Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề kiểm tra 45 phút Chương 1 Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Mô tả thêm:

Hãy cùng thử sức kiểm tra đánh giá các kiến thức tổng quan với bài kiểm tra phút Chương 1: Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số Toán 12 sách Kết nối tri thức các em nhé!

  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Thông hiểu

    Chọn đáp án đúng:

    Tìm m để đồ thị hàm số y = \frac{x^{2}-(2m+3)x+2(m-1) }{x-2} không có tiệm cận đứng.

  • Câu 2: Thông hiểu

    Tìm câu sai

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Mệnh đề nào sau đây là sai?

    Từ bảng biến thiên, ta có:

    \lim_{x ightarrow \pm \infty}y = 0
ightarrow y = 0 là TCN;

    \left\{ \begin{matrix}
\lim_{x ightarrow \ ( - 3)^{+}}y = - \infty \\
\lim_{x ightarrow \ ( - 3)^{-}}y = + \infty \\
\end{matrix} ight.\  ightarrow x = - 3 là TCĐ;

    \left\{ \begin{matrix}
\lim_{x ightarrow \ 3^{+}}y = - \infty \\
\lim_{x ightarrow \ 3^{-}}y = + \infty \\
\end{matrix} ight.\  ightarrow x = 3 là TCĐ.

    Vậy đồ thị hàm số có tất cả ba đường tiệm cận. Do đó “Đồ thị hàm số có tất cả hai đường tiệm cận” sai.

  • Câu 3: Thông hiểu

    Chọn đáp án đúng

    Cho hàm số y = \frac{{\sin x + 1}}{{{{\sin }^2}x + \sin x + 1}}. Gọi M là giá trị lớn nhất và m là giá trị nhỏ nhất của hàm số đã cho. Chọn mệnh đề đúng.

    Đặt t = \sin x,t \in \left[ { - 1;1} ight]

    Khi đó y = f\left( t ight) = \frac{{t + 1}}{{{t^2} + t + 1}}

    \begin{matrix}  f'\left( t ight) = \dfrac{{ - {t^2} - 2t}}{{{{\left( {{t^2} + t + 1} ight)}^2}}} \hfill \\  f'\left( t ight) = 0 \Rightarrow \left[ {\begin{array}{*{20}{c}}  {t = 0\left( {tm} ight)} \\   {t =  - 2\left( L ight)} \end{array}} ight. \hfill \\  f\left( 0 ight) = 1;f\left( { - 1} ight) = 0;f\left( 1 ight) = \frac{2}{3} \hfill \\ \end{matrix}

    Vậy M = 1; m = 0 => M = m + 1

  • Câu 4: Thông hiểu

    Chọn đáp án chính xác

    Tìm tất cả các giá trị thực của tham số m để giá trị nhỏ nhất của hàm số f(x) = - x^{3} - 3x^{2} + m trên \lbrack - 1;1brack bằng 0?

    Ta có: f'(x) = - 3x^{2} -
6x

    Xét f'(x) = 0 \Leftrightarrow -
3x^{2} - 6x = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = - 2 \\
\end{matrix} ight.

    \left\{ \begin{matrix}
f( - 1) = m - 2 \\
f(0) = m \\
f(1) = m - 4 \\
\end{matrix} ight.m - 4
< m - 2 < m

    Khi đó \min_{\lbrack - 1;1brack}f(x) =
f(1) = m - 4

    Theo đề bài ra ta có:

    \min_{\lbrack - 1;1brack}f(x) = 0
\Leftrightarrow m - 4 = 0 \Leftrightarrow m = 4

    Vậy đáp án cần tìm là m = 4.

  • Câu 5: Nhận biết

    Chọn khẳng định đúng

    Cho hàm số y = f(x)\lim_{x ightarrow + \infty}f(x) = 0\lim_{x ightarrow - \infty}f(x) = +
\infty. Khẳng định nào sau đây là khẳng định đúng?

    Ta có \lim_{x ightarrow + \infty}f(x) =
0\overset{}{ightarrow}y = 0 là tiệm cận ngang.

    Đáp án “Đồ thị hàm số nằm phía trên trục hoành.“ sai vì chọn hàm y = \left\{ \begin{matrix}
\left( \dfrac{1}{2} ight)^{x} & ;x \leq - 1 \\
- \left( \dfrac{1}{2} ight)^{x} & ;x \geq 1 \\
\end{matrix} ight..

    Vậy ta chỉ có đáp án “Đồ thị hàm số có một tiệm cận ngang là trục hoành” đúng.

  • Câu 6: Thông hiểu

    Xác định các giá trị nguyên của tham số m

    Có bao nhiêu giá trị nguyên của tham số m để hàm số y
= \frac{x + 6}{x + 5m} nghịch biến trên khoảng (15; + \infty)?

    Tập xác định D\mathbb{=
R}\backslash\left\{ - 5m ight\}

    Ta có: y' = \frac{5m - 6}{(x +
5m)^{2}}

    Hàm số y = \frac{x + 6}{x + 5m} nghịch biến trên khoảng (15; +
\infty) khi và chỉ khi

    \left\{ \begin{matrix}
5m - 6 < 0 \\
- 5m \leq 15 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m < \frac{6}{5} \\
m \geq - 3 \\
\end{matrix} ight.\  \Leftrightarrow - 3 \leq m <
\frac{6}{5}

    m\mathbb{\in Z} nên có tất cả 5 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.

  • Câu 7: Vận dụng

    Ghi đáp án vào ô trống

    Cho hàm số y = \frac{x + 1}{\sqrt{ax^{2}+ 1}} có đồ thị (C). Tìm giá trị a để đồ thị hàm số có đường tiệm cận và đường tiệm cận đó cách đường tiếp tuyến của (C) một khoảng bằng \sqrt{2} - 1?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = \frac{x + 1}{\sqrt{ax^{2}+ 1}} có đồ thị (C). Tìm giá trị a để đồ thị hàm số có đường tiệm cận và đường tiệm cận đó cách đường tiếp tuyến của (C) một khoảng bằng \sqrt{2} - 1?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 8: Thông hiểu

    Chọn đáp án thích hợp

    Tìm tất cả giá trị thực của tham số m để hàm số y
= \frac{x + 2 - m}{x + 1} nghịch biến trên các khoảng mà nó xác định?

    Với m = 1 thì hàm số là hàm hằng (\forall x eq - 1) nên không nghịch biến.

    Ta có

    y' = \frac{m - 1}{(x +
1)^{2}},\forall x eq - 1.

    Hàm số nghịch biến trên từng khoảng của tập xác định khi và chỉ khi y' < 0,x eq - 1 \Leftrightarrow m
< 1.

  • Câu 9: Vận dụng

    Hàm số đồng biến trên khoảng nào dưới đây

    Cho hàm số y = f\left( x ight) liên tục trên \mathbb{R} và có bảng biến thiên như hình vẽ sau:

    Hàm số đồng biến trên khoảng nào dưới đây

    Hỏi hàm số y = f\left( {2x - 1} ight) đồng biến trên khoảng nào dưới đây?

    Ta có:

    \begin{matrix}  f'\left( x ight) > 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  { - 1 < x < 0} \\   {x > 1} \end{array}} ight. \hfill \\   \Rightarrow y' = 2f'\left( {2x - 1} ight) > 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  { - 1 < 2x - 1 < 0} \\   {2x - 1 > 1} \end{array}} ight. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {0 < x < \dfrac{1}{2}} \\   {x > 1} \end{array}} ight. \hfill \\ \end{matrix}

    Từ đó hàm số y = f\left( {2x - 1} ight) đồng biến trên khoảng \left( {\frac{1}{4};\frac{1}{3}} ight)

  • Câu 10: Nhận biết

    Chọn phương án đúng

    Cho hàm số y = f(x) có đạo hàm f'(x) = x + 1 với mọi x\mathbb{\in R}. Hàm số đã cho nghịch biến trên khoảng nào dưới đây?

    Ta có: f'(x) < 0 \Leftrightarrow x
+ 1 < 0 \Leftrightarrow x < - 1.

    Vậy hàm số y = f(x) nghịch biến trên khoảng ( - \infty; -
1).

  • Câu 11: Nhận biết

    Xác định hàm số thỏa mãn yêu cầu

    Trong các hàm số sau, hàm số nào nghịch biến trên từng khoảng xác định?

    Xét hàm số y = \frac{2x + 1}{x -
3} ta có:

    Điều kiện xác định D\mathbb{=
R}\backslash\left\{ 3 ight\}

    Lại có: y' = \frac{- 7}{(x - 3)^{2}}
< 0;\forall x \in D nên hàm số y
= \frac{2x + 1}{x - 3} nghịch biến trên từng khoảng xác định của nó.

  • Câu 12: Nhận biết

    Tìm mệnh đề sai

    Cho hàm số y = f(x) liên tục trên \mathbb{R}, có bảng biến thiên như hình sau:

    Trong các mệnh đề sau, mệnh đề nào sai?

    Dựa vào BBT ta thấy hàm số không có GTLN, GTNN.

    Vậy khẳng định sai là: “Hàm số có giá trị lớn nhất bằng 2 và giá trị nhỏ nhất bằng - 3.”

  • Câu 13: Vận dụng cao

    Chọn đáp án thích hợp

    Tập hợp tất cả các giá trị của tham số m để hàm số y
= \frac{\sqrt{x^{2} - 8x} - 4}{\sqrt{x^{2} - 8x} + m} nghịch biến trên ( - 1;0) là:

    Đặt t = \sqrt{x^{2} - 8x}

    Điều kiện xác định x^{2} - 8x \geq 0
\Leftrightarrow \left\lbrack \begin{matrix}
x \leq 0 \\
x \geq 8 \\
\end{matrix} ight.

    Xét hàm t = \sqrt{x^{2} - 8x};x \in ( -
1;0) ta có:

    t' = \frac{2x - 8}{2\sqrt{x^{2} -
8x}} = \frac{x - 4}{\sqrt{x^{2} - 8x}} < 0;\forall x \in ( -
1;0)

    Ta có bảng biến thiên

    Từ bảng biến thiên ta thấy hàm số t =
\sqrt{x^{2} - 8x} nghịch biến trên khoảng ( - 1;0)t
\in (0;3)

    Khi đó yêu cầu bài toán \Leftrightarrow y
= \frac{t - 4}{t + m} đồng biến trên (0;3)

    Điều kiện xác định D\mathbb{=
R}\backslash\left\{ - m ight\}

    Ta có: y' = \frac{m + 4}{(t +
m)^{2}};\forall x \in D

    Để hàm số đồng biến trên (0;3) thì

    \left\{ \begin{matrix}
y' > 0 \\
- m otin (0;3) \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m + 4 > 0 \\
\left\lbrack \begin{matrix}
- m \leq 0 \\
- m \geq 3 \\
\end{matrix} ight.\  \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
m > - 4 \\
\left\lbrack \begin{matrix}
m \geq 0 \\
m \leq - 3 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
- 4 < m \leq - 3 \\
m \geq 0 \\
\end{matrix} ight.

    Vậy đáp án cần tìm là m \in ( - 4; -
3brack \cup \lbrack 0; + \infty)

  • Câu 14: Thông hiểu

    Chọn mệnh đề đúng

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Mệnh đề nào sau đây đúng?

    Từ bảng biến thiên của hàm số y =
f(x) ta có: \lim_{x ightarrow -
\infty}f(x) = - \infty;\lim_{x ightarrow + \infty}f(x) = +
\infty nên đồ thị hàm số đã cho không có tiệm cận ngang.

    \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {0^ + }} f\left( x ight) = 4;\mathop {\lim }\limits_{x \to {0^ - }} f\left( x ight) = 4 \hfill \\
  \mathop {\lim }\limits_{x \to {3^ - }} f\left( x ight) =  - 1;\mathop {\lim }\limits_{x \to {3^ + }} f\left( x ight) =  - 1 \hfill \\ 
\end{gathered}  ight. nên đồ thị hàm số đã cho không có tiệm cận đứng.

    Vậy đồ thị hàm số đã cho không có tiệm cận.

  • Câu 15: Nhận biết

    Tìm khẳng định đúng

    Cho hàm số y =
\frac{2x + 2}{x - 1}. Khẳng định nào sau đây đúng?

    Ta có: y' = \frac{- 4}{(x - 1)^{2}}
< 0;\forall x eq 1

    Suy ra hàm số nghịch biến trên khoảng ( -
\infty;1),(1; + \infty)

    (2; + \infty) \subset (1; +
\infty) nên hàm số cũng nghịch biến trên khoảng (2; + \infty).

  • Câu 16: Thông hiểu

    Khẳng định nào sau đây đúng

    Cho hàm số có đồ thị như hình vẽ sau đây:

    Khẳng định nào sau đây đúng

    Khẳng định nào sau đây đúng?

    Dựa vào đồ thị hàm số ta thấy:

    Đồ thị hàm số cắt trục Ox tại điểm có hoành độ dương => x = \frac{{ - b}}{a} > 0

    Đồ thị hàm số cắt trục Oy tại điểm có tung độ âm => y = \frac{{ - b}}{d} < 0

    Đồ thị hàm số nhận x = \frac{{ - b}}{d} < 0 làm tiệm cận đứng và y = \frac{a}{c} > 0 làm tiệm cận ngang

    Chọn a > 0 => b < 0; c > 0; d > 0 => \left\{ {\begin{array}{*{20}{c}}  {ad > 0} \\   {bc < 0} \end{array}} ight.

  • Câu 17: Vận dụng cao

    Ghi đáp án vào ô trống

    Cho hàm số y = f(x) có đạo hàm f'(x) = x^{2}(x - 1)\left( x^{2} + 2mx +m + 1 ight) với \forallx\mathbb{\in R}m là tham số. Có bao nhiêu giá trị nguyên của m\in (10; + \infty) để hàm số g(x) =f\left( |x| ight) có 5 điểm cực trị?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = f(x) có đạo hàm f'(x) = x^{2}(x - 1)\left( x^{2} + 2mx +m + 1 ight) với \forallx\mathbb{\in R}m là tham số. Có bao nhiêu giá trị nguyên của m\in (10; + \infty) để hàm số g(x) =f\left( |x| ight) có 5 điểm cực trị?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 18: Vận dụng cao

    Ghi đáp án vào ô trống

    Anh Hùng đang ở trong rừng để đào vàng và tìm thấy vàng ở điểm X cách điểm A một khoảng 3 km. Điểm A nằm trên đường bờ biển (đường bờ biển là đường thẳng). Trại của anh Hùng nằm ở vị trí Y cách điểm B một khoảng 3 km. Điểm B cũng thuộc đường bờ biển. Biết rằng AB = 3(km),AM = NB = x(km)AX = BY = 3(km) (minh hoạ như hình vẽ sau).

    Khi đang đào vàng, anh Hùng không may bị rắn cắn, chất độc lan vào máu. Sau khi bị cắn, nồng độ chất độc trong máu tăng theo thời gian được tính theo phương trình y = 50\log(t +2). Trong đó, y là nồng độ, t là thời gian tính bằng giờ sau khi bị rắn cắn. Anh cần quay trở lại trại để lấy thuốc giải độc. Anh ấy chạy trong rừng và trên bãi biển với vận tốc lần lượt là 5km/h13km/h. Để về đến trại anh Hùng cần chạy từ trong rừng qua điểm M,N trên bãi biển. Tính nồng độ chất độc trong máu thấp nhất khi anh Hùng về đến trại (làm tròn đáp án đến hàng phần chục).

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Anh Hùng đang ở trong rừng để đào vàng và tìm thấy vàng ở điểm X cách điểm A một khoảng 3 km. Điểm A nằm trên đường bờ biển (đường bờ biển là đường thẳng). Trại của anh Hùng nằm ở vị trí Y cách điểm B một khoảng 3 km. Điểm B cũng thuộc đường bờ biển. Biết rằng AB = 3(km),AM = NB = x(km)AX = BY = 3(km) (minh hoạ như hình vẽ sau).

    Khi đang đào vàng, anh Hùng không may bị rắn cắn, chất độc lan vào máu. Sau khi bị cắn, nồng độ chất độc trong máu tăng theo thời gian được tính theo phương trình y = 50\log(t +2). Trong đó, y là nồng độ, t là thời gian tính bằng giờ sau khi bị rắn cắn. Anh cần quay trở lại trại để lấy thuốc giải độc. Anh ấy chạy trong rừng và trên bãi biển với vận tốc lần lượt là 5km/h13km/h. Để về đến trại anh Hùng cần chạy từ trong rừng qua điểm M,N trên bãi biển. Tính nồng độ chất độc trong máu thấp nhất khi anh Hùng về đến trại (làm tròn đáp án đến hàng phần chục).

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 19: Nhận biết

    Tìm điểm cực đại của hàm số

    Cho hàm số f(x) có bảng biến thiên như sau :

    Điểm cực đại của hàm số đã cho là

    Điểm cực đại của hàm số đã cho là x=-1.

  • Câu 20: Thông hiểu

    Tìm điều kiện tham số m thỏa mãn yêu cầu bài toán

    Cho hàm số y = x^{3} + mx^{2} +
m với m là tham số. Điều kiện cần và đủ của tham số m để hàm số nghịch biến trên khoảng (0;2) là:

    Tập xác định D\mathbb{= R}

    Ta có: y' = 3x^{2} + 2mx

    Hàm số nghịch biến trên (0;2) khi và chỉ khi y' \leq 0;\forall x \in
(0;2)

    Xét hàm số y = - \frac{3}{2}x trên khoảng (0;2) ta có bảng biến thiên như sau:

    Vậy để hàm số nghịch biến trên (0;2) thì m
\leq - 3.

  • Câu 21: Thông hiểu

    Xác định số nghiệm tối đa

    Cho đồ thị hàm số y = f(x) như sau:

    Hỏi phương trình 2f(x) = m có tối đa bao nhiêu nghiệm thực?

    Phương trình 2f(x) = m \Leftrightarrow
f(x) = \frac{m}{2} là phương trình hoành độ giao điểm của đồ thị hàm số y = f(x) và đường thẳng y = \frac{m}{2}

    Số giao điểm của hai đường bằng số nghiệm của phương trình f(x) = \frac{m}{2}.

    Dựa vào đồ thị hàm số ta thấy đường thẳng y = \frac{m}{2} cắt đồ thị tại nhiều nhất 5 điểm.

    Vậy phương trình có tối đa 5 nghiệm.

  • Câu 22: Thông hiểu

    Tìm số nghiệm của phương trình

    Cho hàm số y = f(x) liên tục trên đoạn \lbrack - 2;2\rbrack và có đồ thị là đường cong như hình vẽ bên. Tìm số nghiệm của phương trình \left| f(x) \right| = 1 trên đoạn \lbrack - 2;2\rbrack.

    Ta có số nghiệm của phương trình \left|
f(x) ight| = 1 là số giao điểm của đồ thị hàm số y = \left| f(x) ight| với đường thẳng y = 1 .

    Từ hình vẽ ta thấy đường thẳng y =
1 cắt đồ thị hàm số y = \left| f(x)
ight| tại 6 điểm. Vậy số nghiệm của phương trình \left| f(x) ight| = 1 là 6.

  • Câu 23: Vận dụng

    Ghi đáp án vào ô trống

    Hằng ngày mực nước của hồ thủy điện ở miền Trung lên và xuống theo lượng nước mưa, và các suối nước đổ về hồ. Từ lúc 8h sáng, độ sâu của mực nước trong hồ tính theo mét và lên xuống theo thời gian t (giờ) trong ngày cho bởi công thức h(t) = 24t +5t^{2} - \frac{t^{3}}{3}. Biết rằng phải thông báo cho các hộ dân di dời trước khi xả nước theo quy định trước 5 tiếng. Hỏi cần thông báo cho hộ dân di dời trước khi xả nước lúc mấy giờ. Biết rằng mực nước trong hồ phải lên cao nhất mới xả nước.

    Đáp án: 15

    Đáp án là:

    Hằng ngày mực nước của hồ thủy điện ở miền Trung lên và xuống theo lượng nước mưa, và các suối nước đổ về hồ. Từ lúc 8h sáng, độ sâu của mực nước trong hồ tính theo mét và lên xuống theo thời gian t (giờ) trong ngày cho bởi công thức h(t) = 24t +5t^{2} - \frac{t^{3}}{3}. Biết rằng phải thông báo cho các hộ dân di dời trước khi xả nước theo quy định trước 5 tiếng. Hỏi cần thông báo cho hộ dân di dời trước khi xả nước lúc mấy giờ. Biết rằng mực nước trong hồ phải lên cao nhất mới xả nước.

    Đáp án: 15

    Ta có:

    h'(t) = 24 + 10t -t^{2}

    h'(t) = 0

    \Leftrightarrow 24 + 10t - t^{2} = 0\Leftrightarrow \left\lbrack \begin{matrix}t = - 2(ktm) \\t = 12(tm) \\\end{matrix} ight.

    Bảng biến thiên:

    Mực nước lên cao nhất thì phải mất 12 giờ.

    Hay mực nước lên cao nhất là lúc 20 giờ.

    Vậy phải thông báo cho dân di dời vào 15giờ chiều cùng ngày.

  • Câu 24: Nhận biết

    Tìm hàm số theo yêu cầu

    Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên?

    Đây là đồ thị của hàm số bậc ba với hệ số a > 0 nên chọn y = x^{3} - 3x.

  • Câu 25: Nhận biết

    Tìm hàm số thỏa mãn đồ thị đã cho trước

    Đồ thị hàm số nào dưới đây có dạng như đường cong trong hình vẽ bên?

    Quan sát đồ thị ta thấy đây là đồ thị của hàm số y = ax^{4} + bx^{2} + c(a > 0).

    Vậy chọn y = x^{4} - 2x^{2} -
2

  • Câu 26: Vận dụng

    Ghi đáp án vào ô trống

    Sau khi phát hiện một bệnh dịch, các chuyên gia y tế ước tính số người nhiễm bệnh kể từ ngày xuất hiện bệnh nhân đầu tiên đến ngày thứ tf(t) = 4t^{3} - \frac{t^{4}}{2}(người). Nếu xem f'(t) là tốc độ truyền bệnh (người/ngày) tại thời điểm t. Tốc độ truyền bệnh sẽ lớn nhất vào ngày thứ mấy?

    Đáp án: Ngày thứ 4||tư

    Đáp án là:

    Sau khi phát hiện một bệnh dịch, các chuyên gia y tế ước tính số người nhiễm bệnh kể từ ngày xuất hiện bệnh nhân đầu tiên đến ngày thứ tf(t) = 4t^{3} - \frac{t^{4}}{2}(người). Nếu xem f'(t) là tốc độ truyền bệnh (người/ngày) tại thời điểm t. Tốc độ truyền bệnh sẽ lớn nhất vào ngày thứ mấy?

    Đáp án: Ngày thứ 4||tư

    Điều kiện t \geq 0.

    Ta có g(t) = f'(t) = 12t^{2} -
2t^{3}, g'(t) = 24t -
6t^{2}, g'(t) = 0
\Leftrightarrow \left\lbrack \begin{matrix}
t = 0 \\
t = 4 \\
\end{matrix} ight..

    Bảng biến thiên:

    Vậy tốc độ truyền bệnh lớn nhất vào ngày thứ 4.

    Đáp số: 4.

  • Câu 27: Vận dụng

    Ghi đáp án vào ô trống

    Cho hàm số y = f(x) = \left| x^{3} -3x^{2} + m ight| biết m \in\lbrack - 4;4brack. Có thể có bao nhiêu giá trị nguyên của tham số m để hàm số đã cho có đúng ba điểm cực trị?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = f(x) = \left| x^{3} -3x^{2} + m ight| biết m \in\lbrack - 4;4brack. Có thể có bao nhiêu giá trị nguyên của tham số m để hàm số đã cho có đúng ba điểm cực trị?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 28: Thông hiểu

    Tìm tất cả các giá trị của tham số m

    Cho hàm số f(x) = x^{3} + \left( m^{2} +1 \right)x + m^{2} - 2 với m là tham số thực. Tìm tất cả các giá trị của m để hàm số có giá trị nhỏ nhất trên đoạn \lbrack 0;2\rbrack bằng 7.

    Đạo hàmf'(x) = 3x^{2} + m^{2} + 1> 0,\ \forall x\mathbb{\in R}.

    Suy ra hàm số f(x) đồng biến trên \lbrack 0;2brack

    \Rightarrow \min_{\lbrack 0;2brack}f(x)= f(0) = m^{2} - 2

    Theo bài ra: \min_{\lbrack0;2brack}f(x) = 7 \Leftrightarrow m^{2} - 2 = 7 \Leftrightarrow m =\pm 3.

  • Câu 29: Nhận biết

    Tìm tọa độ tâm đối xứng

    Tọa độ tâm đối xứng của đồ thị hàm số y =
x^{3} - 3x + 2 là:

    Ta có: y = x^{3} - 3x + 2 \Rightarrow
\left\{ \begin{matrix}
y' = 3x^{2} - 3 \\
y'' = 6x \\
\end{matrix} ight.

    y'' = 0 \Leftrightarrow x = 0
\Rightarrow y = 2

    Tọa độ tâm đối xứng của đồ thị hàm số là (0;2)

  • Câu 30: Thông hiểu

    Chọn kết luận đúng

    Tiếp tuyến tại điểm cực tiểu của đồ thị hàm số y = \frac{1}{3}x^{3} - 3x^{2} + 5x -
1

    Ta có: y' = x^{2} - 6x + 5 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = 5 \\
\end{matrix} ight.

    y'' = 2x - 6 \Rightarrow \left\{
\begin{matrix}
y''(1) = - 4 < 0 \\
y''(5) = 4 > 0 \\
\end{matrix} ight. nên hàm số đạt cực đại tại điểm x = 1 và đạt cực tiểu tại x = 5;y_{CT} = - \frac{28}{3}
    y'(5) = 0 suy ra tiếp tuyến tại điểm cực tiểu của đồ thị hàm số y = -
\frac{28}{3}

    Vậy tiếp tuyến song song với trục hoành.

  • Câu 31: Nhận biết

    Tìm số đường tiệm cận ngang

    Cho hàm số y = f(x) có bảng biến thiên:

    Số đường tiệm cận ngang của đồ thị hàm số y = f(x) là:

    Ta có: \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to  + \infty } y = 5 \hfill \\
  \mathop {\lim }\limits_{x \to  - \infty } y =  - 3 \hfill \\ 
\end{gathered}  ight. nên đồ thị hàm số đã cho có 2 đường tiệm cận ngang y = - 3;y = 5.

  • Câu 32: Thông hiểu

    Xác định tọa độ giao điểm

    Tìm tọa độ giao điểm của đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số y = \frac{x - 2}{x +
2}.

    TXĐ D\mathbb{= R}\backslash\left\{ - 2
ight\}.

    Dễ thấy đồ thị hàm số có TCĐ: x = -
2 và TCN: y = 1.

    Suy ra giao điểm của hai đường tiệm cận là ( - 2\ ;\ 1).

  • Câu 33: Nhận biết

    Tính giá trị biểu thức P

    Biết rằng hàm số f(x) = x^{3} - 3x^{2} -
9x + 28 đạt giá trị nhỏ nhất trên \lbrack 0;4brack tại điểm x_{0}. Khi đó giá trị biểu thức P = x_{0} + 2021 bằng:

    Ta có: y' = 3x^{2} - 6x -
9

    y' = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
x = - 1 \\
x = 3 \\
\end{matrix} ight.

    \left\{ \begin{matrix}
f(0) = 28 \\
f(3) = 1 \\
f(4) = 8 \\
\end{matrix} ight.\  \Rightarrow \min_{\lbrack 0;4brack}f(x) =
1 khi x = 3

    Suy ra x_{0} = 3 \Rightarrow P = x_{0} +
2021 = 2024.

  • Câu 34: Vận dụng cao

    Tính số tiệm cận đứng của đồ thị hàm số

    Cho hàm số y = f(x) liên tục trên và y = f’(x) có bảng biến thiên như sau:

    Tính số tiệm cận đứng của đồ thị hàm số

    Đồ thị hàm số g\left( x ight) = \frac{{2020}}{{f\left( x ight) - m}} có nhiều nhất bao nhiêu tiệm cận đứng:

    Điều kiện f\left( x ight) e m

    Để đồ thị hàm số g\left( x ight) = \frac{{2020}}{{f\left( x ight) - m}} có đường tiệm cận đứng f\left( x ight) = m thì phải có nghiệm.

    Từ bảng biến thiên của hàm số y = f’(x) suy ra phương trình f’(x) = 0 có đúng hai nghiệm là \left[ {\begin{array}{*{20}{c}}  {x = a} \\   {x = b} \end{array}} ight. với - 1 < a < 0 < b

    Từ đó ta có bảng biến thiên của hàm số y = f(x) như sau:

    Tính số tiệm cận đứng của đồ thị hàm số

    => Phương trình y = f(x) có nhiều nhất ba nghiệm phân biệt

    Vậy đồ thị hàm số g\left( x ight) = \frac{{2020}}{{f\left( x ight) - m}} có nhiều nhất ba đường tiệm cận đứng.

  • Câu 35: Thông hiểu

    Chọn đáp án đúng

    Cho hàm số y =
f(x) có đồ thị như hình vẽ:

    Hàm số y = f( - x) nghịch biến trên khoảng nào dưới đây?

    Từ đồ thị hàm số y = f(x) ta thấy hàm số đồng biến trên khoảng (0;2)

    \Leftrightarrow f'(x) > 0
\Leftrightarrow 0 < x < 2

    Xét hàm số y = f( - x) ta có: y' = - f'( - x)

    y' < 0 \Leftrightarrow - f'(
- x) < 0 \Leftrightarrow f'( - x) > 0

    \Leftrightarrow 0 < - x < 2
\Leftrightarrow - 2 < x < 0

    Suy ra hàm số y = f( - x) nghịch biến trên khoảng ( - 2;0).

  • Câu 36: Nhận biết

    Xác định giá trị lớn nhất của hàm số

    Tìm giá trị lớn nhất của hàm số y = f(x)
= x^{3} - x^{2} - 8x trên đoạn \lbrack 1;3brack?

    Ta có: y' = 3x^{2} - 2x -
8

    \Leftrightarrow y' = 0\Leftrightarrow \left\lbrack \begin{matrix}x = 2 \\x = - \dfrac{4}{3} \\\end{matrix} ight.

    \Rightarrow \left\{ \begin{matrix}
f(1) = - 8 \\
f(2) = - 12 \\
f(33) = - 6 \\
\end{matrix} ight.\  \Rightarrow \max_{\lbrack 1;3brack}f(x) = -
6.

  • Câu 37: Thông hiểu

    Ghi đáp án vào ô trống

    Ta xác định được các số a, b, c để đồ thị hàm số y = x^{3} + ax^{2} + bx +
c đi qua điểm ( - 1;1) và có điểm cực trị (2;1). Tính giá trị biểu thức T = 2025(a + c -
b).

    Đáp án: 4050

    Đáp án là:

    Ta xác định được các số a, b, c để đồ thị hàm số y = x^{3} + ax^{2} + bx +
c đi qua điểm ( - 1;1) và có điểm cực trị (2;1). Tính giá trị biểu thức T = 2025(a + c -
b).

    Đáp án: 4050

    Ta có: y' = 3x^{2} + 2ax +
b.

    Đồ thị hàm số y = x^{3} + ax^{2} + bx +
c đi qua điểm ( - 1;1) nên ta có: a - b +c = 2.

    Đồ thị hàm số có điểm cực trị (2;1) nên \left\{ \begin{matrix}
4a + 2b + c = - 7 \\
y'(2) = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
4a + 2b + c = 7 \\
4a + b = - 12 \\
\end{matrix} ight..

    Xét hệ phương trình \left\{
\begin{matrix}
a - b + c = 2 \\
4a + 2b + c = - 7 \\
4a + b = - 12 \\
\end{matrix} ight. \Leftrightarrow \left\{ \begin{matrix}
a = - 3 \\
b = 0 \\
c = 5 \\
\end{matrix} ight..

    Vậy T = 2025(a + c - b) = 2025( - 3 + 5 -
0) = 4050.

  • Câu 38: Vận dụng

    Chọn phương án đúng

    Cho hàm số y = f(x)có bảng xét dấu đạo hàm như sau:

    Hàm số g(x) = f\left( 3 - 2^{x}
\right)đồng biến trên khoảng nào sau đây

    Ta có g'(x) = - 2^{x}ln2.f'\left(
3 - 2^{x} ight).

    Để g(x) = f\left( 3 - 2^{x}
ight)đồng biến thì

    g'(x) = - 2^{x}ln2.f'\left( 3 -
2^{x} ight) \geq 0 \Leftrightarrow f'\left( 3 - 2^{x} ight) \leq
0

    \Leftrightarrow - 5 \leq 3 - 2^{x} \leq 2 \Leftrightarrow 0 \leq x
\leq 3.

    Vậy hàm số đồng biến trên (1;\
2).

  • Câu 39: Nhận biết

    Tìm cực đại của hàm số

    Hàm số y = 2{x^3} - {x^2} + 5 có cực đại là:

    Ta có:

    \begin{matrix}  y' = 6{x^2} - 2x \Rightarrow y' = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 0} \\   {x = \dfrac{1}{3}} \end{array}} ight. \hfill \\  y'' = 12x - 2 \Rightarrow y''\left( 0 ight) =  - 2 < 0 \hfill \\ \end{matrix}

    => x = 0 là điểm cực đại của hàm số

  • Câu 40: Thông hiểu

    Tìm điều kiện của tham số m

    Định tất cả các giá trị thực của m để hàm số y
= x^{4} + (2m - 6)x^{2} - 2020 có ba điểm cực trị?

    Ta có: y' = 4x^{3} + 2(2m - 6)x =
4x\left( x^{2} + m - 3 ight)

    y' = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
4x = 0 \\
x^{2} + m - 3 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x^{2} = 3 - m \\
\end{matrix} ight.

    Để hàm số có ba điểm cực trị thì y' =
0 có ba nghiệm phân biệt suy ra phương trình x^{2} + m - 3 = 0 có hai nghiệm phân biệt khác 0

    \Leftrightarrow 3 - m > 0
\Leftrightarrow m < 3

    Vậy đáp án cần tìm là m <
3.

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 1 Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo