Tìm hàm số tương ứng bảng biến thiên
Chọn hàm số tương ứng với bảng biến thiên sau?

Từ bảng biến thiên ta suy ra đồ thị hàm số bậc 4 trùng phương có hệ số nên hàm số cần tìm là
.
Hãy cùng thử sức kiểm tra đánh giá các kiến thức tổng quan với bài kiểm tra phút Chương 1: Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số Toán 12 sách Kết nối tri thức các em nhé!
Tìm hàm số tương ứng bảng biến thiên
Chọn hàm số tương ứng với bảng biến thiên sau?

Từ bảng biến thiên ta suy ra đồ thị hàm số bậc 4 trùng phương có hệ số nên hàm số cần tìm là
.
Định giá trị lớn nhất của hàm số chứa căn
Tìm giá trị lớn nhất
của hàm số ![]()
TXĐ: .
Đạo hàm
Ta có
Xác định giá trị tham số m thỏa mãn yêu cầu
Cho hàm số
với
là tham số. Tìm tất cả các giá trị của tham số
để hàm số đã cho đồng biến trên
?
Ta có:
Hàm số đồng biến trên khoảng
khi và chỉ khi:
Vậy đáp án cần tìm là .
Tìm mệnh đề đúng
Cho hàm số
, bảng xét dấu của
như sau:

Hàm số
đồng biến trên khoảng nào dưới đây?
Ta có
Tìm hàm số thích hợp với đường cong
Đường cong trong hình là đồ thị của hàm số nào dưới đây?

Hình vẽ trên là đồ thị của hàm số dạng Loại phương án
;
Ta thấy: Đồ thị có đường tiệm cận đứng là và đường tiệm cận ngang là
Phương án : Đồ thị có đường tiệm cận đứng là
loại
đúng.
Tìm khoảng nghịch biến của hàm số
Cho hàm số
có đồ thị như hình vẽ bên

Hàm số
nghịch biến trên khoảng nào sau đây?
Quan sát đồ thị nhận biết khoảng nghịch biến trên khoảng .
Ghi đáp án vào ô trống
Cho hàm số
. Gọi
là tập hợp tất cả các giá trị nguyên của tham số
để giá trị lớn nhất của hàm số trên đoạn
không vượt quá 7. Hỏi tập
có bao nhiêu phần tử là số nguyên?
Cho hàm số
. Gọi
là tập hợp tất cả các giá trị nguyên của tham số
để giá trị lớn nhất của hàm số trên đoạn
không vượt quá 7. Hỏi tập
có bao nhiêu phần tử là số nguyên?
Xác định số điểm cực trị của hàm số
Cho hàm số f(x) có đạo hàm
. Số cực trị của hàm số đã cho là
Xét phương trình
Ta có bảng xét dấu:

Quan sát bảng xét dấu ta dễ thấy f’(x) đổi dấu khi qua c = -2 và f’(x) đổi dấu khi qua x = 1
=> Hàm số có hai điểm cực trị
Xác định hàm số thỏa mãn yêu cầu
Trong các hàm số sau, hàm số nào nghịch biến trên từng khoảng xác định?
Xét hàm số ta có:
Điều kiện xác định
Lại có: nên hàm số
nghịch biến trên từng khoảng xác định của nó.
Xác định số giao điểm
Số giao điểm của đồ thị hàm số
và đồ thị hàm số ![]()
Phương trình hoành độ giao điểm:
.
Vậy số giao điểm của 2 đồ thị là 3.
Diện tích tam giác ABC
Cho hàm số
có đồ thị (C). Biết rằng đồ thị (C) có ba điểm cực trị tạo thành ba đỉnh của tam giác ABC. Diện tích tam giác ABC bằng:
Ta có:
Tọa độ các điểm cực trị của đồ thị hàm số là
=> Tam giác ABC vuông cân tại A =>
Chọn đáp án thích hợp
Hai điểm cực trị của đồ thị hàm số
là
Ta có:
Vậy hai điểm cực trị cần tìm là:
Xác định tính đúng sai của từng phương án
Hàm số
liên tục trên đoạn
và có bảng biến thiên như sau.

Gọi
và
lần lượt là GTLN và GTNN của hàm số trên
. Xét tính đúng sai của các khẳng định sau:
a)
Sai|| Đúng
b)
Sai|| Đúng
c)
Đúng||Sai
d)
Đúng||Sai
Hàm số
liên tục trên đoạn
và có bảng biến thiên như sau.

Gọi
và
lần lượt là GTLN và GTNN của hàm số trên
. Xét tính đúng sai của các khẳng định sau:
a)
Sai|| Đúng
b)
Sai|| Đúng
c)
Đúng||Sai
d)
Đúng||Sai
Dựa vào bảng biến thiên trên ta có:
Xác định số tiệm cận đứng của hàm số
Cho hàm số
có bảng biến thiên như hình vẽ dưới đây.

Hỏi đồ thị của hàm số đã cho có bao nhiêu đường tiệm cận đứng?
Quan sát bảng biến thiên đã cho ta thấy:
Đồ thị hàm số có hai đường tiệm cận đứng là hai đường thẳng có phương trình: .
Chọn đáp án đúng
Cho hàm số
. Hàm số
có đồ thị như hình bên. Hàm số
đồng biến trên khoảng

Cách 1:
Ta thấy với
nên
nghịch biến trên
và
suy ra
đồng biến trên
và
.
Khi đó đồng biến biến trên khoảng
và
Cách 2:
Dựa vào đồ thị của hàm số ta có
.
Ta có .
Để hàm số đồng biến thì
.
Chọn đáp án thích hợp
Cho hàm số
có bảng biến thiên như sau:

Xác định hàm số
?
Từ bảng biến thiên ta suy ra hàm số cần tìm là hàm số bậc ba
Vì nên đáp án là
.
Số đường tiệm cận của đồ thị hàm số
Cho hàm số
. Đồ thị hàm số có mấy đường tiệm cận?
Tập xác định:
Ta thấy rằng x = 1 không thuộc D => Đồ thị hàm số không có tiệm cận đứng.
=> y = 1 và y = -1 là hai tiệm cận ngang của đồ thị hàm số.
Chọn đáp án đúng
Cho hàm số
có bảng biến thiên như sau

Tổng số tiệm cận ngang và tiệm cận đứng của đồ thị hàm số đã cho là
Từ bảng biến thiên ta có:
+ Tiệm cận ngang
+ Tiệm cận đứng
Ghi đáp án vào ô trống
Một doanh nghiệp dự định sản xuất không quá 500 sản phẩm. Nếu doanh nghiệp sản xuất
sản phẩm
thì doanh thu nhận được khi bán hết số sân phẩm đó là
(đồng), trong khi chi phí sản xuất bình quân cho một sản phẩm là
(đồng). Doanh nghiệp cần sản xuất bao nhiêu sản phẩm để lợi nhuận thu được là lớn nhất?
Đáp án: 333
Một doanh nghiệp dự định sản xuất không quá 500 sản phẩm. Nếu doanh nghiệp sản xuất
sản phẩm
thì doanh thu nhận được khi bán hết số sân phẩm đó là
(đồng), trong khi chi phí sản xuất bình quân cho một sản phẩm là
(đồng). Doanh nghiệp cần sản xuất bao nhiêu sản phẩm để lợi nhuận thu được là lớn nhất?
Đáp án: 333
Chi phí sản xuất khi sản xuất x sản phẩm là
Do đó lợi nhận là:
Ta có:
với
Ta có bảng biến thiên như sau:
Vây doanh nghiệp nên sản xuất khoảng 333 sản phẩm để lợi nhuận đạt mức lớn nhất
Tính số tiệm cận đứng của đồ thị hàm số
Cho hàm số y = f(x) liên tục trên và y = f’(x) có bảng biến thiên như sau:

Đồ thị hàm số
có nhiều nhất bao nhiêu tiệm cận đứng:
Điều kiện
Để đồ thị hàm số có đường tiệm cận đứng
thì phải có nghiệm.
Từ bảng biến thiên của hàm số y = f’(x) suy ra phương trình f’(x) = 0 có đúng hai nghiệm là với
Từ đó ta có bảng biến thiên của hàm số y = f(x) như sau:

=> Phương trình y = f(x) có nhiều nhất ba nghiệm phân biệt
Vậy đồ thị hàm số có nhiều nhất ba đường tiệm cận đứng.
Tìm hàm số đồng biến trên tập số thực
Hàm số nào sau đây là hàm số đồng biến trên
?
Xét hàm số ta có:
suy ra hàm số liên tục trên
.
Chọn mệnh đề đúng
Cho hàm số
. Mệnh đề nào dưới đây đúng?
Ta có ;
.
Lập bảng biến thiên rồi suy ra hàm số nghịch biến trên khoảng .
Chọn mệnh đề đúng
Cho hàm số
có bảng biến thiên như sau:

Hàm số đã cho đồng biến trên khoảng nào dưới đây?
Hàm số đã cho đồng biến trên khoảng .
Xác định số TCĐ và TCN của đồ thị hàm số
Cho hàm số bậc ba
có đồ thị như hình vẽ dưới đây.

Đồ thị hàm số
có bao nhiêu đường tiệm cận đứng và tiệm cận ngang.
Đặt khi đó
thì
Khi đó
=> y = 0 là tiệm cận ngang của đồ thị hàm số g(x)
Mặt khác
=> Đồ thị hàm số g(x) có ba đường tiệm cận đứng.
Vậy đồ thị hàm số g(x) có bốn đường tiệm cận.
Xác định khoảng đồng biến của hàm số
Cho f(x) mà đồ thị hàm số y = f’(x) như hình vẽ.
Hàm số
đồng biến trên khoảng nào trong các đáp án dưới đây?
Ta có:
=>
Hàm số đồng biến khi
Đặt t = x – 1 thì (*) trở thành
Quan sát đồ thị hàm số y = f’(t) và y = -2t trên cùng một hệ tọa độ như hình vẽ

Khi đó ta thấy với thì độ thì hàm số y = f’(t) luôn nằm trên đường thẳng y = -2t
=>
Do đó với thì hàm số
đồng biến.
Chọn phương án đúng
Đồ thị hàm số
có tất cả bao nhiêu đường tiệm cận?
TXĐ: suy ra không tồn tại
và
Suy ra đồ thị hàm số không có tiệm cận ngang.
Ta có . Do đó đồ thị hàm số không có tiệm cận đứng.
Vậy đồ thị hàm số không có tiệm cận.
Xác định tính đúng sai của từng phương án
Cho hàm số
có đồ thị là (C). Xét tính đúng sai của các khẳng định sau:
a) Số khoảng đồng biến và nghịch biến của hàm số là bằng nhau. Đúng||Sai
b) Hàm số
đạt cực đại tại điểm có toạ độ (−1; 2). Đúng||Sai
c) Đường thẳng x = 1 là đường tiệm cận đứng của đồ thị hàm số
. Đúng||Sai
d) Phương trình đường tiệm cận xiên của đồ thị hàm số
là
. Sai||Đúng
Cho hàm số
có đồ thị là (C). Xét tính đúng sai của các khẳng định sau:
a) Số khoảng đồng biến và nghịch biến của hàm số là bằng nhau. Đúng||Sai
b) Hàm số
đạt cực đại tại điểm có toạ độ (−1; 2). Đúng||Sai
c) Đường thẳng x = 1 là đường tiệm cận đứng của đồ thị hàm số
. Đúng||Sai
d) Phương trình đường tiệm cận xiên của đồ thị hàm số
là
. Sai||Đúng
Hàm số có tập xác định
Ta có:
Bảng biến thiên
a) Đúng: Hàm số đồng biến trên các khoảng (−∞; -1) và (3;+∞) và nghịch biến trên các khoảng (−1;1) và (1;3) .
b) Đúng: Đồ thị hàm số đạt cực đại tại điểm (−1;2)
c) Đúng: Xét nên đường thẳng x = 1 là tiệm cận đứng của đồ thị hàm số
.
d) Sai: Xét nên đường thẳng y = x + 5 là tiệm cận xiên của đồ thị hàm số
.
Tìm tọa độ cực tiểu của hàm số
Cho hàm số
. Tọa độ điểm cực tiểu của đồ thị hàm số là:
Ta có:
Vậy điểm cực tiểu của đồ thị hàm số là (1; 0)
Xác định m thỏa mãn yêu cầu
Biết đồ thị hàm số
(với
là tham số) nhận trục hoành và trục tung làm hai đường tiệm cận. Tính tổng
?
Ta có: suy ra
là tiệm cận ngang của đồ thị hàm số.
Suy ra .
Đồ thị hàm số nhận trục tung là tiệm cận đứng nên phương trình
có một nghiệm bằng
hay
Theo giả thiết ta có:
Tính tổng các giá trị của tham số m
Tổng các giá trị nguyên âm của tham số
để hàm số
đồng biến trên khoảng
bằng:
Hàm số đồng biến trên khoảng
Theo bất đẳng thức Cauchy ta có:
Vì
Vậy tổng các giá trị của tham số m là .
Xác định số tập con của tập S
Gọi
là tập hợp tất cả các giá trị nguyên của tham số
để đồ thị hàm số
cắt trục hoành tại bốn điểm phân biệt có các hoành độ là
thỏa mãn
.Tập
có bao nhiêu tập con ?
Xét hàm
Có BBT
Dựa vào BBT YCBT
Khi đó
Kết hợp trên ta có . Vậy số tập con của
là
.
Tìm điều kiện của m thỏa mãn yêu cầu
Có bao nhiêu giá trị thực của tham số
để hàm số
có điểm cực đại
và điểm cực tiểu
thỏa mãn biểu thức
?
Ta có: có
nên
.
Hàm số có cực đại và cực tiểu khi và chỉ khi .
Trường hợp 1:
Do
Lại có
Với điều kiện thỏa mãn.
Trường hợp 2:
Do
Lại có
Với điều kiện thỏa mãn.
Vậy có 2 giá trị thực của tham số m thỏa mãn.
Chọn kết luận đúng
Cho hàm số
liên tục trên
và có đồ thị như hình vẽ:

Gọi giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn
lần lượt là
. Kết luận nào sau đây đúng?
Quan sát đồ thị ta thấy
Tính giá trị của biểu thức
Cho hàm số
liên tục trên đoạn
và có đồ thị như hình vẽ:

Giả sử
lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn
. Khi đó giá trị của biểu thức
bằng bao nhiêu?
Từ đồ thị hàm số liên tục trên
Số nghiệm của phương trình
Cho hàm số
có bảng biến thiên như hình vẽ dưới đây:

Số nghiệm của phương trình
là:
Ta có:
Khi đó suy ra phương trình (1) có 1 nghiệm; phương trình (2) có 3 nghiệm và phương trình (3) có 1 nghiệm.
=> Phương trình có 5 nghiệm
Xác định khoảng nghịch biến của hàm số
Hàm số
nghịch biến trên khoảng nào?
Tập xác định .
Ta có .
Ta có bảng xét dấu :
Từ bảng xét dấu ta thấy hàm số nghịch biến trên khoảng .
Ghi đáp án vào ô trống
Cho hàm số
có điểm cực tiểu và điểm cực đại lần lượt là
. Tính
?
Cho hàm số
có điểm cực tiểu và điểm cực đại lần lượt là
. Tính
?
Xác định tham số m thỏa mãn yêu cầu
Tất cả các giá trị của tham số
để đồ thị hàm số
có duy nhất một đường tiệm cận là:
Ta có: nên đồ thị hàm số luôn có một đường tiệm cận ngang là
.
Vậy để đồ thị hàm số có duy nhất một đường tiệm cận thì đồ thị hàm số không có đường tiệm cận đứng, hay phương trình
vô nghiệm
Điều kiện của m để hàm số có 6 cực trị
Cho hàm số y = f(x) như hình vẽ. Hỏi có tất cả bao nhiêu giá trị thực của tham số m để hàm số
có đúng 6 điểm cực trị?

Xét hàm số
Yêu cầu bài toán xảy ra khi phương trình đạo hàm phải có 6 nghiệm bội lẻ:
Ta có:
Phương trình (*) luôn có hai nghiệm phân biệt => Hai phương trình còn lại phải cho đúng 4 nghiệm nghiệm bội lẻ.
Nhận thấy hai phương trình (1), (2) luôn cho hai nghiệm phân biệt vafcacs nghiệm của hai phương trình này không trùng nhau.
Để hai phương trình có đúng 4 nghiệm bội lẻ thì:
TH1: x = 1 là nghiệm của (x – 1)[x2 – (m – 1)x – m – 1] = 0 và x = -1 không phải là nghiệm của (x – 1)[x2 – (m + 1)x + m – 1] = 0
TH2: x = -1 là nghiệm của (x – 1)[x2 – (m + 1)x + m – 1] = 0 và x = 1 không phải là nghiệm của (x – 1)[x2 – (m – 1)x - m – 1] = 0
=>
Vậy có hai giá thực của m thỏa mãn
Giá trị lớn nhất của hàm số
Giá trị lớn nhất của hàm số ![]()
Điều kiện xác định
Xét hàm số trên
ta có:
Phương trình
Ta có:
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: