Tổng số đường tiệm cận của đồ thị hàm số
Đồ thị hàm số
có các đường tiệm cận đứng và tiệm cận ngang lần lượt là:
Ta có: => Đồ thị hàm số có tiệm cận đứng là x = -2
Ta có: => y = -3 là tiệm cận ngang của đồ thị hàm số.
Hãy cùng thử sức kiểm tra đánh giá các kiến thức tổng quan với bài kiểm tra phút Chương 1: Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số Toán 12 sách Kết nối tri thức các em nhé!
Tổng số đường tiệm cận của đồ thị hàm số
Đồ thị hàm số
có các đường tiệm cận đứng và tiệm cận ngang lần lượt là:
Ta có: => Đồ thị hàm số có tiệm cận đứng là x = -2
Ta có: => y = -3 là tiệm cận ngang của đồ thị hàm số.
Ghi đáp án vào ô trống
Cho hàm số
. Hàm số
có đồ thị như hình vẽ:

Gọi
là tập hợp tất cả các giá trị nguyên dương của tham số
sao cho hàm số
đồng biến trên khoảng
. Hỏi tập hợp
có tất cả bao nhiêu phần tử?
Cho hàm số
. Hàm số
có đồ thị như hình vẽ:

Gọi
là tập hợp tất cả các giá trị nguyên dương của tham số
sao cho hàm số
đồng biến trên khoảng
. Hỏi tập hợp
có tất cả bao nhiêu phần tử?
Tìm tổng số đường tiệm cận của đồ thị hàm số
Cho hàm số
có bảng biến thiên như sau:

Tổng số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số đã cho là:
Hàm số có tập xác định:
Ta có:
Không tồn tại tiệm cận ngang khi
vậy hàm số
có tiệm cận ngang
;
Đồ thị hàm số có tiệm cận đứng
Vậy tổng số tiệm cận đứng và ngang là 2.
Tìm số tiệm cận của đồ thị hàm số y = f(x)
Cho hàm số
. Số đường tiệm cận của đồ thị hàm số y = f(x) là:
Ta có:
=> Đường thẳng x = 1 là tiệm cận đứng của đồ thị hàm số.
=> y = 2 là tiệm cận ngang của đồ thị hàm số
=> đường thẳng y = 1 là tiệm cận ngang của đồ thị hàm số.
Tính số điểm cực trị của hàm số
Cho hàm số y = f(x). Biết hàm số y = f’(x) có đồ thị như hình vẽ bên dưới. Số điểm cực trị của hàm số
là:

Ta có:
Do

Vậy hàm số có ba điểm cực trị.
Chọn mệnh đề đúng
Tìm tập hợp tất cả các giá trị của tham số thực
để hàm số
đồng biến trên khoảng
.
Ta có: .
Hàm số đồng biến trên khoảng khi và chỉ khi
.
.
Chọn khẳng định đúng
Biết giá trị lớn nhất của hàm số
trên đoạn
bằng
. Khẳng định nào dưới đây đúng?
Ta có: nên giá trị lớn nhất của hàm số
trên đoạn
là:
Vậy đáp án cần tìm là .
Tính giá trị biểu thức
Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số
. Giá trị của M – 2m2 bằng:
Điều kiện xác định
Xét hàm số trên [-1; 1] có:
Ta có:
Vậy
Tìm m thỏa mãn yêu cầu bài toán
Cho hàm số
(với
là tham số). Tìm tất cả các giá trị của tham số
để hàm số đồng biến trên từng khoảng xác định?
Tập xác định
Ta có: .
Để hàm số đồng biến trên khoảng xác định thì
Vậy đáp án cần tìm là: .
Tính tổng đường tiệm cận ngang và tiệm cận đứng
Tổng số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số
là:
Tập xác định suy ra đồ thị hàm số không có tiệm cận ngang.
Suy ra không là đường tiệm cận đứng của đồ thị hàm số.
Suy ra là đường tiệm cận đứng của đồ thị hàm số.
Vậy đồ thị hàm số có 1 đường tiệm cận.
Chọn hàm số thích hợp
Hàm số nào dưới đây có đồ thị như đường cong trong hình bên?

Đường cong trong hình vẽ là đồ thị hàm số với
nên đồ thị đã cho là đồ thị của hàm số
.
Tìm hàm số nghịch biến trên R
Hàm số nào dưới dây nghịch biến trên tập số thực?
Ta thấy hàm số có tập xác định
và đạo hàm
nên nghịch biến trên
.
Ghi đáp án vào ô trống
Xác định số giá trị nguyên của tham số
để hàm số
nghịch biến trên khoảng
?
Xác định số giá trị nguyên của tham số
để hàm số
nghịch biến trên khoảng
?
Tìm hàm số đồng biến trên tập số thực
Hàm số nào sau đây là hàm số đồng biến trên
?
Xét hàm số ta có:
suy ra hàm số liên tục trên
.
Tìm hàm số tương ứng với đồ thị
Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình vẽ cho sau đây?

Đồ thị hàm số bậc 4 có hệ số và có ba điểm cực trị nên
nên chọn
.
Xác định vận tốc lớn nhất
Người ta khảo sát gia tốc a(t) của một vật thể chuyển động (t là khoảng thời gian tính bằng giâu từ lúc vật thể chuyển động) từ giây thứ nhất đến giây thứ ba ghi nhận được a(t) là một hàm số liên tục có đồ thị như hình bên:

Hỏi trong thời gian từ giây thứ nhất đến giây thứ ba được khảo sát đó, thời điểm nào vận tốc lớn nhất?
Từ đồ thị ta có: a(t) = 0 => v’(t) = 0 = > t = 2
Ta có bảng biến thiên:

=> Vận tốc lớn nhất đạt được khi t = 2
Chọn khẳng định đúng
Gọi giá trị nhỏ nhất của hàm số
trên đoạn
là
. Chọn khẳng định đúng?
Tập xác định
Ta có:
Suy ra hàm số đồng biến trên suy ra
Tìm điều kiện của tham số m
Cho hàm số
liên tục trên
và có đồ thị như hình vẽ:

Gọi giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn
lần lượt là
. Kết luận nào sau đây đúng?
Quan sát đồ thị ta thấy
Chọn kết luận đúng
Đường cong trong hình vẽ dưới đây là đồ thị của hàm số nào?

Đồ thị trong hình vẽ là hàm số có dạng
Đồ thị hàm số có tiệm cận ngang là và tiệm cận đứng
nên hàm số cần tìm là
.
Chọn khẳng định đúng
Cho hàm số
xác định trên
liên tục trên các khoảng xác định của nó và có bảng biến thiên như sau:

Khẳng định nào dưới đây đúng?
Hàm số không có giá trị lớn nhất vì nên khẳng định “Giá trị lớn nhất của hàm số là
” sai.
Phương trình có 3 nghiệm thực phân biệt khi và chỉ khi
nên khẳng định “Phương trình
có
nghiệm thực phân biệt khi và chỉ khi
” đúng.
Hàm số đồng biến trên các khoảng và
nên khẳng định “Hàm số đồng biến trên một khoảng duy nhất là
” sai.
Đồ thị hàm số có hai đường tiệm cận là vì
nên khẳng định “Đồ thị hàm số có ba đường tiệm cận” sai.
Vậy khẳng định đúng cần tìm là “Phương trình có
nghiệm thực phân biệt khi và chỉ khi
.”
Tìm tiệm cận của đồ thị hàm số
Số đường tiệm cận của đồ thị hàm số
là:
Tập xác định
suy ra
là tiệm cận ngang.
suy ra
là tiệm cận ngang.
Vậy không là tiệm cận đứng của đồ thị hàm số đã cho.
suy ra
là tiệm cận đứng của đồ thị hàm số đã cho
Vậy đồ thị hàm số đã cho có 2 tiệm cận ngang và 1 tiệm cận đứng.
Chọn mệnh đề đúng
Cho hàm số
có bảng xét dấu đạo hàm như sau:

Mệnh đề nào sau đây đúng?
Chọn đáp án đúng
Khoảng nghịch biến của hàm số
là:
Tìm tham số m để hàm số đạt cực đại tại một điểm
Tất cả các giá trị của tham số
để hàm số
đạt cực đại tại
là:
Ta có:
Ta thấy hệ số nên nếu hàm số có ba cực trị thì hàm số có hai cực đại và một cực tiểu nên không thể đạt cực đại tại
.
Để hàm số đạt cực đại tại thì hàm số có một cực trị hay phương trình
vô nghiệm hoặc có nghiệm kép
.
Chọn đáp án thích hợp
Cho hàm số có bảng biến thiên như sau

Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
Dựa vào bảng biến thiên ta thấy trên khoảng thì
.
Vậy hàm số nghịch biến trên khoảng .
Chọn đáp án đúng
Giá trị thực của tham số
để hàm số
đạt cực tiểu tại điểm
thuộc khoảng nào sau đây?
Tập xác định
Ta có:
Để hàm số đạt cực tiểu tại thì
Vậy .
Xác định giá trị cực đại của hàm số
Cho hàm số
có bảng biến thiên như sau

Giá trị cực đại của hàm số đã cho bằng
Dựa bào BBT ta có: Giá trị cực đại của hàm số là
Chọn đáp án chính xác
Cho hàm số
liên tục trên đoạn
và có đồ thị như hình vẽ bên. Số nghiệm thực của phương trình
trên đoạn
là

Ta có .
Dựa vào đồ thị ta thấy đường thẳng cắt đồ thị hàm số
tại ba điểm phân biệt thuộc đoạn
.
Do đó phương trình có ba nghiệm thực.
Số TCĐ và TCN của đồ thị hàm số
Cho hàm số y = f(x) có bảng biến thiên như sau:

Hỏi đồ thị hàm số
có bao nhiêu tiệm cận đứng và tiệm cận ngang?
Dựa vào bảng biến thiên ta có:
Ta có:
Dựa vào bảng biến thiên suy ra phương trình f(x) = 2 có 2 nghiệm x = a hoặc x = b trong đó a < 0, b > 2
Với điều kiện thì phương trình
Do đó đồ thị hàm số có 4 đường tiệm cận đứng
Mặt khác bậc của tử số nhỏ hơn bậc của mẫu số nên đồ thị hàm số có một tiệm cận ngang là y = 0 => Đồ thị hàm số có 5 đường tiệm cận.
Chọn hàm số thích hợp
Trong các hàm số sau, hàm số nào có hai điểm cực đại và một điểm cực tiểu?
Dựa vào dấu của hệ số nên hàm số
có ba điểm cực trị trong đó có hai điểm cực đại và một điểm cực tiểu.
Tìm giá trị biểu thức T
Gọi
lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số
trên đoạn
. Giá trị biểu thức
là:
Ta có: nên hàm số đồng biến trên
.
Tìm m tham số m thỏa mãn yêu cầu
Tất cả giá trị của tham số
để đồ thị hàm số
cắt các trục tọa độ
lần lượt tại
sao cho diện tích tam giác
bằng 8 là
Giao điểm của đồ thị hàm số đã cho với trục tung là
Phương trình hoành độ giao điểm của đồ thị đã cho với trục hoành là:
Giao điểm của đồ thị đã cho với trục hoành là .
Diện tích tam giác là:
Chọn đáp án thích hợp
Độ giảm huyết áp của một bệnh nhân
trong đó
là số miligam thuộc được tiêm cho bệnh nhân
. Để bệnh nhân đó có huyết áp giảm nhiều nhất thì liều lượng thuốc cần tiêm vào là:
Ta có:
Ta có bảng biến thiên như sau:
Vậy để bệnh nhân đó có huyết áp giảm nhiều nhất thì lượng thuốc cần tiêm vào là .
Khẳng định nào sau đây đúng
Cho hàm số có đồ thị như hình vẽ sau đây:

Khẳng định nào sau đây đúng?
Dựa vào đồ thị hàm số ta thấy:
Đồ thị hàm số cắt trục Ox tại điểm có hoành độ dương =>
Đồ thị hàm số cắt trục Oy tại điểm có tung độ âm =>
Đồ thị hàm số nhận làm tiệm cận đứng và
làm tiệm cận ngang
Chọn a > 0 => b < 0; c > 0; d > 0 =>
Ghi đáp án vào ô trống
Hai thành phố A và B cách nhau một con sông. Người ta xây dựng một cây cầu EF bắc qua sông biết rằng thành phố A cách con sông một khoảng là 5km và thành phố B cách con sông một khoảng là 7km (hình vẽ), biết HE + KF = 24km và độ dài EF không đổi. Hỏi cần xây cây cầu cách thành phố B là bao nhiêu km để đường đi từ thành phố A đến thành phố B là ngắn nhất (đi theo đường AEFB) ? (kết quả làm tròn đến hàng đơn vị)

Đáp án: 16 km
Hai thành phố A và B cách nhau một con sông. Người ta xây dựng một cây cầu EF bắc qua sông biết rằng thành phố A cách con sông một khoảng là 5km và thành phố B cách con sông một khoảng là 7km (hình vẽ), biết HE + KF = 24km và độ dài EF không đổi. Hỏi cần xây cây cầu cách thành phố B là bao nhiêu km để đường đi từ thành phố A đến thành phố B là ngắn nhất (đi theo đường AEFB) ? (kết quả làm tròn đến hàng đơn vị)

Đáp án: 16 km
Đặt , với
Ta có:
Nhận định ngắn nhất khi
nhỏ nhất ( vì
không đổi).
Xét hàm số
.
Cho
Bảng biến thiên
Vậy
Khi đó
Tìm tâm đối xứng của đồ thị hàm số
Xác định tâm đối xứng của đồ thị hàm số
?
Ta có:
suy ra tiệm cận ngang là
suy ra tiệm cận đứng là
Tâm đối xứng của đồ thị hàm số là .
Chọn đáp án đúng
Cho hàm số
liên tục trên
có đồ thị hàm số
cho như hình vẽ

Hàm số
đồng biến trên khoảng nào?
Ta có đường thẳng cắt đồ thị hàm số
tại các điểm
như hình vẽ sau:
Dựa vào đồ thị của hai hàm số trên ta có và
.
+ Trường hợp 1: , khi đó ta có
.
Ta có .
.
Kết hợp điều kiện ta có .
+ Trường hợp 2: , khi đó ta có
.
.
Kết hợp điều kiện ta có .
Vậy hàm số đồng biến trên khoảng
.
Ghi đáp án đúng vào ô trống
Cho hàm số
có đạo hàm trên
và số
có đồ thị như hình vẽ sau. Tìm số điểm cực tiểu của hàm số
.

Đáp án: 2
Cho hàm số
có đạo hàm trên
và số
có đồ thị như hình vẽ sau. Tìm số điểm cực tiểu của hàm số
.

Đáp án: 2
Ta có
Ta có bảng biến thiên:
Từ bảng biến thiên ta có hàm số đạt cực tiểu tại
và
. Do đó hàm số
có
điểm cực tiểu.
Chọn mệnh đề đúng
Cho hàm số
xác định trên
, liên tục trên mỗi khoảng xác định và có bảng biến thiên như sau:

Mệnh đề nào sau đây là đúng?
Dựa vào bảng biến thiên, ta có nhận xét như sau:
“Đồ thị hàm số có một đường tiệm cận đứng” đúng vì là tiệm cận đứng của đồ thị hàm số.
“Hàm số đạt cực tiểu tại ” sai vì tại
hàm số không xác định.
“Giá trị lớn nhất của hàm số là 2” sai vì hàm số đạt giá trị lớn nhất bằng trên khoảng
mà không đạt giá trị lớn nhất trên khoảng
.
“Hàm số không có cực trị” sai vì đạo hàm đổi dấu từ
sang
khi đi qua điểm
là điểm cực đại của hàm số.
Tìm phương án đúng
Cho hàm số
có bảng biến thiên như sau:

Giá trị cực tiểu của hàm số đã cho bằng
Giá trị cực tiểu của hàm số đã cho bằng .
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: