frac{b}{3}\overrightarrow{SB'} +
\frac{c}{3}\overrightarrow{SC'} = \frac{l}{l + m +
n}\overrightarrow{SA'} + \frac{m}{l + m + n}\overrightarrow{SB'}
+ \frac{n}{l + m + n}\overrightarrow{SC'}

    Suy ra \frac{a}{3} + \frac{b}{3} +
\frac{c}{3} = \frac{l}{l + m + n} + \frac{m}{l + m + n} + \frac{n}{l + m
+ n} = 1

    \Rightarrow a + b + c = 3

  • Câu 37: Thông hiểu

    Chọn mệnh đề đúng

    Cho tứ diện ABCD. Gọi M;N lần lượt là tung điểm của AB;CD. Chọn mệnh đề đúng?

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
\overrightarrow{MN} = \overrightarrow{MA} + \overrightarrow{AD} +
\overrightarrow{DN} \\
\overrightarrow{MN} = \overrightarrow{MB} + \overrightarrow{BC} +
\overrightarrow{CN} \\
\end{matrix} ight.

    Cộng hai vế của hai đẳng thức trên ta có:

    2\overrightarrow{MN} =
\overrightarrow{MA} + \overrightarrow{AD} + \overrightarrow{DN} +
\overrightarrow{MB} + \overrightarrow{BC} +
\overrightarrow{CN}

    \Leftrightarrow 2\overrightarrow{MN} =
\left( \overrightarrow{MA} + \overrightarrow{MB} ight) + \left(
\overrightarrow{AD} + \overrightarrow{BC} ight) + \left(
\overrightarrow{DN} + \overrightarrow{CN} ight)

    \Leftrightarrow 2\overrightarrow{MN} =
\overrightarrow{AD} + \overrightarrow{BC} \Leftrightarrow
\overrightarrow{MN} = \frac{1}{2}\left( \overrightarrow{AD} +
\overrightarrow{BC} ight)

  • Câu 38: Thông hiểu

    Tìm tọa độ điểm M

    Trong không gian hệ trục tọa độ Oxyz, cho hai điểm A(3;1; - 2),B(2; - 3;5). Điểm M thuộc đoạn AB sao cho MA
= 2MB, tọa độ điểm M là:

    Gọi tọa độ độ điểm M(x;y;z). Vì điểm M \in AB nên

    \overrightarrow{MA} =2\overrightarrow{MB} \Leftrightarrow \left\{ \begin{matrix}3 - x = - 2(2 - x) \\1 - y = - 2( - 3 - y) \\- 2 - z = - 2(5 - z) \\\end{matrix} ight.\Leftrightarrow \left\{ \begin{matrix}x = \dfrac{7}{3} \\y = - \dfrac{5}{3} \\z = \dfrac{8}{3} \\\end{matrix} ight.\  \Rightarrow M\left( \dfrac{7}{3}; -\dfrac{5}{3};\dfrac{8}{3} ight)

    Vậy đáp án cần tìm là: \left(
\frac{7}{3}; - \frac{5}{3};\frac{8}{3} ight).

  • Câu 39: Thông hiểu

    Chọn đẳng thức đúng

    Cho hình lăng trụ ABC.A'B'C'M là trung điểm của BB'. Đặt \overrightarrow{CA} =
\overrightarrow{a};\overrightarrow{CB} =
\overrightarrow{b};\overrightarrow{AA'} =
\overrightarrow{c}. Đẳng thức nào sau đây đúng?

    Ta có: M là trung điểm của BB’ khi đó \overrightarrow{AM} =
\frac{1}{2}\overrightarrow{AB} +
\frac{1}{2}\overrightarrow{AB'}

    Khi đó:

    \overrightarrow{AM} =
\frac{1}{2}\overrightarrow{AB} +
\frac{1}{2}\overrightarrow{AB'}

    = \frac{1}{2}\overrightarrow{AB} +
\frac{1}{2}\overrightarrow{AB} +
\frac{1}{2}\overrightarrow{BB'}

    = \overrightarrow{AB} +
\frac{1}{2}\overrightarrow{AA'} = \overrightarrow{AC} +
\overrightarrow{CB} + \frac{1}{2}\overrightarrow{AA'}

    = - \overrightarrow{a} +
\overrightarrow{b} + \frac{1}{2}\overrightarrow{c}

    Vậy đẳng thức đúng là \overrightarrow{AM}
= \overrightarrow{b} - \overrightarrow{a} +
\frac{1}{2}\overrightarrow{c}.

  • Câu 40: Thông hiểu

    Chọn đáp án đúng

    Trong không gian cho điểm O và bốn điểm A;B;C;D không thẳng hàng. Điều kiện cần và đủ để A;B;C;D tạo thành hình bình hành là:

    Để A;B;C;D tạo thành hình bình thành thì \left\lbrack \begin{matrix}
\overrightarrow{AB} = \overrightarrow{CD} \\
\overrightarrow{AC} = \overrightarrow{BD} \\
\end{matrix} ight..

    Khi đó:

    \overrightarrow{OA} +
\overrightarrow{OC} = \overrightarrow{OB} +
\overrightarrow{OD}

    \Leftrightarrow \overrightarrow{OA} -
\overrightarrow{OB} = \overrightarrow{OD} -
\overrightarrow{OC}

    \Leftrightarrow \overrightarrow{AB} =
\overrightarrow{CD}

    \overrightarrow{OA} + \overrightarrow{OB}
+ \overrightarrow{OC} + \overrightarrow{OD} =
\overrightarrow{0}, O là trọng tâm tứ giác (hoặc tứ diện) ABCD. (Loại).

    \overrightarrow{OA} +
\frac{1}{2}\overrightarrow{OB} = \overrightarrow{OC} +
\frac{1}{2}\overrightarrow{OD}

    \Leftrightarrow \overrightarrow{OA} -
\overrightarrow{OC} = \frac{1}{2}\overrightarrow{OD} -
\frac{1}{2}\overrightarrow{OB}

    \Leftrightarrow \overrightarrow{CA} =
\frac{1}{2}\overrightarrow{BD} (Loại)

    \overrightarrow{OA} +
\frac{1}{2}\overrightarrow{OC} = \overrightarrow{OB} +
\frac{1}{2}\overrightarrow{OD}

    \Leftrightarrow \overrightarrow{OA} -
\overrightarrow{OB} = \frac{1}{2}\overrightarrow{OD} -
\frac{1}{2}\overrightarrow{OC}

    \Leftrightarrow \overrightarrow{BA} =
\frac{1}{2}\overrightarrow{CD} (loại)

    Vậy đáp án cần tìm là \overrightarrow{OA}
+ \overrightarrow{OC} = \overrightarrow{OB} +
\overrightarrow{OD}.

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 2 Vectơ và hệ tọa độ trong không gian CTST Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo