Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169

Đề thi giữa kì 1 Toán 12 Kết nối tri thức Đề 1

Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm
Mô tả thêm:

Mời các bạn học cùng thử sức với đề Đề thi giữa học kì 1 môn Toán lớp 12 sách Kết nối tri thức nha!

  • Thời gian làm: 90 phút
  • Số câu hỏi: 22 câu
  • Số điểm tối đa: 22 điểm
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
  • Câu 1: Nhận biết

    Xác định khoảng đồng biến của hàm số

    Hàm số y =
\frac{x - 2}{x - 1} đồng biến trên khoảng nào dưới đây?

    Tập xác định D\mathbb{=
R}\backslash\left\{ 1 ight\}. Ta có: y' = \frac{1}{(x - 1)^{2}} > 0;\forall
x\mathbb{\in R}\backslash\left\{ 1 ight\}

    Suy ra hàm số đồng biến trên khoảng ( -
\infty;1)(1; +
\infty).

  • Câu 2: Nhận biết

    Tìm hàm số đồng biến trên tập số thực

    Cho hàm số sau, hàm số nào đồng biến trên \mathbb{R}?

    Xét hàm số f(x) = x^{3} - 3x^{2} + 3x -
4 ta có:

    f'(x) = 3x^{2} - 6x + 3 = 3(x -
1)^{2} \geq 0;\forall x\mathbb{\in R}

    \Rightarrow f(x) = x^{3} - 3x^{2} + 3x -
4 đồng biến trên \mathbb{R}.

  • Câu 3: Nhận biết

    Tìm giá trị cực tiểu của hàm số

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Xác định giá trị cực tiểu của hàm số đã cho.

    Dựa vào bảng biến thiên ta thấy:

    Hàm số đạt cực tiểu tại x = 0, giá trị cực tiểu là y = 1.

  • Câu 4: Nhận biết

    Tính giá trị nhỏ nhất của hàm số

    Tìm giá trị nhỏ nhất của hàm số y = x^{3}
+ 3x^{2} trên \lbrack - 5; -
1brack?

    Ta có: y' = 3x^{2} + 6x

    y' = 0 \Rightarrow \left\lbrack
\begin{matrix}
x = 0 \\
x = - 2 \\
\end{matrix} ight.. Khi đó: y(
- 5) = - 50;y( - 2) = 4;y( - 1) = 2

    Vậy \min_{\lbrack - 5; - 1brack}y = f(
- 5) = - 50.

  • Câu 5: Nhận biết

    Tính giá trị của biểu thức

    Cho hàm số y = f(x) liên tục trên đoạn \lbrack - 1;4brack và có đồ thị như hình vẽ:

    Giả sử M,m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn \lbrack - 1;4brack. Khi đó giá trị của biểu thức S = M + m bằng bao nhiêu?

    Từ đồ thị hàm số y = f(x) liên tục trên \lbrack - 1;4brack

    \Rightarrow \left\{ \begin{matrix}
M = 3 \\
m = - 1 \\
\end{matrix} ight.\  \Rightarrow S = M + m = 2

  • Câu 6: Nhận biết

    Tìm tiệm cận ngang

    Đường tiệm cận ngang của đồ thị hàm số y
= \frac{x + 1}{x^{2} - 4} có phương trình là:

    Ta có: \lim_{x ightarrow \pm
\infty}\frac{x + 1}{x^{2} - 4} = 0

    Vậy đường thẳng y = 0 là tiệm cận ngang của đồ thị hàm số.

  • Câu 7: Nhận biết

    Chọn hàm số tương ứng với đồ thị

    Quan sát hình vẽ sau:

    Xác định hàm số tương ứng với đồ thị hàm số trong hình vẽ đã cho?

    Đồ thị hàm số có tiệm cận ngang y =\frac{1}{2} và tiệm cận đứng là x =1 nên hàm số tương ứng là y =\frac{x + 1}{2x - 2}.

  • Câu 8: Thông hiểu

    Chọn đáp án đúng

    Cho hàm số y = x^{4} - 2(m + 2)x^{2} + 3m
- 1. Tìm m để hàm số đã cho có cực tiểu nhưng không có cực đại?

    Tập xác định D\mathbb{= R}

    Ta có: y' = 4x^{3} - 4(m +
2)x

    y' = 0 \Leftrightarrow 4x^{3} - 4(m
+ 2)x = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x^{2} = m + 2 \\
\end{matrix} ight.

    Để hàm số đã cho chỉ có điểm cực tiểu và không có điểm cực đại thì m + 2 \leq 0 \Leftrightarrow m \leq -
2.

    Vậy đáp án cần tìm là ( - \infty; -
2brack.

  • Câu 9: Thông hiểu

    Xác định vận tốc của chuyển động

    Vận tốc của một chất điểm được xác định bởi công thức v(t) = t^{3} - 10t^{2} + 29t - 20 (với v được tính bằng giây). Vận tốc của chất điểm tại thời điểm gia tốc nhỏ nhất gần bằng:

    Gia tốc của chất điểm a(t) = v'(t) =
3t^{2} - 20t + 29 gia tốc là hàm số bậc hai ẩn t đạt giá trị nhỏ nhất tại t = \frac{10}{3}

    Tại đó, vận tốc của chất điểm bằng v\left( \frac{10}{3} ight) = \frac{70}{27}
\approx 2,59.

  • Câu 10: Thông hiểu

    Xác định hàm số trùng phương

    Cho đồ thị:

    Xác định hàm số tương ứng với đồ thị hàm số đã cho?

    Nhận diện đồ thị hàm số bậc 4 trùng phương có a < 0

    Đồ thị hàm số đi qua điểm (0; -
1) nên loại hàm số y = - x^{4} +
2x^{2} - 3.

    Đồ thị hàm số có các cực trị là (1;0),( -
1;0) nên hàm số cần tìm là y = -
x^{4} + 2x^{2} - 1.

  • Câu 11: Nhận biết

    Tính tổng ba vectơ

    Cho hình hộp ABCD.EFFH. Tính tổng \overrightarrow{AB} +
\overrightarrow{AD} + \overrightarrow{AE}?

    Hình vẽ minh họa

    \overrightarrow{AB} +
\overrightarrow{AD} + \overrightarrow{AE} = \overrightarrow{AC} +
\overrightarrow{AE} = \overrightarrow{AG}

  • Câu 12: Nhận biết

    Chọn khẳng định sai

    Trong không gian cho tứ diện ABCD, gọi M;N lần lượt là trung điểm của AD;BC. Khẳng định nào sau đây sai?

    Hình vẽ minh họa

    M;N lần lượt là trung điểm của AD;BC suy ra \left\{ \begin{matrix}
\overrightarrow{MN} = \frac{1}{2}\left( \overrightarrow{AB} +
\overrightarrow{DC} ight) \\
\overrightarrow{MN} = \frac{1}{2}\left( \overrightarrow{BD} +
\overrightarrow{AC} ight) \\
\end{matrix} ight.

    Xét các phương án như sau:

    \overrightarrow{AB};\overrightarrow{DC};\overrightarrow{MN} đồng phẳng đúng vì \overrightarrow{MN} =
\frac{1}{2}\left( \overrightarrow{AB} + \overrightarrow{DC}
ight)

    \overrightarrow{AB};\overrightarrow{AC};\overrightarrow{MN} không đồng phẳng đúng vì MN không nằm trong (ABC)

    \overrightarrow{AN};\overrightarrow{CM};\overrightarrow{MN} đồng phẳng sai vì AN không nằm trong (MNC)

    \overrightarrow{BD};\overrightarrow{AC};\overrightarrow{MN} đồng phẳng đúng vì \overrightarrow{MN} =
\frac{1}{2}\left( \overrightarrow{BD} + \overrightarrow{AC}
ight).

  • Câu 13: Thông hiểu

    Xác định tính đúng sai của từng phương án

    Cho hàm số y = f(x) = \frac{x - 1}{x -
m} với m là tham số thực. Xét tính đúng sai của các khẳng định sau:

    a) Tập xác định D\mathbb{=
R}\backslash\left\{ m ight\}. Đúng||Sai

    b) y' = \frac{m - 1}{(x -
m)^{2}};\forall x eq m. Sai|| Đúng

    c) Hàm số đồng biến trên (−∞; 0) khi và chỉ khi m < 1. Sai|| Đúng

    d) Hàm số đồng biến trên (−∞; 0) khi và chỉ khi 0 ≤ m < 1. Đúng||Sai

    Đáp án là:

    Cho hàm số y = f(x) = \frac{x - 1}{x -
m} với m là tham số thực. Xét tính đúng sai của các khẳng định sau:

    a) Tập xác định D\mathbb{=
R}\backslash\left\{ m ight\}. Đúng||Sai

    b) y' = \frac{m - 1}{(x -
m)^{2}};\forall x eq m. Sai|| Đúng

    c) Hàm số đồng biến trên (−∞; 0) khi và chỉ khi m < 1. Sai|| Đúng

    d) Hàm số đồng biến trên (−∞; 0) khi và chỉ khi 0 ≤ m < 1. Đúng||Sai

    a) Tập xác định D\mathbb{=
R}\backslash\left\{ m ight\}.

    b) y' = \frac{- m + 1}{(x -
m)^{2}};\forall x eq m

    c) Sai.

    Hàm số đã cho đồng biến trên (−∞; 0) khi và chỉ khi

    \left\{ \begin{matrix}
m otin ( - \infty;0) \\
- m + 1 > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m \geq 0 \\
m < 1 \\
\end{matrix} ight.\  \Leftrightarrow 0 \leq m < 1.

    d) Đúng

  • Câu 14: Thông hiểu

    Xác định tính đúng sai của từng phương án

    Cho hàm số y = \frac{ax^{2} + bx + c}{ex
+ f} có đồ thị (C) như hình vẽ:

    Xét tính đúng sai của các khẳng định sau:

    a) Hàm số đồng biến trên (−∞; −1). Sai||Đúng

    b) Hàm số đạt cực đại tại x = −2. Sai||Đúng

    c) Giá trị nhỏ nhất của hàm số trên (−∞; −1)\frac{3}{2}. Đúng||Sai

    d) Điểm cực tiểu của hàm số là x = −2. Đúng||Sai

    Đáp án là:

    Cho hàm số y = \frac{ax^{2} + bx + c}{ex
+ f} có đồ thị (C) như hình vẽ:

    Xét tính đúng sai của các khẳng định sau:

    a) Hàm số đồng biến trên (−∞; −1). Sai||Đúng

    b) Hàm số đạt cực đại tại x = −2. Sai||Đúng

    c) Giá trị nhỏ nhất của hàm số trên (−∞; −1)\frac{3}{2}. Đúng||Sai

    d) Điểm cực tiểu của hàm số là x = −2. Đúng||Sai

    a) Sai. Hàm số đồng biến trên (−2; −1), (−1; 0) và nghịch biến trên (−∞; −2), (0; +∞).

    b) Sai. Hàm số đạt cực tiểu tại x = −2.

    c) Đúng.

    d) Đúng.

  • Câu 15: Vận dụng

    Xác định tính đúng sai của từng phương án

    Độ giảm huyết áp của một bệnh nhân được cho bởi công thức P(x) = \frac{1}{40}x^{2}(30 - x) trong đó x là liều lượng thuốc được tiêm cho bệnh nhân (x được tính bằng miligam, 0 < x < 30).

    a) Độ giảm huyết áp của một bệnh nhân là P(x) = \frac{3}{4}x^{2} -
\frac{1}{40}x^{3}. Đúng||Sai

    b) Đạo hàm của P(x)P'(x) = \frac{3}{2}x +
\frac{3}{40}x^{2}. Sai||Đúng

    c) Phương trình P'(x) = 0 có nghiệm duy nhất. Sai||Đúng

    d) Liều lượng thuốc cần tiêm cho bệnh nhân để huyết áp giảm nhiều nhất là 20mg. Đúng||Sai

    Đáp án là:

    Độ giảm huyết áp của một bệnh nhân được cho bởi công thức P(x) = \frac{1}{40}x^{2}(30 - x) trong đó x là liều lượng thuốc được tiêm cho bệnh nhân (x được tính bằng miligam, 0 < x < 30).

    a) Độ giảm huyết áp của một bệnh nhân là P(x) = \frac{3}{4}x^{2} -
\frac{1}{40}x^{3}. Đúng||Sai

    b) Đạo hàm của P(x)P'(x) = \frac{3}{2}x +
\frac{3}{40}x^{2}. Sai||Đúng

    c) Phương trình P'(x) = 0 có nghiệm duy nhất. Sai||Đúng

    d) Liều lượng thuốc cần tiêm cho bệnh nhân để huyết áp giảm nhiều nhất là 20mg. Đúng||Sai

    a) Đúng. Độ giảm huyết áp của một bệnh nhân được viết lại làP(x) = \frac{3}{4}x^{2} -
\frac{1}{40}x^{3}.

    b) Sai. Đạo hàm của P(x)P'(x) = \frac{3}{2}x -
\frac{3}{40}x^{2}.

    c) Sai. Xét phương trình P'(x) = 0
\Leftrightarrow \frac{3}{2}x - \frac{3}{40}x^{2} = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 0 \\
x = 20 \\
\end{matrix} ight.

    d) Đúng. Ta có bảng biến thiên:

    Vậy liều lượng thuốc cần tiêm cho bệnh nhân để huyết áp giảm nhiều nhất là 20 mg.

  • Câu 16: Thông hiểu

    Xác định tính đúng sai của từng phương án

    Cho tứ diện ABCD. Gọi M, N theo thứ tự là trung điểm ABCD. Khẳng định nào sau đây đúng?

    Xác định tính đúng sai của các khẳng định sau:

    a) \overrightarrow{MC} +
\overrightarrow{MD} + \overrightarrow{NA} + \overrightarrow{NB} =
4\overrightarrow{MN} Sai||Đúng

    b) \overrightarrow{AC} +
\overrightarrow{BD} = 2\overrightarrow{MN} Đúng||Sai

    c) \overrightarrow{AD} +
\overrightarrow{BC} = \overrightarrow{MN} Sai||Đúng

    d) \overrightarrow{AC} +
\overrightarrow{AD} = 2\overrightarrow{AN} Đúng||Sai

    Đáp án là:

    Cho tứ diện ABCD. Gọi M, N theo thứ tự là trung điểm ABCD. Khẳng định nào sau đây đúng?

    Xác định tính đúng sai của các khẳng định sau:

    a) \overrightarrow{MC} +
\overrightarrow{MD} + \overrightarrow{NA} + \overrightarrow{NB} =
4\overrightarrow{MN} Sai||Đúng

    b) \overrightarrow{AC} +
\overrightarrow{BD} = 2\overrightarrow{MN} Đúng||Sai

    c) \overrightarrow{AD} +
\overrightarrow{BC} = \overrightarrow{MN} Sai||Đúng

    d) \overrightarrow{AC} +
\overrightarrow{AD} = 2\overrightarrow{AN} Đúng||Sai

    a) Vì M, N là trung điểm của ABCD nên \overrightarrow{MC} + \overrightarrow{MD} =
2\overrightarrow{MN}\overrightarrow{NA} + \overrightarrow{NB} =
2\overrightarrow{NM}

    Nên \overrightarrow{MC} +
\overrightarrow{MD} + \overrightarrow{NA} + \overrightarrow{NB} =
\overrightarrow{0}.

    b) Ta có:

    \overrightarrow{AC} +
\overrightarrow{BD} = \overrightarrow{AM} + \overrightarrow{MC} +
\overrightarrow{BM} + \overrightarrow{MD}

    = \left( \overrightarrow{AM} +
\overrightarrow{BM} ight) + \left( \overrightarrow{MC} +
\overrightarrow{MD} ight)

    = \overrightarrow{0} +
2\overrightarrow{MN} = 2\overrightarrow{MN}

    c) Ta có:

    \overrightarrow{AD} +
\overrightarrow{BC} = \overrightarrow{AC} + \overrightarrow{CD} +
\overrightarrow{BD} + \overrightarrow{DC}

    = \left( \overrightarrow{AC} +
\overrightarrow{BD} ight) + \left( \overrightarrow{CD} +
\overrightarrow{DC} ight) = \overrightarrow{AC} + \overrightarrow{BD}
= 2\overrightarrow{MN}

    d) Do N là trung điểm của CD nên \overrightarrow{AC} + \overrightarrow{AD} =
2\overrightarrow{AN}

  • Câu 17: Thông hiểu

    Ghi đáp án vào ô trống

    Có bao nhiêu giá trị nguyên của tham số m để hàm số y
= \frac{mx - 3}{2x - m} đồng biến trên từng khoảng xác định?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Có bao nhiêu giá trị nguyên của tham số m để hàm số y
= \frac{mx - 3}{2x - m} đồng biến trên từng khoảng xác định?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 18: Thông hiểu

    Ghi đáp án vào ô trống

    Gọi m,M lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của hàm số f(x) =
\frac{1}{2}x - \sqrt{x + 1} trên đoạn \lbrack 0;3brack. Tổng S = 2M - m bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Gọi m,M lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của hàm số f(x) =
\frac{1}{2}x - \sqrt{x + 1} trên đoạn \lbrack 0;3brack. Tổng S = 2M - m bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 19: Vận dụng

    Ghi đáp án vào ô trống

    Cho hàm số f(x) = x^{3} + \left( 1 +
m^{2} ight)x + 1. Gọi S là tập hợp tất cả các giá trị nguyên của tham số m để giá trị lớn nhất của hàm số trên đoạn \lbrack 0;1brack không vượt quá 7. Hỏi tập S có bao nhiêu phần tử là số nguyên?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số f(x) = x^{3} + \left( 1 +
m^{2} ight)x + 1. Gọi S là tập hợp tất cả các giá trị nguyên của tham số m để giá trị lớn nhất của hàm số trên đoạn \lbrack 0;1brack không vượt quá 7. Hỏi tập S có bao nhiêu phần tử là số nguyên?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 20: Vận dụng cao

    Ghi đáp án vào ô trống

    Một con cá hồi bơi ngược dòng để vượt khoảng cách là 100 km. Vận tốc dòng nước là 5(km/h). Nếu vận tốc bơi của cá khi nước đứng yên là v(km/h),(v > 5) thì năng lượng tiêu hao của cá trong t giờ được cho bởi công thức E(v) =
c.v^{3}.t, trong đó c là hằng số dương, E được tính bằng Jun. Biết rằng vận tốc bơi của cá khi nước đứng yên thuộc khoảng (a;b) thì năng lượng tiêu hao của cá giảm. Hãy tính giá trị lớn nhất của b -
a (kết quả làm tròn tới hàng phần mười).

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Một con cá hồi bơi ngược dòng để vượt khoảng cách là 100 km. Vận tốc dòng nước là 5(km/h). Nếu vận tốc bơi của cá khi nước đứng yên là v(km/h),(v > 5) thì năng lượng tiêu hao của cá trong t giờ được cho bởi công thức E(v) =
c.v^{3}.t, trong đó c là hằng số dương, E được tính bằng Jun. Biết rằng vận tốc bơi của cá khi nước đứng yên thuộc khoảng (a;b) thì năng lượng tiêu hao của cá giảm. Hãy tính giá trị lớn nhất của b -
a (kết quả làm tròn tới hàng phần mười).

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 21: Thông hiểu

    Ghi đáp án vào ô trống

    Cho hàm số y = f(x) = \frac{2x^{2} + 26x
+ 18}{x + 13} có điểm cực tiểu và điểm cực đại lần lượt là x_{1};x_{2}. Tính P = - 2x_{1} + x_{2}?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = f(x) = \frac{2x^{2} + 26x
+ 18}{x + 13} có điểm cực tiểu và điểm cực đại lần lượt là x_{1};x_{2}. Tính P = - 2x_{1} + x_{2}?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 22: Vận dụng

    Ghi đáp án vào ô trống

    Trong hệ trục toạ độ (Oxy), cho đồ thị hàm số (C):y = \frac{x^{2} + x + 1}{x
+ 1} với x > - 1 mô tả chuyển động của một chiếc thuyền trên biển. Một trạm phát sóng đặt tại điểm I( - 1; - 1), biết hoành độ điểm M thuộc đồ thị (C) mà tại đó thuyền thu được sóng tốt nhất là x_{0} = \frac{1}{\sqrt[n]{a}} -
b (loại trừ các điều kiện ảnh hưởng đến việc thu phát sóng). Tính giá trị biểu thức P = a.n + b ?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Trong hệ trục toạ độ (Oxy), cho đồ thị hàm số (C):y = \frac{x^{2} + x + 1}{x
+ 1} với x > - 1 mô tả chuyển động của một chiếc thuyền trên biển. Một trạm phát sóng đặt tại điểm I( - 1; - 1), biết hoành độ điểm M thuộc đồ thị (C) mà tại đó thuyền thu được sóng tốt nhất là x_{0} = \frac{1}{\sqrt[n]{a}} -
b (loại trừ các điều kiện ảnh hưởng đến việc thu phát sóng). Tính giá trị biểu thức P = a.n + b ?

    Chỗ nhập nội dung câu trả lời tự luận

Chúc mừng Bạn đã hoàn thành bài!

Đề thi giữa kì 1 Toán 12 Kết nối tri thức Đề 1 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo