Chọn đáp án đúng:
Tìm m để đồ thị hàm số
không có tiệm cận đứng.
Hãy cùng thử sức kiểm tra đánh giá các kiến thức tổng quan với bài kiểm tra phút Chương 1: Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số Toán 12 sách Kết nối tri thức các em nhé!
Chọn đáp án đúng:
Tìm m để đồ thị hàm số
không có tiệm cận đứng.
Tìm câu sai
Cho hàm số
có bảng biến thiên như sau:

Mệnh đề nào sau đây là sai?
Từ bảng biến thiên, ta có:
là TCN;
là TCĐ;
là TCĐ.
Vậy đồ thị hàm số có tất cả ba đường tiệm cận. Do đó “Đồ thị hàm số có tất cả hai đường tiệm cận” sai.
Chọn đáp án đúng
Cho hàm số
. Gọi M là giá trị lớn nhất và m là giá trị nhỏ nhất của hàm số đã cho. Chọn mệnh đề đúng.
Đặt
Khi đó
Vậy M = 1; m = 0 => M = m + 1
Chọn đáp án chính xác
Tìm tất cả các giá trị thực của tham số
để giá trị nhỏ nhất của hàm số
trên
bằng
?
Ta có:
Xét
Mà và
Khi đó
Theo đề bài ra ta có:
Vậy đáp án cần tìm là .
Chọn khẳng định đúng
Cho hàm số
có
và
. Khẳng định nào sau đây là khẳng định đúng?
Ta có là tiệm cận ngang.
Đáp án “Đồ thị hàm số nằm phía trên trục hoành.“ sai vì chọn hàm .
Vậy ta chỉ có đáp án “Đồ thị hàm số có một tiệm cận ngang là trục hoành” đúng.
Xác định các giá trị nguyên của tham số m
Có bao nhiêu giá trị nguyên của tham số
để hàm số
nghịch biến trên khoảng
?
Tập xác định
Ta có:
Hàm số nghịch biến trên khoảng
khi và chỉ khi
Vì nên có tất cả 5 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.
Ghi đáp án vào ô trống
Cho hàm số
có đồ thị
. Tìm giá trị
để đồ thị hàm số có đường tiệm cận và đường tiệm cận đó cách đường tiếp tuyến của
một khoảng bằng
?
Cho hàm số
có đồ thị
. Tìm giá trị
để đồ thị hàm số có đường tiệm cận và đường tiệm cận đó cách đường tiếp tuyến của
một khoảng bằng
?
Chọn đáp án thích hợp
Tìm tất cả giá trị thực của tham số
để hàm số
nghịch biến trên các khoảng mà nó xác định?
Với thì hàm số là hàm hằng
nên không nghịch biến.
Ta có
.
Hàm số nghịch biến trên từng khoảng của tập xác định khi và chỉ khi .
Hàm số đồng biến trên khoảng nào dưới đây
Cho hàm số
liên tục trên
và có bảng biến thiên như hình vẽ sau:

Hỏi hàm số
đồng biến trên khoảng nào dưới đây?
Ta có:
Từ đó hàm số đồng biến trên khoảng
Chọn phương án đúng
Cho hàm số
có đạo hàm
với mọi
. Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
Ta có: .
Vậy hàm số nghịch biến trên khoảng
.
Xác định hàm số thỏa mãn yêu cầu
Trong các hàm số sau, hàm số nào nghịch biến trên từng khoảng xác định?
Xét hàm số ta có:
Điều kiện xác định
Lại có: nên hàm số
nghịch biến trên từng khoảng xác định của nó.
Tìm mệnh đề sai
Cho hàm số
liên tục trên
, có bảng biến thiên như hình sau:

Trong các mệnh đề sau, mệnh đề nào sai?
Dựa vào BBT ta thấy hàm số không có GTLN, GTNN.
Vậy khẳng định sai là: “Hàm số có giá trị lớn nhất bằng và giá trị nhỏ nhất bằng
.”
Chọn đáp án thích hợp
Tập hợp tất cả các giá trị của tham số
để hàm số
nghịch biến trên
là:
Đặt
Điều kiện xác định
Xét hàm ta có:
Ta có bảng biến thiên
Từ bảng biến thiên ta thấy hàm số nghịch biến trên khoảng
và
Khi đó yêu cầu bài toán đồng biến trên
Điều kiện xác định
Ta có:
Để hàm số đồng biến trên thì
Vậy đáp án cần tìm là
Chọn mệnh đề đúng
Cho hàm số
có bảng biến thiên như sau:

Mệnh đề nào sau đây đúng?
Từ bảng biến thiên của hàm số ta có:
nên đồ thị hàm số đã cho không có tiệm cận ngang.
Và nên đồ thị hàm số đã cho không có tiệm cận đứng.
Vậy đồ thị hàm số đã cho không có tiệm cận.
Tìm khẳng định đúng
Cho hàm số
. Khẳng định nào sau đây đúng?
Ta có:
Suy ra hàm số nghịch biến trên khoảng
Mà nên hàm số cũng nghịch biến trên khoảng
.
Khẳng định nào sau đây đúng
Cho hàm số có đồ thị như hình vẽ sau đây:

Khẳng định nào sau đây đúng?
Dựa vào đồ thị hàm số ta thấy:
Đồ thị hàm số cắt trục Ox tại điểm có hoành độ dương =>
Đồ thị hàm số cắt trục Oy tại điểm có tung độ âm =>
Đồ thị hàm số nhận làm tiệm cận đứng và
làm tiệm cận ngang
Chọn a > 0 => b < 0; c > 0; d > 0 =>
Ghi đáp án vào ô trống
Cho hàm số
có đạo hàm
với
và
là tham số. Có bao nhiêu giá trị nguyên của
để hàm số
có 5 điểm cực trị?
Cho hàm số
có đạo hàm
với
và
là tham số. Có bao nhiêu giá trị nguyên của
để hàm số
có 5 điểm cực trị?
Ghi đáp án vào ô trống
Anh Hùng đang ở trong rừng để đào vàng và tìm thấy vàng ở điểm
cách điểm
một khoảng 3 km. Điểm
nằm trên đường bờ biển (đường bờ biển là đường thẳng). Trại của anh Hùng nằm ở vị trí
cách điểm
một khoảng 3 km. Điểm
cũng thuộc đường bờ biển. Biết rằng
và
(minh hoạ như hình vẽ sau).

Khi đang đào vàng, anh Hùng không may bị rắn cắn, chất độc lan vào máu. Sau khi bị cắn, nồng độ chất độc trong máu tăng theo thời gian được tính theo phương trình
. Trong đó,
là nồng độ,
là thời gian tính bằng giờ sau khi bị rắn cắn. Anh cần quay trở lại trại để lấy thuốc giải độc. Anh ấy chạy trong rừng và trên bãi biển với vận tốc lần lượt là
và
. Để về đến trại anh Hùng cần chạy từ trong rừng qua điểm
trên bãi biển. Tính nồng độ chất độc trong máu thấp nhất khi anh Hùng về đến trại (làm tròn đáp án đến hàng phần chục).
Anh Hùng đang ở trong rừng để đào vàng và tìm thấy vàng ở điểm
cách điểm
một khoảng 3 km. Điểm
nằm trên đường bờ biển (đường bờ biển là đường thẳng). Trại của anh Hùng nằm ở vị trí
cách điểm
một khoảng 3 km. Điểm
cũng thuộc đường bờ biển. Biết rằng
và
(minh hoạ như hình vẽ sau).

Khi đang đào vàng, anh Hùng không may bị rắn cắn, chất độc lan vào máu. Sau khi bị cắn, nồng độ chất độc trong máu tăng theo thời gian được tính theo phương trình
. Trong đó,
là nồng độ,
là thời gian tính bằng giờ sau khi bị rắn cắn. Anh cần quay trở lại trại để lấy thuốc giải độc. Anh ấy chạy trong rừng và trên bãi biển với vận tốc lần lượt là
và
. Để về đến trại anh Hùng cần chạy từ trong rừng qua điểm
trên bãi biển. Tính nồng độ chất độc trong máu thấp nhất khi anh Hùng về đến trại (làm tròn đáp án đến hàng phần chục).
Tìm điểm cực đại của hàm số
Cho hàm số
có bảng biến thiên như sau :

Điểm cực đại của hàm số đã cho là
Điểm cực đại của hàm số đã cho là
Tìm điều kiện tham số m thỏa mãn yêu cầu bài toán
Cho hàm số
với
là tham số. Điều kiện cần và đủ của tham số
để hàm số nghịch biến trên khoảng
là:
Tập xác định
Ta có:
Hàm số nghịch biến trên khi và chỉ khi
Xét hàm số trên khoảng
ta có bảng biến thiên như sau:
Vậy để hàm số nghịch biến trên thì
.
Xác định số nghiệm tối đa
Cho đồ thị hàm số
như sau:

Hỏi phương trình
có tối đa bao nhiêu nghiệm thực?
Phương trình là phương trình hoành độ giao điểm của đồ thị hàm số
và đường thẳng
Số giao điểm của hai đường bằng số nghiệm của phương trình .
Dựa vào đồ thị hàm số ta thấy đường thẳng cắt đồ thị tại nhiều nhất 5 điểm.
Vậy phương trình có tối đa 5 nghiệm.
Tìm số nghiệm của phương trình
Cho hàm số
liên tục trên đoạn
và có đồ thị là đường cong như hình vẽ bên. Tìm số nghiệm của phương trình
trên đoạn
.

Ta có số nghiệm của phương trình là số giao điểm của đồ thị hàm số
với đường thẳng
.
Từ hình vẽ ta thấy đường thẳng cắt đồ thị hàm số
tại 6 điểm. Vậy số nghiệm của phương trình
là 6.
Ghi đáp án vào ô trống
Hằng ngày mực nước của hồ thủy điện ở miền Trung lên và xuống theo lượng nước mưa, và các suối nước đổ về hồ. Từ lúc 8h sáng, độ sâu của mực nước trong hồ tính theo mét và lên xuống theo thời gian t (giờ) trong ngày cho bởi công thức
. Biết rằng phải thông báo cho các hộ dân di dời trước khi xả nước theo quy định trước 5 tiếng. Hỏi cần thông báo cho hộ dân di dời trước khi xả nước lúc mấy giờ. Biết rằng mực nước trong hồ phải lên cao nhất mới xả nước.
Đáp án: 15
Hằng ngày mực nước của hồ thủy điện ở miền Trung lên và xuống theo lượng nước mưa, và các suối nước đổ về hồ. Từ lúc 8h sáng, độ sâu của mực nước trong hồ tính theo mét và lên xuống theo thời gian t (giờ) trong ngày cho bởi công thức
. Biết rằng phải thông báo cho các hộ dân di dời trước khi xả nước theo quy định trước 5 tiếng. Hỏi cần thông báo cho hộ dân di dời trước khi xả nước lúc mấy giờ. Biết rằng mực nước trong hồ phải lên cao nhất mới xả nước.
Đáp án: 15
Ta có:
Bảng biến thiên:
Mực nước lên cao nhất thì phải mất giờ.
Hay mực nước lên cao nhất là lúc 20 giờ.
Vậy phải thông báo cho dân di dời vào giờ chiều cùng ngày.
Tìm hàm số theo yêu cầu
Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên?

Đây là đồ thị của hàm số bậc ba với hệ số nên chọn
.
Tìm hàm số thỏa mãn đồ thị đã cho trước
Đồ thị hàm số nào dưới đây có dạng như đường cong trong hình vẽ bên?

Quan sát đồ thị ta thấy đây là đồ thị của hàm số .
Vậy chọn
Ghi đáp án vào ô trống
Sau khi phát hiện một bệnh dịch, các chuyên gia y tế ước tính số người nhiễm bệnh kể từ ngày xuất hiện bệnh nhân đầu tiên đến ngày thứ
là
(người). Nếu xem
là tốc độ truyền bệnh (người/ngày) tại thời điểm
. Tốc độ truyền bệnh sẽ lớn nhất vào ngày thứ mấy?
Đáp án: Ngày thứ 4||tư
Sau khi phát hiện một bệnh dịch, các chuyên gia y tế ước tính số người nhiễm bệnh kể từ ngày xuất hiện bệnh nhân đầu tiên đến ngày thứ
là
(người). Nếu xem
là tốc độ truyền bệnh (người/ngày) tại thời điểm
. Tốc độ truyền bệnh sẽ lớn nhất vào ngày thứ mấy?
Đáp án: Ngày thứ 4||tư
Điều kiện .
Ta có ,
,
.
Bảng biến thiên:
Vậy tốc độ truyền bệnh lớn nhất vào ngày thứ .
Đáp số: .
Ghi đáp án vào ô trống
Cho hàm số
biết
. Có thể có bao nhiêu giá trị nguyên của tham số m để hàm số đã cho có đúng ba điểm cực trị?
Cho hàm số
biết
. Có thể có bao nhiêu giá trị nguyên của tham số m để hàm số đã cho có đúng ba điểm cực trị?
Tìm tất cả các giá trị của tham số m
Cho hàm số
với
là tham số thực. Tìm tất cả các giá trị của
để hàm số có giá trị nhỏ nhất trên đoạn
bằng ![]()
Đạo hàm.
Suy ra hàm số đồng biến trên
Theo bài ra:
Tìm tọa độ tâm đối xứng
Tọa độ tâm đối xứng của đồ thị hàm số
là:
Ta có:
Tọa độ tâm đối xứng của đồ thị hàm số là
Chọn kết luận đúng
Tiếp tuyến tại điểm cực tiểu của đồ thị hàm số ![]()
Ta có:
nên hàm số đạt cực đại tại điểm
và đạt cực tiểu tại
Mà suy ra tiếp tuyến tại điểm cực tiểu của đồ thị hàm số
Vậy tiếp tuyến song song với trục hoành.
Tìm số đường tiệm cận ngang
Cho hàm số
có bảng biến thiên:

Số đường tiệm cận ngang của đồ thị hàm số
là:
Ta có: nên đồ thị hàm số đã cho có 2 đường tiệm cận ngang
.
Xác định tọa độ giao điểm
Tìm tọa độ giao điểm của đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số ![]()
TXĐ
Dễ thấy đồ thị hàm số có TCĐ: và TCN:
.
Suy ra giao điểm của hai đường tiệm cận là .
Tính giá trị biểu thức P
Biết rằng hàm số
đạt giá trị nhỏ nhất trên
tại điểm
. Khi đó giá trị biểu thức
bằng:
Ta có:
Mà khi
Suy ra .
Tính số tiệm cận đứng của đồ thị hàm số
Cho hàm số y = f(x) liên tục trên và y = f’(x) có bảng biến thiên như sau:

Đồ thị hàm số
có nhiều nhất bao nhiêu tiệm cận đứng:
Điều kiện
Để đồ thị hàm số có đường tiệm cận đứng
thì phải có nghiệm.
Từ bảng biến thiên của hàm số y = f’(x) suy ra phương trình f’(x) = 0 có đúng hai nghiệm là với
Từ đó ta có bảng biến thiên của hàm số y = f(x) như sau:

=> Phương trình y = f(x) có nhiều nhất ba nghiệm phân biệt
Vậy đồ thị hàm số có nhiều nhất ba đường tiệm cận đứng.
Chọn đáp án đúng
Cho hàm số
có đồ thị như hình vẽ:

Hàm số
nghịch biến trên khoảng nào dưới đây?
Từ đồ thị hàm số ta thấy hàm số đồng biến trên khoảng
Xét hàm số ta có:
Suy ra hàm số nghịch biến trên khoảng
.
Xác định giá trị lớn nhất của hàm số
Tìm giá trị lớn nhất của hàm số
trên đoạn
?
Ta có:
.
Ghi đáp án vào ô trống
Ta xác định được các số
,
,
để đồ thị hàm số
đi qua điểm
và có điểm cực trị
. Tính giá trị biểu thức
.
Đáp án: 4050
Ta xác định được các số
,
,
để đồ thị hàm số
đi qua điểm
và có điểm cực trị
. Tính giá trị biểu thức
.
Đáp án: 4050
Ta có: .
Đồ thị hàm số đi qua điểm
nên ta có:
.
Đồ thị hàm số có điểm cực trị nên
.
Xét hệ phương trình
.
Vậy .
Chọn phương án đúng
Cho hàm số
có bảng xét dấu đạo hàm như sau:

Hàm số
đồng biến trên khoảng nào sau đây
Ta có .
Để đồng biến thì
.
Vậy hàm số đồng biến trên .
Tìm cực đại của hàm số
Hàm số
có cực đại là:
Ta có:
=> x = 0 là điểm cực đại của hàm số
Tìm điều kiện của tham số m
Định tất cả các giá trị thực của
để hàm số
có ba điểm cực trị?
Ta có:
Để hàm số có ba điểm cực trị thì có ba nghiệm phân biệt suy ra phương trình
có hai nghiệm phân biệt khác
Vậy đáp án cần tìm là .
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: