Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề kiểm tra 45 phút Chương 6 Xác suất có điều kiện

Mô tả thêm:

Hãy cùng thử sức kiểm tra đánh giá các kiến thức tổng quan với bài kiểm tra phút Chương 6: Xác suất có điều kiện Toán 12 sách Kết nối tri thức các em nhé!

  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Thông hiểu

    Xét tính đúng sai của các khẳng định

    Năm 2012, Cộng đồng Châu Âu có làm một đợt kiểm tra rất rộng rãi các con bò để phát hiện những con bị bệnh bò điên. Người ta tiến hành một loại xét nghiệm và cho kết quả như sau: Khi con bò bị bệnh bò điên thì xác suất để ra phản ứng dương tính trong xét nghiệm là 60\%; còn khi con bò không bị bệnh thì xác suất để xảy ra phản ứng dương tính trong xét nghiệm đó là 20\%. Biết rằng ti lệ bò bị mắc bệnh bò điên ở Hà Lan là 1,5 con trên 100000 con. Gọi X là biến cố một con bò bị bệnh bò điên, Y là biến cố một con bò phản ứng dương tính với xét nghiệm.

    a) P(X) = 15.10^{- 6}. Đúng||Sai

    b) P(Y \mid X) = 0,06. Sai||Đúng

    c) P\left( Y \mid \overline{X} ight) =
0,2. Đúng||Sai

    d) P(Y \cap X) = 9.10^{- 7}. Sai||Đúng

    Đáp án là:

    Năm 2012, Cộng đồng Châu Âu có làm một đợt kiểm tra rất rộng rãi các con bò để phát hiện những con bị bệnh bò điên. Người ta tiến hành một loại xét nghiệm và cho kết quả như sau: Khi con bò bị bệnh bò điên thì xác suất để ra phản ứng dương tính trong xét nghiệm là 60\%; còn khi con bò không bị bệnh thì xác suất để xảy ra phản ứng dương tính trong xét nghiệm đó là 20\%. Biết rằng ti lệ bò bị mắc bệnh bò điên ở Hà Lan là 1,5 con trên 100000 con. Gọi X là biến cố một con bò bị bệnh bò điên, Y là biến cố một con bò phản ứng dương tính với xét nghiệm.

    a) P(X) = 15.10^{- 6}. Đúng||Sai

    b) P(Y \mid X) = 0,06. Sai||Đúng

    c) P\left( Y \mid \overline{X} ight) =
0,2. Đúng||Sai

    d) P(Y \cap X) = 9.10^{- 7}. Sai||Đúng

    Tỉ lệ bò bị mắc bệnh bò điên ở Hà Lan là 1,5 con trên 100\ 000 con nghĩa là P(X) = 15.10^{- 6}.

    Khi con bò bị bệnh bò điên, thì xác suất để ra phản ứng dương tính trong xét nghiệm là 60%, nghĩa là: P\left(
Y|X ight) = 0,6.

    Khi con bò không bị bệnh, thì xác xuất để xả ra phản ứng dương tính trong xét nghiệm đó là 20%, nghĩa là P\left(
Y|\overline{X} ight) = 0,2. Khi đó, ta có:

    P(Y \cap X) = P\left( Y|X ight).P(X) =
0,6\ .\ 15\ .\ 10^{- 6} = 9.10^{- 6}.

  • Câu 2: Thông hiểu

    Tính giá trị của D

    Cho hai biến cố A,B thỏa mãn P(A) = 0,21;\ \ P(B) = 0,52;\  P\left( B|A\right) = 0,6. Khi đó P\left( A|B
\right) = \frac{a}{b} với a,b \in
\mathbb{N}^{*},\ \ \frac{a}{b} là phân số tối giản, giá trị của D = a + b là bao nhiêu?

    Ta có: P(AB) = P(A).P\left( B|A \right) =
0,21.0,6 = 0,126.

    P(AB) = P(B).P\left( A|B
\right)

    \Rightarrow P\left( A|B \right) =
\frac{P(AB)}{P(B)} = \frac{0,126}{0,52} = \frac{63}{260}.

    Suy ra: a = 63b = 260.

    Vậy D = a + b = 63 + 260 =
323.

  • Câu 3: Vận dụng

    Tính giá trị của biểu thức

    Trong một cửa hàng có 18 bóng đèn loại I và 2 bóng đèn loại II, các bóng đèn có hình dạng và kích thước như nhau. Một một người mua hàng lấy ngẫu nhiên lần lượt 2 bóng đèn (lấy không hoàn lại) trong cửa hàng. Biết xác suất để ít nhất 1 lần lấy được bóng đèn loại I bằng \frac{a}{b}(với a,blà các số nguyên dương và \frac{a}{b} là phân số tối giản). Tính a - b.

    Xét các biến cố:

    A: "Lần thứ nhất lấy được bóng đèn loại II";

    B: "Lần thứ hai lấy được bóng đèn loại II".

    Xác suất đề lần thứ nhất lấy được bóng đèn loại II là: P(A) = \frac{2}{20} = \frac{1}{10}.

    Sau khi lấy 1 bóng đèn loại II thì chỉ còn 1 bóng đèn loại II trong hộp.

    Suy ra xác suất để lần thứ hai lấy được quá bóng đèn loại II, biết lần thứ nhất lấy được bóng đèn loại II, là P(B \mid A) = \frac{1}{19}.

    Khi đó, xác suất để cả hai lần đều lấy được bóng đèn loại II là:

    P(C) = P(A \cap B) = P(A) \cdot P(B \mid
A) = \frac{1}{10} \cdot \frac{1}{19} = \frac{1}{190}.

    Vậy để ít nhất 1 lần lấy được bóng đèn loại I là:

    P\left(
\overline{C} \right) = 1 - P(C) = 1 - \frac{1}{190} =
\frac{189}{190}.

    Suy ra a = 189,b = 190 \Rightarrow a - b
= - 1.

  • Câu 4: Nhận biết

    Chọn kết luận đúng

    Cho AB là hai biến cố, trong đó P(B) > 0. Khi đó

    Ta có : P\left( \left. \ A \right|B
\right) = \frac{P(A \cap B)}{P(B)}.

  • Câu 5: Vận dụng

    Tính xác suất theo yêu cầu

    Theo thống kê xác suất để hai ngày liên tiếp có mưa ở một thành phố vào mùa hè là 0,5; còn không mưa là 0,3. Biết các sự kiện có một ngày mưa, một ngày không mưa là đồng khả năng. Tính xác suất để ngày thứ hai có mưa, biết ngày đầu không mưa?

    Gọi A là "ngày đầu mưa" và B là "ngày thứ hai mưa" thì ta có:

    P(AB) = 0,5;P\left(
\overline{A}\overline{B} ight) = 0,3

    Vì các sự kiện có một ngày mưa, một ngày không mưa là đồng khả năng nên

    P\left( A\overline{B} ight) = P\left(
\overline{A}B ight) = \frac{1 - 0,5 - 0,3}{2} = 0,1

    Xác suất cần tính là P\left(
\overline{B}|A ight) có:

    P\left( \overline{B}|A ight) =
\frac{P\left( B\overline{A} ight)}{P\left( \overline{A} ight)} =
\frac{P\left( B\overline{A} ight)}{P\left( \overline{A}\overline{B}
ight) + P\left( \overline{A}B ight)}

    = \frac{0,1}{0,1 + 0,3} = 0,25 =
25\%

  • Câu 6: Vận dụng

    Xét tính đúng sai của các khẳng định

    Bạn Bình đang làm đề ôn tập theo ba mức độ dễ, trung bình và khó. Xác suất để Bình hoàn thành câu dễ là 0,8; hoàn thành câu trung bình là 0,6 và hoàn thành câu khó là 0,15. Làm đúng mỗi một câu dễ bạn được 0,1 điểm, làm đúng mỗi câu trung bình bạn được 0,25 điểm và làm đúng mỗi câu khó bạn được 0,5điểm. Hãy cho biết các khẳng định sau đây đúng hay sai?

    a) Xác suất để Bình làm ba câu thuộc ba loại và đúng cả ba câu là 72\%. Sai||Đúng

    b) Khi Bình làm 3 câu thuộc 3 loại khác nhau. Xác suất để bạn làm đúng 2 trong số 3 câu là 0,45. Sai||Đúng

    c) Khi Bình làm 3 câu thì xác suất để bạn làm đúng 3 câu đủ ba loại cao hơn xác suất Bình làm sai 3 câu ở mức độ trung bình. Đúng||Sai

    d) Xác suất để Bình làm 5 câu và đạt đúng 2 điểm lớn hơn 0,2\%. Sai||Đúng

    Đáp án là:

    Bạn Bình đang làm đề ôn tập theo ba mức độ dễ, trung bình và khó. Xác suất để Bình hoàn thành câu dễ là 0,8; hoàn thành câu trung bình là 0,6 và hoàn thành câu khó là 0,15. Làm đúng mỗi một câu dễ bạn được 0,1 điểm, làm đúng mỗi câu trung bình bạn được 0,25 điểm và làm đúng mỗi câu khó bạn được 0,5điểm. Hãy cho biết các khẳng định sau đây đúng hay sai?

    a) Xác suất để Bình làm ba câu thuộc ba loại và đúng cả ba câu là 72\%. Sai||Đúng

    b) Khi Bình làm 3 câu thuộc 3 loại khác nhau. Xác suất để bạn làm đúng 2 trong số 3 câu là 0,45. Sai||Đúng

    c) Khi Bình làm 3 câu thì xác suất để bạn làm đúng 3 câu đủ ba loại cao hơn xác suất Bình làm sai 3 câu ở mức độ trung bình. Đúng||Sai

    d) Xác suất để Bình làm 5 câu và đạt đúng 2 điểm lớn hơn 0,2\%. Sai||Đúng

    Gọi A là biến cố Bình làm đúng câu dễ

    B là biến cố Bình làm đúng câu trung bình

    C là biến cố Bình làm đúng câu khó.

    Khi đó A, B, C độc lập với nhau.

    a) Xác suất để Bình làm ba câu thuộc ba loại trên và đúng cả ba câu là

    P = P(A).P(B).P(C) = 0,072 =
7,2\%.

    Khẳng định sai.

    b) Xác suất để Bình làm đúng 2 trong số 3 câu là

    P\left( \overline{A} ight).P(B).P(C) +
P(A).P\left( \overline{B} ight).P(C) + P(A).P(B).P\left( \overline{C}
ight)

    = 0,2.0,6.0,15 + 0,8.0,4.0,15 + 0,8.0,6.0,85 = 0,474

    Khẳng định sai.

    c) Xác suất để Bình làm đúng 3 câu đủ ba loại là:

    P = P(A).P(B).P(C) = 0,072 =
7,2\%

    Xác suất Bình làm sai 3 câu mức độ trung bình. (0,4)^{3} = 0,064.

    Khẳng định đúng.

    d) Để Bình làm 5 câu và đạt đúng 2 điểm có các trường hợp sau:

    TH1: Đúng 4 câu khó và câu còn lại sai

    (0,15)^{4}(0,2 + 0,4 + 0,85) =
7,34.10^{- 4}

    TH2: Đúng 3 câu khó và đúng 2 câu trung bình

    (0,15)^{3}.(0,6)^{2} = 1,215.10^{-
3}

    Vậy xác suất cần tìm là 0,1949\%

    Khẳng định sai.

  • Câu 7: Vận dụng

    Ghi đáp án vào ô trống

    Một bệnh truyền nhiễm có xác suất lây bệnh là 0,8 nếu tiếp xúc với người bệnh mà không đeo khẩu trang; là 0,1 nếu tiếp xúc với người bệnh mà có đeo khẩu trang. Chị Mai có tiếp xúc với người bệnh hai lần, một lần đeo khẩu trang và một lần không đeo khẩu trang. Tính xác suất để chị Mai bị lây bệnh từ người bệnh truyền nhiễm đó. (Kết quả ghi dưới dạng số thập phân).

    Đáp án: 0,82

    Đáp án là:

    Một bệnh truyền nhiễm có xác suất lây bệnh là 0,8 nếu tiếp xúc với người bệnh mà không đeo khẩu trang; là 0,1 nếu tiếp xúc với người bệnh mà có đeo khẩu trang. Chị Mai có tiếp xúc với người bệnh hai lần, một lần đeo khẩu trang và một lần không đeo khẩu trang. Tính xác suất để chị Mai bị lây bệnh từ người bệnh truyền nhiễm đó. (Kết quả ghi dưới dạng số thập phân).

    Đáp án: 0,82

    Gọi A là biến cố: "Chị Hoa bị nhiễm bệnh khi tiếp xúc người bệnh mà không đeo khẩu trang" và B : "Chị Hoa bị nhiễm bệnh khi tiếp xúc với người bệnh dù có đeo khẩu trang”.

    Dễ thấy \overline{A},\overline{B} là hai biến cố độc lập.

    Xác suất để chị Hoa không nhiễm bệnh trong cả hai lần tiếp xúc với người bệnh là

    P(\overline{A}\overline{B}) =
P(\overline{A}) \cdot P(\overline{B}) = 0,2 \cdot 0,9 =
0,18.

    Gọi P là xác suất để chị Hoa bị lây bệnh khi tiếp xúc người bệnh, ta có:

    P = 1 - P(\overline{A}\overline{B}) = 1
- 0,18 = 0,82.

  • Câu 8: Nhận biết

    Tính xác suất

    Cho hai biến cố A;B với P(A) = \frac{1}{3};P(B) = \frac{1}{2};P(A + B) =
\frac{3}{4}. Tính P\left(
\overline{A} + \overline{B} ight)?

    Ta có:

    P(A.B) = P(A) + P(B) - P(A + B) =
\frac{1}{12}

    P\left( \overline{A} + \overline{B}
ight) = P\left( \overline{A}\overline{B} ight) = 1 - P(AB) =
\frac{11}{12}

  • Câu 9: Nhận biết

    Chọn phương án đúng

    Cho hai biến cố A,\ BP(B) = 0,8;P(A \cap B) = 0,1. Kết quả của xác suất sau P(A \mid B) bằng bao nhiêu?

    Ta có: P(A \cap B) = P(B).P(A \mid
B)

    \Leftrightarrow P(A \mid B) = \frac{P(A
\cap B)}{P(B)} = \frac{0,1}{0,8} = \frac{1}{8}.

  • Câu 10: Thông hiểu

    Xác định tính đúng sai của từng phương án

    Cho hai biến cố AB là hai biến cố độc lập, với P(A) = 0,7;P\left( \overline{B} ight) =
0,6.

    a) P\left( A|B ight) = 0,6 Sai|| Đúng

    b) P\left( B|\overline{A} ight) =
0,4 Đúng||Sai

    c) P\left( \overline{A}|B ight) =
0,4 Sai|| Đúng

    d) P\left( \overline{B}|\overline{A}
ight) = 0,6 Đúng||Sai

    Đáp án là:

    Cho hai biến cố AB là hai biến cố độc lập, với P(A) = 0,7;P\left( \overline{B} ight) =
0,6.

    a) P\left( A|B ight) = 0,6 Sai|| Đúng

    b) P\left( B|\overline{A} ight) =
0,4 Đúng||Sai

    c) P\left( \overline{A}|B ight) =
0,4 Sai|| Đúng

    d) P\left( \overline{B}|\overline{A}
ight) = 0,6 Đúng||Sai

    Ta có: \left\{ \begin{matrix}
P(A) = 0,7 \Rightarrow P\left( \overline{A} ight) = 0,3 \\
P\left( \overline{B} ight) = 0,6 \Rightarrow P(B) = 1 - 0,6 = 0,4 \\
\end{matrix} ight.

    Do hai biến cố AB là hai biến cố độc lập nên \overline{B}A;\overline{A}B; \overline{B}\overline{A} độc lập với nhau.

    a) AB là hai biến cố độc lập nên: P\left( A|B ight) = P(A) = 0,7 eq
0,6

    b) \overline{A}B là hai biến cố độc lập nên: P\left( B|\overline{A} ight) = P(B) =
0,4

    c) \overline{A}Blà hai biến cố độc lập nên: P\left( \overline{A}|B ight) = P\left(
\overline{A} ight) = 0,3 eq 0,4

    d) \overline{B}\overline{A} là hai biến cố độc lập nên: P\left( \overline{B}|\overline{A} ight) =
P\left( \overline{B} ight) = 0,6

  • Câu 11: Vận dụng

    Tính xác suất để chẩn đoán đúng

    Tại một phòng khám chuyên khoa tỷ lệ người đến khám có bệnh là 0,8. Người ta áp dụng phương pháp chẩn đoán mới thì thấy nếu khẳng định có bệnh thì đúng 9 trên 10 trường hợp; còn nếu khẳng định không bệnh thì đúng 5 trên 10 trường hợp. Tính xác suất để chẩn đoán đúng?

    Gọi A là "người đến khám có bệnh" thì A, \overline{A} tạo thành hệ đầy đủ

    Gọi B là "Chẩn đoán có bệnh".

    Ta có P(A | B) = 0.9, P(A|B) = 0.5.

    Tìm P(B) từ:

    P\left( A|B ight) = \frac{P(AB)}{P(B)}
= \frac{P(A) - P\left( A|\overline{B} ight).P\left( \overline{B}
ight)}{P(B)}

    \Rightarrow P\left( A|B ight) =
\frac{P(A) - P\left( A|\overline{B} ight).\left\lbrack 1 - P(B)
ightbrack}{P(B)}

    \Rightarrow 0,9 = \frac{0,8 -
0,5\left\lbrack 1 - P(B) ightbrack}{P(B)}

    \Leftrightarrow P(B) = 0,75

    Gọi C là "chẩn đoán đúng", thì C xảy ra khi người bị bệnh được chẩn đoán có bệnh hoặc người không bị bệnh được chẩn đoán không bị bệnh. Như vậy

    C = AB +
\overline{A}\overline{B}

    Hiển nhiên 2 biến cố AB;\overline{A}\overline{B}xung khắc, nên ta có:

    P(C) = P\left( AB +
\overline{A}\overline{B} ight)

    = P(B)P\left( A|B ight) + P\left(
\overline{B} ight)P\left( \overline{A}|\overline{B}
ight)

    = 0,75.0,9 + 0,25.0,5 = 0,8

  • Câu 12: Vận dụng cao

    Tính xác suất P

    Hộp I có 4 viên bi đỏ, 2 viên bi xanh; hộp II có 3 viên bi đỏ, 3 viên bi xanh. Bỏ ngẫu nhiên một viên bi từ hộp I sang hộp II, sau đó lại bỏ ngẫu nhiên một viên bi từ hộp II sang hộp I. Cuối cùng rút ngẫu nhiên từ hộp I ra một viên bi. 1. Nếu viên rút ra sau cùng màu đỏ, tìm xác suất lúc ban đầu rút được viên bi đỏ ở hộp I cho vào hộp II?

    Gọi D1, X1 tương ứng là "lấy được viên bi đỏ, xanh từ hộp I sang hộp II",

    D2, X2 tương ứng là "lấy được viên bi đỏ, xanh từ hộp II sang hộp I".

    Khi đó hệ D1D2, D1X2, X1D2, X1X2 tạo thành hệ đầy đủ.

    Ta có: \left\{ \begin{gathered}
  P\left( {{D_1}{D_2}} ight) = \frac{4}{6}.\frac{4}{7};P\left( {{D_1}{X_2}} ight) = \frac{4}{6}.\frac{3}{7} \hfill \\
  P\left( {{X_1}{D_2}} ight) = \frac{2}{6}.\frac{3}{7};P\left( {{X_1}{X_2}} ight) = \frac{2}{6}.\frac{4}{7} \hfill \\ 
\end{gathered}  ight.

    Gọi A là "viên bi rút ra sau cùng là màu đỏ".

    Ta xác định được: \left\{ \begin{gathered}
  P\left( {A|{D_1}{D_2}} ight) = \frac{4}{6};P\left( {A|{D_1}{X_2}} ight) = \frac{3}{6} \hfill \\
  P\left( {A|{X_1}{D_2}} ight) = \frac{5}{6};P\left( {A|{X_1}{X_2}} ight) = \frac{4}{6} \hfill \\ 
\end{gathered}  ight.

    Áp dụng công thức xác suất đầy đủ:

    P(A) = P\left( D_{1}D_{2} ight)P\left(
A|D_{1}D_{2} ight) + P\left( D_{1}X_{2} ight)P\left( A|D_{1}X_{2}
ight)

    + P\left( X_{1}D_{2} ight)P\left(
A|X_{1}D_{2} ight) + P\left( X_{1}X_{2} ight)P\left( A|X_{1}X_{2}
ight)

    = \frac{4}{6}.\frac{4}{7}.\frac{4}{6} +
\frac{4}{6}.\frac{3}{7}.\frac{3}{6} +
\frac{2}{6}.\frac{3}{7}.\frac{5}{6} +
\frac{2}{6}.\frac{4}{7}.\frac{4}{6} = \frac{9}{14}

    Ta cần tính xác suất B = \left(
D_{1}D_{2} + D_{1}X_{2} ight)|A

    \Rightarrow P(B) = \frac{P\left\lbrack
\left( D_{1}D_{2} + D_{1}X_{2} ight)A
ightbrack}{P(A)}

    = \frac{P\left\lbrack \left( D_{1}D_{2}
ight)A ightbrack + P\left\lbrack \left( D_{1}X_{2} ight)A
ightbrack}{P(A)}

    = \frac{P\left( D_{1}D_{2}
ight)P\left( A|D_{1}D_{2} ight) + P\left( D_{1}X_{2} ight)P\left(
A|D_{1}X_{2} ight)}{P(A)}

    = \dfrac{{\dfrac{4}{7}.\dfrac{4}{7}.\dfrac{4}{6} + \dfrac{4}{6}.\dfrac{3}{7}.\dfrac{3}{6}}}{{\dfrac{9}{{11}}}} = \dfrac{{50}}{{81}} \approx 61,73\%

  • Câu 13: Thông hiểu

    Xét tinh đúng sai của các kết luận

    Một hộp có 10 bi xanh và 8bi đen, các viên bi đều có cùng hình dáng, kích thước và khối lượng. Bạn Nam lấy ngẫu nhiên một viên trong hộp, không trả lại. Sau đó Bạn Lan lấy ngẫu nhiên một trong 17 viên bi còn lại. Gọi A là biến cố bạn Nam lấy được một viên bi xanh và Blà biến cố bạn Lan lấy được một viên bi đen.

    a) n(A) = 10.Đúng||Sai

    b) P(A) =
\frac{5}{9}Đúng||Sai

    c) P\left( \left. \ B \right|A \right) =
\frac{4}{9}.Sai||Đúng

    d) P(A.B) = 0,8. Sai||Đúng

    Đáp án là:

    Một hộp có 10 bi xanh và 8bi đen, các viên bi đều có cùng hình dáng, kích thước và khối lượng. Bạn Nam lấy ngẫu nhiên một viên trong hộp, không trả lại. Sau đó Bạn Lan lấy ngẫu nhiên một trong 17 viên bi còn lại. Gọi A là biến cố bạn Nam lấy được một viên bi xanh và Blà biến cố bạn Lan lấy được một viên bi đen.

    a) n(A) = 10.Đúng||Sai

    b) P(A) =
\frac{5}{9}Đúng||Sai

    c) P\left( \left. \ B \right|A \right) =
\frac{4}{9}.Sai||Đúng

    d) P(A.B) = 0,8. Sai||Đúng

    a) Đ Vì hộp có 10 bi xanh nên số phần tử của biến cố An(A) = 10.

    b) Đ Vì bạn Nam lấy ngẫu nhiên 1 viên bi từ hộp chứa 10 bi xanh và 8 bi đen nên n(\Omega) = 18

    Do đó, P(A) = \frac{n(A)}{n(\Omega)} =
\frac{10}{18} = \frac{5}{9}.

    c) S Nếu A xảy ra tức là bạn Nam lấy được bi xanh thì trong hộp có 17viên bi với 8bi đen

    Do đó, P\left( \left. \ B \right|A
\right) = \frac{8}{17} \neq \frac{4}{9}.

    d) S Áp dụng công thức nhân xác suất, ta có:

    P(A.B) = P(A).P\left( \left. \ B
\right|A \right) = \frac{5}{9}.\frac{8}{17} = \frac{40}{153} \approx 0,3
\neq 0,8.

  • Câu 14: Thông hiểu

    Tính xác suất P

    Một công nhân đi làm ở thành phố khi trở về nhà có 2 cách: hoặc đi theo đường ngầm hoặc đi qua cầu. Biết rằng ông ta đi lối đường ngầm trong \frac{1}{3} các trường hợp, còn lại đi lối cầu. Nếu đi lối đường ngầm 75\% trường hợp ông ta về đến nhà trước 6 giờ tối; còn nếu đi lối cầu chỉ có 70\% trường hợp ông ta về đến nhà sau 6 giờ tối. Tìm xác suất để công nhân đó đã đi lối cầu biết rằng ông ta về đến nhà sau 6 giờ tối.

    Gọi A là biến cố đi đường ngầm suy ra \overline{A} là biến cố đi đường cầu

    Ta xác định được P(A) =
\frac{1}{3};P\left( \overline{A} ight) = \frac{2}{3}

    Gọi B là "về nhà sau 6 giờ tối", ta cần tính P\left( \overline{A}|B ight).

    Sử dụng công thức Bayes:

    P\left( \overline{A}|B ight) =
\frac{P\left( \overline{A} ight).P\left( B|\overline{A}
ight)}{P(B)}

    = \dfrac{\dfrac{2}{3}.0,3}{\dfrac{2}{3}.0,3+ \dfrac{1}{3}.0,25} \approx 0,7059

  • Câu 15: Vận dụng cao

    Chọn đáp án đúng

    Giả sử tỉ lệ người dân của tỉnh X nghiện thuốc lá là 20\%. Tỉ lệ người bị bệnh phổi trong số người nghiện thuốc lá là 70\%, còn tỉ lệ này đối với người không nghiện thuốc lá là 15\%. Gặp ngẫu nhiên một người dân của tỉnh X, biết rằng người này bị bệnh phổi, tính xác suất mà người này nghiện thuốc lá?

    Gọi A là biến cố “người nghiện thuốc lá”, suy ra \overline{A} là biến cố “người không nghiện thuốc lá”.

    Gọi B là biến cố “người bị bệnh phổi”.

    Ta có:

    P(B) = P(A).P\left( B|A \right) +
P\left( \overline{A} \right).P\left( B|\overline{A}
\right).

    Theo bài ra có

    P(A) = 0,2\ ;\ P\left( B|A\right) = 0,7\ ;\ P\left( \overline{A} \right) = 0,8\ ;\ P\left(B|\overline{A} \right) = 0,15.

    Vậy P(B) = P(A).P\left( B|A \right) +
P\left( \overline{A} \right).P\left( B|\overline{A} \right)

    = 0,2.0,7 + 0,8.0,15 = 0,26.

    Theo công thức Bayes, ta có:

    P\left( A|B
\right) = \frac{P(A).P\left( B|A \right)}{P(B)} = \frac{0,2.0,7}{0,26} =
\frac{7}{13}

    Như vậy trong số người bị bệnh phổi của tỉnh X, có khoảng \frac{7}{13} số người nghiện thuốc lá.

  • Câu 16: Nhận biết

    Tính P(A)

    Cho hai biến cố A,B với P(B) = 0,6, P(A|B) = 0,7P(A|\overline{B}) = 0,4. Khi đó P(A) bằng

    Ta có: P(\overline{B}) = 1 - P(B) = 1 -
0,6 = 0,4.

    Theo công thức xác suất toàn phần:

    P(A) = P(B).P\left( A \middle| B \right)
+ P\left( \overline{B} \right).P\left( A \middle| \overline{B}
\right)

    = 0,6.0,7 + 0,4.0,4 = 0,58.

  • Câu 17: Nhận biết

    Tính xác suất cỉa biến cố A

    Cho hai biến cố AB biết P(B) =
0,6\ ;\ \ P\left( A|B \right) = 0,3\ ;\ \ P\left( A|\overline{B} \right)
= 0,8. Tính P(A)

    Ta có:

    P\left( \overline{B} \right) = 1 -
P(B) = 0,4

    \Rightarrow P(A) = P(B).P\left( A|B
\right) + P\left( \overline{B} \right).P\left( A|\overline{B}
\right)

    = 0,6.0,3 + 0,4.0,8 = 0,5

  • Câu 18: Thông hiểu

    Chọn đáp án đúng

    Cho hai biến cố AB, với P(A) =
0,8; P(B) = 0,65; P\left( A \cap \overline{B} \right) =
0,55.

    Tính P(A \cap B).

    Ta có P\left( A \cap \overline{B} \right)
+ P(A \cap B) = P(A)

    \Rightarrow P(A \cap B) = P(A) - P\left(
A \cap \overline{B} \right) = 0,8 - 0,55 = 0,25

  • Câu 19: Thông hiểu

    Tính xác suất chọn được áo chất lượng cao

    Một công ty may có hai chi nhánh cùng sản xuất một loại áo, trong đó có 56\% áo ở chi nhánh I và 44\% áo ở chi nhánh II. Tại chi nhánh I có 75\% áo chất lượng cao và tại chi nhánh II có 68\% áo chất lượng cao (kích thước và hình dáng bề ngoài của các áo là như nhau). Chọn ngẫu nhiên 1 áo. Xác suất chọn được áo chất lượng cao là (làm tròn đến chữ số thập phân thứ hai)

    Gọi A là biến cố áo được chọn là áo chất lượng cao. B là biến cố áo được chọn ở chi nhánh I\overline{B} là biến cố áo được chọn ở chi nhánh II.

    Từ giải thiết ta có P(B) = 0,56, P\left( \left. \ A \right|B \right) =
0,75, P\left( \overline{B} \right)
= 0,44, P\left( \left. \ A
\right|\overline{B} \right) = 0,68.

    Theo công thức xác suất toàn phần ta có:

    P(A) = P(B).P\left( A\left| B\right.\  \right) + P\left( \overline{B} \right).P\left( \left. \ A\right|\overline{B} \right)

    = 0,56.0,75 + 0,44.0,68 = 0,7192 \approx0,72.

    Vậy xác suất chọn được áo chất lượng cao là 0,72.

  • Câu 20: Vận dụng

    Tính xác suất chọn học sinh theo yêu cầu

    Người ta khảo sát khả năng chơi nhạc cụ của một nhóm học sinh tại trường X . Nhóm này có 70\% học sinh là nam. Kết quả khảo sát cho thấy có 30\% học sinh nam và 15\% học sinh nữ biết chơi ít nhất một nhạc cụ. Chọn ngẫu nhiên một học sinh trong nhóm này. Tính xác suất để chọn được học sinh biết chơi ít nhất một nhạc cụ.

    Xét phép thử chọn ngẫu nhiên một học sinh trong nhóm.

    Gọi A là biến cố "Chọn được một học sinh biết chơi ít nhất một nhạc cụ" và B,\overline{B} lần lượt là các biến cố "Chọn được một học sinh nam" và "Chọn được một học sinh nữ".

    Theo đề bài:

    P(B) = 70\% =
0,7;P(\overline{B}) = 1 - 0,7 = 0,3;

    P(A \mid B) = 30\% = 0,3;P(A \mid
\overline{B}) = 15\% = 0,15.

    Áp dụng công thức xác suất toàn phần, ta có:

    P(A) = P(B) \cdot P\left( A\mid B
\right) + P\left( \overline{B} \right) \cdot P\left( A\mid\overline{B}
\right)

    = 0,7 \cdot 0,3 + 0,3 \cdot 0,15 =
0,255.

    Vậy xác suất để chọn được một học sinh biết chơi nhạc cụ là 0,255.

  • Câu 21: Nhận biết

    Chọn khẳng định đúng

    Cho hai biến cố AB bất kì với P(B) > 0. Khẳng định nào dưới đây đúng?

    Với hai biến cố AB bất kì với P(B) > 0.

    Ta cóP\left( A|B \right) = \frac{P(A \cap
B)}{P(B)}.

  • Câu 22: Nhận biết

    Chọn công thức đúng

    Cho hai biến cố AB với 0 <
P(B) < 1. Khi đó công thức xác suất toàn phần tính P(A) là:

    Ta có công thức xác suất toàn phần tính P(A) là:

    P(A) = P(B).P\left( A|B ight) + P\left(
\overline{B} ight).P\left( A|\overline{B} ight)

  • Câu 23: Nhận biết

    Tính P(A|B)

    Cho hai biến cố AB, với P(A) =
0,6, P(B) = 0,7, P(A \cap B) = 0,3. Tính P\left( A|B \right).

    Ta có: P\left( A|B \right) = \frac{P(A
\cap B)}{P(B)} = \frac{0,3}{0,7} = \frac{3}{7}

  • Câu 24: Thông hiểu

    Xét sự đúng sai của các khẳng định

    Gieo hai con xúc xắc cân đối và đồng chất. Gọi A là biến cố: “Tích số chấm xuất hiện trên hai con xúc xắc là số chẵn”, B là biến cố: “Có đúng một con xúc xắc xuất hiện mặt 3 chấm”. Các khẳng định sau đây đúng hay sai?

    a) P(AB) =
\frac{1}{6}Đúng||Sai

    b) P(B) = \frac{11}{36} Đúng||Sai

    c) P\left( A|B \right) =
\frac{5}{6}Sai||Đúng

    d) P\left( \overline{A}|B \right) =
\frac{4}{11} Đúng||Sai

    Đáp án là:

    Gieo hai con xúc xắc cân đối và đồng chất. Gọi A là biến cố: “Tích số chấm xuất hiện trên hai con xúc xắc là số chẵn”, B là biến cố: “Có đúng một con xúc xắc xuất hiện mặt 3 chấm”. Các khẳng định sau đây đúng hay sai?

    a) P(AB) =
\frac{1}{6}Đúng||Sai

    b) P(B) = \frac{11}{36} Đúng||Sai

    c) P\left( A|B \right) =
\frac{5}{6}Sai||Đúng

    d) P\left( \overline{A}|B \right) =
\frac{4}{11} Đúng||Sai

    a) Đúng

    n(\Omega) = 6.6 = 36. AB = \left\{ (3,2);(3,4);(3,6);(2,3);(4,3);(6,3)
\right\} \Rightarrow n(AB) = 6

    Do đó P(AB) = \frac{6}{36} =
\frac{1}{6}.

    b) Đúng

    Ta có \overline{B} = \left\{ (i;j)|i,j\in \left\{ 1,2,4,5,6 \right\} \right\}

    \Rightarrow n\left( \overline{B}\right) = 5.5 = 25 \Rightarrow n(B) = 36 - n\left( \overline{B} \right)= 11. Do đó P(B) =
\frac{11}{36}.

    c) Sai

    Ta có P\left( A|B \right) =
\frac{P(AB)}{P(B)} = \frac{1}{6}:\frac{11}{36} =
\frac{6}{11}.

    d) Đúng

    Ta có: \overline{A}B = \left\{
(3,1);(3,5);(1,3);(5,3) \right\} \Rightarrow n\left( \overline{A}B
\right) = 4

    Do đó P\left( \overline{A}|B \right) =
\frac{n\left( \overline{A}B \right)}{n(B)} = \frac{4}{11}

  • Câu 25: Nhận biết

    Chọn đáp án đúng

    Cho hai biến cố AB là hai biến cố độc lập, với P(A) = 0,2024;P(B) = 0,2025. Tính P\left( B|\overline{A} ight)?

    Hai biến cố \overline{A}B là hai biến cố độc lập nên P\left( B|\overline{A} ight) = P(B) =
0,2025.

  • Câu 26: Thông hiểu

    Chọn đáp án chính xác

    Một trạm chỉ phát hai tín hiệu A và B với xác suất tương ứng 0,850,15. do có nhiễu trên đường truyền nên \frac{1}{7} tín hiệu A bị méo và thu được như tín hiệu B còn \frac{1}{8} tín hiệu B bị méo cà thu được như A. Xác suất thu được tín hiệu A là:

    Gọi A là biến cố “Phát tín hiệu A ”

    Gọi B là biến cố “Phát tín hiệu A ”

    Gọi TA là biến cố “Phát được tín hiệu A ”

    Gọi TB là biến cố “Phát được tín hiệu B”.

    Ta cần tính P\left( T_{A}
ight) ta có: \left\{\begin{matrix}P(A) = 0,85 \\P\left( T_{B}|A ight) = \dfrac{1}{7} \Rightarrow P\left( T_{A}|Aight) = 1 - \dfrac{1}{7} = \dfrac{6}{7} \\P(B) = 0,15 \\P\left( T_{A}|B ight) = \dfrac{1}{8} \\\end{matrix} ight. khi đó:

    P\left( T_{A} ight) = P(A).P\left(
T_{A}|A ight) + P(B).P\left( T_{A}|B ight)

    \Rightarrow P\left( T_{A} ight) =
0,85.\frac{6}{7} + 0,15.\frac{1}{8} = \frac{837}{1120}

  • Câu 27: Thông hiểu

    Chọn kết quả chính xác

    Trong danh sách sĩ số hai lớp 12 có 95 học sinh, trong đó có 40 nam và 55 nữ. Trong kỳ thi kiểm tra chất lượng có 23 học sinh đạt điểm giỏi (trong đó có 12 nam và 11 nữ). Gọi tên ngẫu nhiên một học sinh trong danh sách. Tìm xác suất gọi được học sinh đạt điểm giỏi, biết rằng học sinh đó là nữ?

    Gọi A là biến cố “gọi được học sinh nữ”

    Gọi B là biến cố “gọi được học sinh đạt điểm giỏi”

    Ta đi tính P\left( B|A ight). Ta có: P(A) = \frac{55}{95};P(A \cap B) =
\frac{11}{95}

    Khi đó: P\left( B|A ight) = \frac{P(A
\cap B)}{P(A)} = \frac{11}{95}:\frac{55}{95} = \frac{11}{55} =
\frac{1}{5}.

  • Câu 28: Nhận biết

    Chọn phát biểu đúng

    Cho hai biến cố A, B với 0 <
P(B) < 1. Phát biểu nào sau đây đúng?

    Theo công thức xác suất toàn phần, ta có:

    P(A) = P(B).P\left( A|B ight) + P\left(
\overline{B} ight).P\left( A|\overline{B} ight).

  • Câu 29: Vận dụng cao

    Chọn kết quả chính xác

    Để thành lập đội tuyển quốc gia về một môn học, người ta tổ chức một cuộc thi tuyển gồm 3 vòng. Vòng thứ nhất lấy 80\% thí sinh; vòng thứ hai lấy 70\% thí sinh đã qua vòng thứ nhất và vòng thứ ba lấy 45\% thí sinh đã qua vòng thứ hai. Để vào được đội tuyển, thí sinh phải vượt qua được cả 3 vòng thi. Tính xác suất để một thí sinh bất kỳ bị loại ở vòng thứ hai, biết rằng thí sinh này bị loại?

    Gọi A_{i} là "thí sinh vượt qua vòng thứ i ' thì ta có P\left( A_{1} ight) = 0,8,P\left( A_{2} \mid
A_{1} ight) = 0,7P\left(
A_{3} \mid A_{1}A_{2} ight) = 0,45

    Gọi A là biến cố thí sinh được vào đội tuyển thì A xảy ra nếu thí sinh vượt qua cả 3 vòng, nghĩa là A =
A_{1}A_{2}A_{3}

    P(A) = P\left( A_{1}A_{2}A_{3} ight) =
P\left( A_{1} ight)P\left( A_{2} \mid A_{1} ight)P\left( A_{3} \mid
A_{1}A_{2} ight)= 0,8.0,7.0,45 = 0,252

    Gọi C là biến cố "thí sinh bị loại ở vòng 2, biết thí sinh này bị loại'.

    Ta biểu diễn C = A_{1}\overline{A_{2}}
\mid \bar{A}.

    P(C) = \frac{P\left\lbrack \left(A_{1}\overline{A_{2}} ight)\bar{A} ightbrack}{P(\bar{A})} =\frac{P\left( A_{1}\overline{A_{2}} ight)}{P(\bar{A})}A_{1}\overline{A_{2}} \subset \bar{A}

    = \frac{P\left( A_{1} ight)P\left(
\overline{A_{2}} \mid A_{1} ight)}{P(\bar{A})}= \frac{0,8.(1 - 0,7)}{1 - 0,252} \simeq
0,3208

  • Câu 30: Nhận biết

    Tính P(A|B)

    Cho P(A) = 0,3; P(B) = 0,5; P\left( B\left| A \right.\  \right) =
0,7. Khi đó P\left( A\left| B
\right.\  \right) bằng

    Theo công thức Bayes, ta có:

    P\left( A\left| B \right.\  \right) =
\frac{P(A).P\left( B\left| A \right.\  \right)}{P(B)} =
\frac{0,3.0,7}{0,5} = 0,42.

  • Câu 31: Vận dụng

    Chọn đáp án đúng

    Bạn T quên mất số cuối cùng trong số điện thoại cần gọi (số điện thoại gồm 6 chữ số) và T chọn số cuối cùng này một cách ngẫu nhiên. Tính xác suất để T gọi đúng số điện thoại này mà không phải thử quá 3 lần. Nếu biết số cuối cùng là số lẻ thì xác suất này là bao nhiêu?

    Gọi Ai: “gọi đúng ở lần thứ i” (i = 1, 2, 3)

    Khi đó, biến cố “gọi đúng khi không phải thử quá ba lần” là:

    A = A_{1} + \overline{A_{1}}A_{2} +
\overline{A_{1}}\overline{A_{2}}A_{3}

    Ta có:

    P(A) = P\left( A_{1} ight) + P\left(
\overline{A_{1}}A_{2} ight) + P\left(
\overline{A_{1}}\overline{A_{2}}A_{3} ight)

    = P\left( A_{1} ight) + P\left(
\overline{A_{1}} ight)P\left( A_{2}|\overline{A_{1}} ight) + P\left(
\overline{A_{1}} ight)P\left( \overline{A_{2}}|\overline{A_{1}}
ight)P\left( A_{3}|\overline{A_{1}}\overline{A_{2}}
ight)

    Khi đã biết số cuối cùng là số lẻ thì khi đó các số để chọn quay chỉ còn giới hạn lại trong 5 trường hợp (số lẻ) nên:

    P(A) = \frac{1}{5} +
\frac{4}{5}.\frac{1}{4} + \frac{4}{5}.\frac{3}{4}.\frac{1}{3} =
0,6

  • Câu 32: Thông hiểu

    Ghi đáp án đúng vào ô trống

    Một bình đựng 30 viên bi kích thước, chất liệu như nhau, trong đó có 20 viên bi xanh và 10 viên bi trắng. Lấy ngẫu nhiên ra một viên bi, rồi lại lấy ngẫu nhiên ra một viên bi nữa. Tính xác suất để lấy được một viên bi xanh ở lần thứ nhất và một viên bi trắng ở lần thứ hai. (Làm tròn kết quả đến hàng phần trăm)

    Đáp án: 0,23

    Đáp án là:

    Một bình đựng 30 viên bi kích thước, chất liệu như nhau, trong đó có 20 viên bi xanh và 10 viên bi trắng. Lấy ngẫu nhiên ra một viên bi, rồi lại lấy ngẫu nhiên ra một viên bi nữa. Tính xác suất để lấy được một viên bi xanh ở lần thứ nhất và một viên bi trắng ở lần thứ hai. (Làm tròn kết quả đến hàng phần trăm)

    Đáp án: 0,23

    Gọi A: “Lấy được một viên bi xanh ở lần thứ nhất”

    B: “Lấy được một viên bi trắng ở lần thứ hai”.

    Ta cần tính P(A \cap B)

    Vì 20 viên bi xanh trong tổng số 30 viên bi nên P(A) = \frac{20}{30} = \frac{2}{3}

    Do A xảy ra, tức là 1 viên bi xanh đã được lấy ra và còn có 29 viên bi trong đó có 10 viên bi trắng nên P\left( B\left| A ight.\  ight) =
\frac{10}{29}.

    Vậy xác suất cần tìm là P(A \cap B) =
P(A).P\left( B\left| A ight.\  ight) = \frac{2}{3}.\frac{10}{29} =
\frac{20}{87} \approx 0,23.

  • Câu 33: Thông hiểu

    Chọn đáp án đúng

    Cho hai biến cố AB, với P(A) =
0,8, P(B) = 0,65, P\left( A \cap \overline{B} \right) =
0,55. Tính P(A \cap
B).

    Ta có: P\left( A \cap \overline{B}
\right) + P(A \cap B) = P(A)

    \Rightarrow P(A \cap B) = P(A) - P\left(
A \cap \overline{B} \right) = 0,8 - 0,55 = 0,25

  • Câu 34: Nhận biết

    Tính xác suất của biến cố B

    Cho sơ đồ hình cây như sau

    Tính xác suất của biến cố B.

    Ta có P(B) = 0,4.0,6 + 0,4.0,3 =
0,36.

  • Câu 35: Thông hiểu

    Tính xác suất có điều kiện

    Một hộp chứa 4 quả bóng được đánh số từ 1 đến 4. Bạn Hoa lấy ngẫu nhiên một quả bóng, bỏ ra ngoài, rồi lấy tiếp một quả bóng nữa.

    Xét các biến cố:

    A: "Quả bóng lấy ra lần đầu có số chẵn"

    B: "Quả bóng lấy ra lần hai có số lẻ".

    Tính xác suất có điều kiện P\left( B|A
ight)?

    Ta có: \left\{ \begin{matrix}n(\Omega) = 12 \(A) = 6 \Rightarrow P(A) = \dfrac{6}{12} = \dfrac{1}{2} \(A \cap B) = 4 \Rightarrow P(A \cap B) = \dfrac{4}{12} = \dfrac{1}{3} \\\end{matrix} ight.

    Vậy P\left( B|A ight) = \dfrac{P(A \cap B)}{P(A)} = \dfrac{\dfrac{1}{3}}{\dfrac{1}{2}} = \dfrac{2}{3}

  • Câu 36: Thông hiểu

    Tính xác suất để chẩn đoán có bệnh

    Tại một phòng khám chuyên khoa tỷ lệ người đến khám có bệnh là 0,8. Người ta áp dụng phương pháp chẩn đoán mới thì thấy nếu khẳng định có bệnh thì đúng 9 trên 10 trường hợp; còn nếu khẳng định không bệnh thì đúng 5 trên 10 trường hợp. Tính xác suất để chẩn đoán có bệnh?

    Gọi A là "người đến khám có bệnh" thì A, \overline{A} tạo thành hệ đầy đủ

    Gọi B là "Chẩn đoán có bệnh".

    Ta có P(A | B) = 0.9, P(A|B) = 0.5.

    Tìm P(B) từ:

    P\left( A|B ight) = \frac{P(AB)}{P(B)}
= \frac{P(A) - P\left( A|\overline{B} ight).P\left( \overline{B}
ight)}{P(B)}

    \Rightarrow P\left( A|B ight) =
\frac{P(A) - P\left( A|\overline{B} ight).\left\lbrack 1 - P(B)
ightbrack}{P(B)}

    \Rightarrow 0,9 = \frac{0,8 -
0,5\left\lbrack 1 - P(B) ightbrack}{P(B)}

    \Leftrightarrow P(B) = 0,75

  • Câu 37: Vận dụng cao

    Chọn đáp án đúng

    Một thống kê cho thấy tỉ lệ dân số mắc bệnh hiểm nghèo Y0,5\%. Biết rằng, có một loại xét nghiệm mà nếu mắc bệnh hiểm nghèo Y thì với xác suất 94\% xét nghiệm cho kết quả dương tính; nếu không bị bệnh hiểm nghèo Y thì với xác suất 97\% xét nghiệm cho kết quả âm tính. Hỏi khi một người xét nghiệm cho kết quả dương tính thì xác suất mắc bệnh hiểm nghèo Y của người đó là bao nhiêu phần trăm (làm tròn kết quả đến hàng phần trăm)?

    Xét hai biến cố A: ‘‘Người được chọn ra bị mắc bệnh hiểm nghèo Y”,

    B: ‘‘Người được chọn ra có xét nghiệm cho kết quả dương tính”

    Do tỉ lệ người mắc bệnh hiểm nghèo Y0,5\% =
0,005 nên trước khi tiến hành xét nghiệm, xác suất mắc bệnh hiểm nghèo Y của một người là P(A) = 0,005.

    Khi đó: P\left( \overline{A} \right) = 1
- P(A) = 1 - 0,005 = 0,995.

    Nếu mắc bệnh hiểm nghèo Y thì với xác suất 94\% xét nghiệm cho kết quả dương tính

    Khi đó: P\left( B|A \right) = 94\% =
0,94.

    Nếu không bị bệnh hiểm nghèo Y thì với xác suất 97\% xét nghiệm cho kết quả âm tính

    Khi đó: P\left( \overline{B}|\overline{A}
\right) = 97\% = 0,97

    Ta có sơ đồ hình cây như sau

    A diagram of a triangle with Great Pyramid of Giza in the backgroundDescription automatically generated

    Ta thấy xác suất mắc bệnh hiểm nghèo Y của một người khi xét nghiệm cho kết quả dương tính là P\left( A|B
\right). Áp dụng công thức Bayes, ta có:

    P\left( A|B \right) = \frac{P(A).P\left(
B|A \right)}{P(A).P\left( B|A \right) + P\left( \overline{A}
\right).P\left( B|\overline{A} \right)}

    = \frac{0,005.0,94}{0,005.0,94 +
0,995.0,03} \approx 13,6\%.

    Vậy xác suất mắc bệnh hiểm nghèo Y của một người khi xét nghiệm cho kết quả dương tính là 13,6\%

  • Câu 38: Nhận biết

    Chọn đáp án đúng

    Cho hai biến cố AB sao cho P(A) = 0,6; P(B) = 0,4; P\left( A|B \right) = 0,3. Khi đó P\left( B|A \right) bằng?

    Áp dụng công thức Bayes, ta có:

    P\left( B|A \right) = \frac{P(B)P\left(
A|B \right)}{P(A)} = \frac{0,4.0,3}{0,6} = 0,2.

  • Câu 39: Thông hiểu

    Xét tính đúng sai của các khẳng định

    Cho hai biến cố ABP(A) =
0,6, P(B) = 0,4, P(AB) = 0,2.

    a) P\left( \overline{A} \right) =
0,6.Sai||Đúng

    b) P\left( \overline{B} \right) =
0,6.Đúng|Sai

    c) P\left( A|B \right) = 0,4. Sai||Đúng

    d) P\left( B|A \right) =
\frac{1}{3}. Đúng|Sai

    Đáp án là:

    Cho hai biến cố ABP(A) =
0,6, P(B) = 0,4, P(AB) = 0,2.

    a) P\left( \overline{A} \right) =
0,6.Sai||Đúng

    b) P\left( \overline{B} \right) =
0,6.Đúng|Sai

    c) P\left( A|B \right) = 0,4. Sai||Đúng

    d) P\left( B|A \right) =
\frac{1}{3}. Đúng|Sai

    a) SP\left( \overline{A} \right) = 1 -
0,6 = 0,4 \neq 0,6.

    b) Đ P\left( \overline{B} \right) = 1 -
0,4 = 0,6.

    c) s P\left( A|B \right) =
\frac{P(AB)}{P(B)} = \frac{0,2}{0,4} = 0,5 \neq 0,4.

    d) Đ P\left( B|A \right) =
\frac{P(AB)}{P(A)} = \frac{0,2}{0,6} = \frac{1}{3}.

  • Câu 40: Nhận biết

    Xét tính đúng sai của các kết luận

    Một két nước ngọt đựng 24 chai nước có khối lượng và hình thức bề ngoài như nhau, trong đó

    có 16 chai loại I và 8 chai loại II. Bác Tùng lần lượt lấy ra ngẫu nhiên hai chai (lấy không hoàn lại). Xét

    các biến cố: A:” lần thứ nhất lấy ra chai nước loại I”; B:”Lần thứ hai lấy ra chai nước loại I”.

    a)P\left( B|A \right) =
\frac{16}{23}. Sai||Đúng

    b)P\left( B|A \right) =
\frac{15}{23}. Sai||Đúng

    c)P\left( B|A \right) =
\frac{8}{23}. Đúng||Sai

    d) P\left( B|A \right) =
\frac{7}{23}. Đúng||Sai

    Đáp án là:

    Một két nước ngọt đựng 24 chai nước có khối lượng và hình thức bề ngoài như nhau, trong đó

    có 16 chai loại I và 8 chai loại II. Bác Tùng lần lượt lấy ra ngẫu nhiên hai chai (lấy không hoàn lại). Xét

    các biến cố: A:” lần thứ nhất lấy ra chai nước loại I”; B:”Lần thứ hai lấy ra chai nước loại I”.

    a)P\left( B|A \right) =
\frac{16}{23}. Sai||Đúng

    b)P\left( B|A \right) =
\frac{15}{23}. Sai||Đúng

    c)P\left( B|A \right) =
\frac{8}{23}. Đúng||Sai

    d) P\left( B|A \right) =
\frac{7}{23}. Đúng||Sai

    Ta có: P(A) = \frac{16}{24} =
\frac{2}{3};P(\overline{A}) = \frac{8}{24} = \frac{1}{3}.

    Nếu lần thứ nhất lấy ra chai loại I thì két còn 23 chai nước, trong đó có 15 chai loại I, 8 chai loại II. Suy ra P(B
\mid A) = \frac{15}{23}.

    Nếu lần thứ nhất lấy ra chai loại II thì két còn 23 chai nước, trong đó có 16 chai loại I, 7 chai loại II. Suy ra P(B \mid \overline{A}) =
\frac{16}{23}.

    Theo công thức xác suất toàn phần, ta có:

    P(B) = P(A).P(B \mid A) +
P(\overline{A}).P(B \mid \overline{A}) = \frac{2}{3} \cdot \frac{15}{23}
+ \frac{1}{3} \cdot \frac{16}{23} = \frac{2}{3}.

    Ta có: P(\overline{B} \mid A) = 1 - P(B
\mid A) = 1 - \frac{15}{23} = \frac{8}{23};

    P(\overline{B} \mid \overline{A}) = 1 -
P(B \mid \overline{A}) = 1 - \frac{16}{23} = \frac{7}{23}.

    Đáp án: a) S, b) S, c) Đ, d) Đ.

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 6 Xác suất có điều kiện Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo