Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề kiểm tra 45 phút Chương 1 Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Mô tả thêm:

Hãy cùng thử sức kiểm tra đánh giá các kiến thức tổng quan với bài kiểm tra phút Chương 1: Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số Toán 12 sách Kết nối tri thức các em nhé!

  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Nhận biết

    Tìm số nghiệm của phương trình

    Cho hàm số f\left( x \right) = a{x^3} + b{x^2} + cx + d;\left( {a;b;c;d \in \mathbb{R}} \right). Đồ thị của hàm số y=f(x) như hình vẽ bên. Số nghiệm thực của phương trình 3f(x)+4=0 là

    Ta có: 3f(x) + 4 = 0 \Leftrightarrow f\left( x ight) =  - \frac{4}{3}{\text{   }}\left( * ight)

    (*) là phương trình hoành độ giao điểm của đồ thị hàm số y=f(x) và đường thẳng y =  - \frac{4}{3}.

    Dựa vào đồ thị hàm số, ta thấy (*) có 3 nghiệm.

  • Câu 2: Nhận biết

    Khoảng đồng biến của hàm số

    Hàm số y = 2{x^4} - 4 đồng biến trên khoảng

    Ta có y’ = 8x => y’ = 0 => x = 0

    => y’ > 0 => x > 0

    => y’ < 0 => x < 0

    Vậy hàm số đồng biến trên khoảng \left( {0; + \infty } ight)

  • Câu 3: Vận dụng

    Ghi đáp án vào ô trống

    Cho hàm số y = f(x) liên tục trên tập số thực và có bảng biến thiên như sau:

    Đặt g(x) = \left| f(x + 1) + might| với m là tham số. Tìm điều kiện của tham số m để hàm số y = g(x) có đúng ba điểm cực trị?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = f(x) liên tục trên tập số thực và có bảng biến thiên như sau:

    Đặt g(x) = \left| f(x + 1) + might| với m là tham số. Tìm điều kiện của tham số m để hàm số y = g(x) có đúng ba điểm cực trị?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 4: Nhận biết

    Chọn đáp án đúng

    Tiệm cận đứng của đồ thị hàm số y =
\frac{x + 1}{x + 3}

    Ta có \lim_{x ightarrow - 3^{+}}y = -\infty\lim_{x ightarrow -3^{-}}y = + \infty nên đồ thị hàm số nhận đường thẳng x = - 3 làm tiệm cận đứng.

  • Câu 5: Vận dụng

    Tìm m để đồ thị hàm số có tiệm cận ngang

    Tìm giá trị của tham số m sao cho đồ thị hàm số y = 2x + \sqrt {m{x^2} - x + 1}  + 1 có tiệm cận ngang.

    Ta có:

    \begin{matrix}  y = \left( {2x + 1} ight) + \sqrt {m{x^2} - x + 1}  \hfill \\   \Rightarrow y = \dfrac{{4{x^2} + 4x + 1 - \left( {m{x^2} - x + 1} ight)}}{{2x + 1 - \sqrt {m{x^2} - x + 1} }} \hfill \\   \Rightarrow y = \dfrac{{\left( {4 - m} ight){x^2} + 5x}}{{2x + 1 - \sqrt {m{x^2} - x + 1} }} \hfill \\ \end{matrix}

    Đồ thị hàm số có tiệm cận ngang khi và chỉ khi bậc của tử số bé hơn hoặc bằng bậc của mẫu số

    Đồng thời \mathop {\lim }\limits_{x \to \infty } y = {y_0} \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {m > 0} \\   {4 - m = 0} \end{array} \Rightarrow m = 4} ight.

  • Câu 6: Thông hiểu

    Tìm tham số m thỏa mãn yêu cầu

    Hàm số y = - x^{4} + 2mx^{2} + 1 đạt cực tiểu tại x = 0 khi:

    Hàm số xác định với mọi x\mathbb{\in
R}

    Ta có: \left\{ \begin{matrix}
y' = - 4x^{3} + 4mx \\
y'' = - 12x^{2} + 4m \\
\end{matrix} ight.

    Hàm số đạt cực tiểu tại x = 0 khi

    \left\{ \begin{matrix}
y'(0) = 0 \\
y''(0) > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
- 4.0^{3} + 4m.0 = 0(TM) \\
- 12.^{2} + 4m > 0 \\
\end{matrix} ight.\  \Leftrightarrow m > 0

    Vậy m > 0 thỏa mãn yêu cầu bài toán.

  • Câu 7: Nhận biết

    Xác định tính đúng sai của từng phương án

    Hàm số y = f(x) liên tục trên đoạn \lbrack - 1;3brack và có bảng biến thiên như sau.

    Gọi Mm lần lượt là GTLN và GTNN của hàm số trên \lbrack - 1;3brack. Xét tính đúng sai của các khẳng định sau:

    a) m = f(2) Sai|| Đúng

    b) M = f(4) Sai|| Đúng

    c) m = f( - 1) Đúng||Sai

    d) M = f(0) Đúng||Sai

    Đáp án là:

    Hàm số y = f(x) liên tục trên đoạn \lbrack - 1;3brack và có bảng biến thiên như sau.

    Gọi Mm lần lượt là GTLN và GTNN của hàm số trên \lbrack - 1;3brack. Xét tính đúng sai của các khẳng định sau:

    a) m = f(2) Sai|| Đúng

    b) M = f(4) Sai|| Đúng

    c) m = f( - 1) Đúng||Sai

    d) M = f(0) Đúng||Sai

    Dựa vào bảng biến thiên trên \lbrack -
1;3brack ta có:

    m = f( - 1) = 0

    M = f(0) = 5

  • Câu 8: Thông hiểu

    Chọn đáp án thích hợp

    Đồ thị hàm số y = \frac{\sqrt{16 -
x^{2}}}{x^{2} - 16} có tất cả bao nhiêu đường tiệm cận?

    TXĐ: D = ( - 4;4) suy ra không tồn tại \ \lim_{x\  ightarrow \  - \
\infty}y\lim_{x\  ightarrow
\  + \ \infty}y\ .

    Do đó đồ thị hàm số không có tiệm cận ngang.

    Ta có:

    \lim_{x ightarrow -
4^{+}}\frac{\sqrt{16 - x^{2}}}{x^{2} - 16} = \lim_{x ightarrow -
4^{+}}\left( \frac{- 1}{\sqrt{16 - x^{2}}} ight) = - \infty
ightarrow x = - 4 là TCĐ;

    \lim_{x ightarrow 4^{-}}\frac{\sqrt{16
- x^{2}}}{x^{2} - 16} = \lim_{x ightarrow 4^{-}}\left( \frac{-
1}{\sqrt{16 - x^{2}}} ight) = - \infty ightarrow x = 4 là TCĐ.

    Vậy đồ thị hàm số đã cho có đúng hai tiệm cận.

  • Câu 9: Nhận biết

    Tìm mệnh đề đúng

    Cho hàm số y = x^{3} + 3x + 2. Mệnh đề nào dưới đây là đúng?

    Ta có:

    +) TXĐ: D\mathbb{= R}.

    +) y' = 3x^{2} + 3 > 0,\ \forall
x\mathbb{\in R}, do đó hàm số đồng biến trên \mathbb{R}.

  • Câu 10: Thông hiểu

    Tìm mệnh đề đúng

    Cho hàm số f(x), bảng xét dấu của f'(x) như sau:

    Hàm số y = f(3 - 2x) đồng biến trên khoảng nào dưới đây?

    Ta có y' = - 2.f'(3 - 2x) \geq 0 \Leftrightarrow f'(3 - 2x) \leq 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
3 - 2x \leq - 3 \\
- 1 \leq 3 - 2x \leq 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x \geq 3 \\
1 \leq x \leq 2. \\
\end{matrix} ight.

  • Câu 11: Nhận biết

    Tìm GTLN của hàm số

    Trên khoảng (0; +∞) thì hàm số y = -x3 + 3x + 1

    Ta có:

    \begin{matrix}  y' =  - 3{x^2} + 3 \hfill \\  y' = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 1} \\   {x =  - 1} \end{array}} ight. \hfill \\ \end{matrix}

    Từ bảng biến thiên => Hàm số có giá trị lớn nhất bằng 3

  • Câu 12: Thông hiểu

    Tìm số giá trị nguyên của tham số m

    Cho hàm số y = \frac{mx + 9}{4x +
m} với m là tham số, khi đó có bao nhiêu giá trị nguyên của m để hàm số nghịch biến trên khoảng (0;4)?

    Tập xác định D\mathbb{=
R}\backslash\left\{ \frac{- m}{4} ight\}

    Ta có: y' = \frac{m^{2} - 36}{(4x +
m)^{2}}

    Hàm số nghịch biến trên (0;4) khi và chỉ khi

    \left\{ \begin{matrix}
m^{2} - 36 < 0 \\
- \frac{m}{4} otin (0;4) \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
- 6 < m < 6 \\
\left\lbrack \begin{matrix}
m \geq 0 \\
m \leq - 16 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \Leftrightarrow 0 \leq m < 6

    m\mathbb{\in Z \Rightarrow}m \in
\left\{ 0;1;2;...;5 ight\}

    Vậy có tất cả 6 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.

  • Câu 13: Thông hiểu

    Xác định số đường tiệm cận của đồ thị hàsố

    Đồ thị hàm số y = \left\{ \begin{matrix}
\dfrac{\sqrt{x^{2} + 1}}{x} & khix \geq 1 \\
\dfrac{2x}{x - 1} & khix < 1 \\
\end{matrix} \right. có tất cả bao nhiêu đường tiệm cận?

    Ta có:

    \lim_{x ightarrow 1^{-}}y = \lim_{x
ightarrow 1^{-}}\frac{2x}{x - 1} = - \infty\overset{}{ightarrow}\ \
x = 1 là TCĐ;

    \lim_{x ightarrow - \infty}y = \lim_{x
ightarrow - \infty}\frac{2x}{x - 1} = 2\overset{}{ightarrow}\ \ y =
2 là TCN;

    \lim_{x ightarrow + \infty}y = \lim_{x
ightarrow + \infty}\frac{\sqrt{x^{2} + 1}}{x} =
1\overset{}{ightarrow}\ \ y = 1 là TCN.

    Vậy đồ thị hàm số có đúng ba tiệm cận.

  • Câu 14: Vận dụng

    Tìm m để bất phương trình nghiệm đúng với mọi x

    Tìm các giá trị của tham số m để bất phương trình \frac{{{x^2} + 3x + 3}}{{x + 1}} \geqslant m nghiệm đúng với mọi x \in \left[ {0;1} ight]

    Xét hàm số g\left( x ight) = \frac{{{x^2} + 3x + 3}}{{x + 1}},x \in \left[ {0;1} ight] ta có:

    \begin{matrix}  g\left( x ight) = x + 2 + \dfrac{1}{{x + 1}} \hfill \\   \Rightarrow g'\left( x ight) = 1 - \dfrac{1}{{{{\left( {x + 1} ight)}^2}}} \hfill \\  g'\left( x ight) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 0\left( {tm} ight)} \\   {x =  - 2\left( L ight)} \end{array}} ight. \hfill \\ \end{matrix}

    => \left\{ {\begin{array}{*{20}{c}}  {g\left( 0 ight) = 3} \\   {g\left( 1 ight) = \dfrac{7}{2}} \end{array}} ight. \Rightarrow \mathop {\max }\limits_{\left[ {0;1} ight]} g\left( x ight) = \frac{7}{2};\mathop {\min }\limits_{\left[ {0;1} ight]} g\left( x ight) = 3

    Ta có:

    \frac{{{x^2} + 3x + 3}}{{x + 1}} \geqslant m,\left( {\forall x \in \left[ {0;1} ight]} ight) \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {g\left( 0 ight) = 3} \\   {g\left( 1 ight) = \dfrac{7}{2}} \end{array}} ight. \Rightarrow \mathop {\min }\limits_{\left[ {0;1} ight]} g\left( x ight) \geqslant m \Leftrightarrow m \leqslant 3

  • Câu 15: Vận dụng cao

    Tìm min và max của hàm số

    Cho hai số thực x, y thỏa mãn x \geqslant 0;y \geqslant 0 và x + y = 1. Giá trị nhỏ nhất và giá trị lớn nhất của biểu thức P = \frac{x}{{y + 1}} + \frac{y}{{x + 1}} lần lượt là:

    Ta có: 

    P = \frac{x}{{y + 1}} + \frac{y}{{x + 1}} = \frac{{x\left( {x + 1} ight) + y\left( {y + 1} ight)}}{{\left( {x + 1} ight)\left( {y + 1} ight)}} = \frac{{{{\left( {x + y} ight)}^2} - 2xy + 1}}{{xy + x + y + 1}} = \frac{{2 - 2xy}}{{2 + xy}}

    Đặt t = xy ta được P = \frac{{2 - 2t}}{{2 + t}}

    x \geqslant 0;y \geqslant 0 \Rightarrow t \geqslant 0

    Mặt khác 1 = x + y \geqslant 2\sqrt {xy}  \Leftrightarrow xy \leqslant \frac{1}{4} \Rightarrow t \leqslant \frac{1}{4}

    Khi đó bài toán trở thành tìm giá trị lớn nhất của hàm số g\left( t ight) = \frac{{2 - 2t}}{{2 + t}} trên \left[ {0;\frac{1}{4}} ight]

    Xét hàm số g\left( t ight) = \frac{{2 - 2t}}{{2 + t}} xác định và liên tục trên \left[ {0;\frac{1}{4}} ight]

    Ta có: g'\left( t ight) = \frac{{ - 6}}{{{{\left( {2 + t} ight)}^2}}} < 0,\forall t \in \left( {0;\frac{1}{4}} ight)

    => Hàm số g(t) nghịch biến trên đoạn \left[ {0;\frac{1}{4}} ight]

    => \left\{ {\begin{array}{*{20}{c}}  {\mathop {\min }\limits_{\left[ {0;\frac{1}{4}} ight]} g\left( t ight) = g\left( {\dfrac{1}{4}} ight) = \dfrac{2}{3}} \\   {\mathop {\max }\limits_{\left[ {0;\frac{1}{4}} ight]} g\left( t ight) = g\left( 0 ight) = 1} \end{array}} ight.

  • Câu 16: Nhận biết

    Xác định số nghiệm thực của phương trình

    Cho hàm số f(x) = ax^{4} + bx^{2} +
c có đồ thị là đường cong trong hình bên.

    Số nghiệm thực của phương trình f(x) =
1

    Đường thẳng (d) có phương trình y = 1 cắt đồ thị hàm số y = f(x) tại 2 điểm phân biệt.

    Suy ra phương trình f(x) = 1 có 2 nghiệm thực phân biệt.

  • Câu 17: Nhận biết

    Xác định số điểm cực trị của hàm số

    Hàm số y = - x^{3} + 1 có bao nhiêu điểm cực trị?

    Ta có: y' = - 3x^{2} \leq 0;\forall
x\mathbb{\in R} suy ra hàm số luôn nghịch biến trên \mathbb{R}.

    Vậy hàm số đã cho không có điểm cực trị.

  • Câu 18: Vận dụng cao

    Chọn đáp án thích hợp

    Tập hợp tất cả các giá trị của tham số m để hàm số y
= \frac{\sqrt{x^{2} - 8x} - 4}{\sqrt{x^{2} - 8x} + m} nghịch biến trên ( - 1;0) là:

    Đặt t = \sqrt{x^{2} - 8x}

    Điều kiện xác định x^{2} - 8x \geq 0
\Leftrightarrow \left\lbrack \begin{matrix}
x \leq 0 \\
x \geq 8 \\
\end{matrix} ight.

    Xét hàm t = \sqrt{x^{2} - 8x};x \in ( -
1;0) ta có:

    t' = \frac{2x - 8}{2\sqrt{x^{2} -
8x}} = \frac{x - 4}{\sqrt{x^{2} - 8x}} < 0;\forall x \in ( -
1;0)

    Ta có bảng biến thiên

    Từ bảng biến thiên ta thấy hàm số t =
\sqrt{x^{2} - 8x} nghịch biến trên khoảng ( - 1;0)t
\in (0;3)

    Khi đó yêu cầu bài toán \Leftrightarrow y
= \frac{t - 4}{t + m} đồng biến trên (0;3)

    Điều kiện xác định D\mathbb{=
R}\backslash\left\{ - m ight\}

    Ta có: y' = \frac{m + 4}{(t +
m)^{2}};\forall x \in D

    Để hàm số đồng biến trên (0;3) thì

    \left\{ \begin{matrix}
y' > 0 \\
- m otin (0;3) \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m + 4 > 0 \\
\left\lbrack \begin{matrix}
- m \leq 0 \\
- m \geq 3 \\
\end{matrix} ight.\  \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
m > - 4 \\
\left\lbrack \begin{matrix}
m \geq 0 \\
m \leq - 3 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
- 4 < m \leq - 3 \\
m \geq 0 \\
\end{matrix} ight.

    Vậy đáp án cần tìm là m \in ( - 4; -
3brack \cup \lbrack 0; + \infty)

  • Câu 19: Thông hiểu

    Chọn đáp án đúng

    Kết luận nào sau đây về tính đơn điệu của hàm số y = \frac{{3x - 1}}{{x - 2}} là đúng?

    Ta có: y' = \frac{{ - 5}}{{{{\left( {x - 2} ight)}^2}}} < 0,\forall x e 2

    Do đó hàm số nghịch biến trên các khoảng (-∞; 2) và (2; +∞)

  • Câu 20: Vận dụng

    Xét tính đúng sai của các nhận định

    Cho hàm số y = f(x) liên tục và có bảng biến thiên trong đoạn \lbrack -
1;3\rbrack như hình.

    Các mệnh đề sau đúng hay sai?

    a) Giá trị lớn nhất của hàm số y =
f(x) trên đoạn \lbrack -
1;3\rbrack5. Đúng||Sai

    b) Tổng của giá trị nhỏ nhất và giá trị lớn nhất của hàm số y = f(x) trên đoạn \lbrack - 1;3\rbrack bằng 6. Sai||Đúng

    c) Hàm số y = f(x) đạt giá trị nhỏ nhất trên đoạn \lbrack
0;1\rbrack khi x = 0. Sai||Đúng

    d) Hàm số g(x) = f(4 - x)g(3) < 4 đạt giá trị nhỏ nhất và giá trị lớn nhất trên đoạn \lbrack
1;3\rbrack bằng a,b. Khi đó giá trị của a^{2} + b^{2} = 13. Sai||Đúng

    Đáp án là:

    Cho hàm số y = f(x) liên tục và có bảng biến thiên trong đoạn \lbrack -
1;3\rbrack như hình.

    Các mệnh đề sau đúng hay sai?

    a) Giá trị lớn nhất của hàm số y =
f(x) trên đoạn \lbrack -
1;3\rbrack5. Đúng||Sai

    b) Tổng của giá trị nhỏ nhất và giá trị lớn nhất của hàm số y = f(x) trên đoạn \lbrack - 1;3\rbrack bằng 6. Sai||Đúng

    c) Hàm số y = f(x) đạt giá trị nhỏ nhất trên đoạn \lbrack
0;1\rbrack khi x = 0. Sai||Đúng

    d) Hàm số g(x) = f(4 - x)g(3) < 4 đạt giá trị nhỏ nhất và giá trị lớn nhất trên đoạn \lbrack
1;3\rbrack bằng a,b. Khi đó giá trị của a^{2} + b^{2} = 13. Sai||Đúng

    a) Đúng. Giá trị lớn nhất của hàm số y =
f(x) trên đoạn \lbrack -
1;3\rbrack5 khi x = 0. Mệnh đề đúng.

    b) Sai.Tổng của giá trị nhỏ nhất và giá trị lớn nhất của hàm số y = f(x) trên đoạn \lbrack - 1;3\rbrack bằng 5. Mệnh đề sai.

    c) Sai. Hàm số y = f(x) đạt giá trị nhỏ nhất trên đoạn \lbrack
0;1\rbrack khi x = 1. Mệnh đề sai.

    d) Sai. Xét Hàm số g(x) = f(4 -
x) trên đoạn \lbrack
1;3\rbrack.

    Ta có g'(x) = - f'(4 -
x)

    g'(x) = 0 \Leftrightarrow f'(4 -
x) = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
4 - x = 0 \\
4 - x = 2
\end{matrix} \right.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = 4 \notin \lbrack 1;3\rbrack \\
x = 2 \in \lbrack 1;3\rbrack
\end{matrix} \right.

    g(1) = f(3) = 4;g(2) = f(2) = 1;1 <
g(3) = f(1) < 4

    Do đó y = g(x) đạt giá trị nhỏ nhất và giá trị lớn nhất trên đoạn \lbrack
1;3\rbrack bằng 14. Hay a =
1,b = 4. Khi đó giá trị của a^{2} +
b^{2} = 17. Mệnh đề sai.

  • Câu 21: Thông hiểu

    Tìm các hàm số thỏa mãn điều kiện

    Cho các hàm số sau:

    y = \frac{\sin x}{x};y =\frac{\sqrt{x^{2} + x + 1}}{x};y = \frac{\sqrt{1 - x}}{x + 1};y = x + 1+ \sqrt{x^{2} - 1}

    Có bao nhiêu hàm số mà đồ thị hàm số tương ứng có đúng một tiệm cận ngang?

    Ta có:

    y = \frac{\sin x}{x}\lim_{x ightarrow \infty}\frac{\sin x}{x} =
0 nên có 1 tiệm cận ngang là y =
0.

    y = \frac{\sqrt{x^{2} + x +
1}}{x}\lim_{x ightarrow +
\infty}\frac{\sqrt{x^{2} + x + 1}}{x} = 1;\lim_{x ightarrow -
\infty}\frac{\sqrt{x^{2} + x + 1}}{x} = - 1 nên có 2 tiệm cận ngang là y = 1;y = - 1.

    y = \frac{\sqrt{1 - x}}{x + 1}\lim_{x ightarrow -
\infty}\frac{\sqrt{1 - x}}{x + 1} = 0 nên có 1 tiệm cận ngang là y = 0.

    y = x + 1 + \sqrt{x^{2} - 1}\lim_{x ightarrow - \infty}\left( x + 1 +
\sqrt{x^{2} - 1} ight) = 1 nên có 1 tiệm cận ngang là y = 1.

    Vậy có 3 hàm số mà đồ thị có đúng 1 tiệm cận đứng.

  • Câu 22: Vận dụng cao

    Ghi đáp án vào ô trống

    Cho hàm số y = \left| 3x^{4} - 4x^{3} -12x^{2} + m^{2} ight| với m là tham số. Tìm tất cả các giá trị nguyên của tham số m để hàm số đã cho có đúng 5 điểm cực trị?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = \left| 3x^{4} - 4x^{3} -12x^{2} + m^{2} ight| với m là tham số. Tìm tất cả các giá trị nguyên của tham số m để hàm số đã cho có đúng 5 điểm cực trị?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 23: Thông hiểu

    Xét đúng sai của các khẳng định

    Cho hàm số y = x + \frac{4}{x}. Các nhận định dưới đây đúng hay sai?

    a) Đạo hàm của hàm số đã cho là y' =
1 + \frac{4}{x^{2}}. Sai||Đúng

    b) Đạo hàm của hàm số đã cho nhận giá trị âm trên các khoảng ( - 2;\ 0) \cup (0;\ 2) và nhận giá trị dương trên các khoảng ( - \infty;\  - 2)
\cup (2;\  + \infty). Đúng||Sai

    c) Bảng biến thiên của hàm số đã cho là:

    Sai||Đúng

    d) Đồ thị hàm số đã cho như ở hình 4:

    .

    Đúng||Sai

    Đáp án là:

    Cho hàm số y = x + \frac{4}{x}. Các nhận định dưới đây đúng hay sai?

    a) Đạo hàm của hàm số đã cho là y' =
1 + \frac{4}{x^{2}}. Sai||Đúng

    b) Đạo hàm của hàm số đã cho nhận giá trị âm trên các khoảng ( - 2;\ 0) \cup (0;\ 2) và nhận giá trị dương trên các khoảng ( - \infty;\  - 2)
\cup (2;\  + \infty). Đúng||Sai

    c) Bảng biến thiên của hàm số đã cho là:

    Sai||Đúng

    d) Đồ thị hàm số đã cho như ở hình 4:

    .

    Đúng||Sai

    a) Đạo hàm của hàm số đã cho là y' =
1 - \frac{4}{x^{2}} nên mệnh đề sai.

    b) y' = 1 - \frac{4}{x^{2}} > 0
\Leftrightarrow \left\lbrack \begin{matrix}
x > 2 \\
x < - 2
\end{matrix} \right.\ ,x \neq 0 nên đạo hàm của hàm số đã cho nhận giá trị âm trên các khoảng ( - 2;\ 0)
\cup (0;\ 2) và nhận giá trị dương trên các khoảng ( - \infty;\  - 2) \cup (2;\  +
\infty).

    c) Bảng biến thiên của hàm số đã cho là:

    Mệnh đề sai vì thấy y( - 2) = - 4 \neq
4

    d) Đồ thị hàm số đã cho như ở hình 4, mệnh đề đúng

    .

    Đáp án: a) Sai b) Đúng c) Sai d) Đúng.

  • Câu 24: Nhận biết

    Tìm giá trị lớn nhất của hàm số

    Tìm giá trị lớn nhất của hàm số f(x) =
x^{4} - 2x^{2} + 5 trên đoạn \lbrack - 2;2brack.

    Đạo hàm f'(x) = 4x^3 -4x

    \Rightarrow f'(x) = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \in \lbrack - 2;2brack \\
x = 1 \in \lbrack - 2;2brack \\
x = - 1 \in \lbrack - 2;2brack \\
\end{matrix} ight.

    Ta có \left\{ \begin{matrix}
f( - 2) = f(2) = 13 \\
f( - 1) = f(1) = 4 \\
f(0) = 5 \\
\end{matrix} ight.\  \Rightarrow \max_{\lbrack - 2;2brack}f(x) =
13

  • Câu 25: Nhận biết

    Xác định tiệm cận ngang

    Tìm tiệm cận ngang của đồ thị hàm số y =
\frac{x}{x^{2} - 1}?

    Ta có: \lim_{x ightarrow \pm
\infty}\frac{x}{x^{2} - 1} = 0

    Do đó tiệm cận ngang của đồ thị hàm số y
= \frac{x}{x^{2} - 1}y =
0.

  • Câu 26: Thông hiểu

    Tính giá trị của biểu thức

    Gọi giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = f(x) = \frac{x}{2} - \sqrt{x + 2} trên đoạn \lbrack - 1;34brack lần lượt là Mm. Tính giá trị của biểu thức A = M + 3m?

    Ta có: y' = \frac{1}{2} -
\frac{1}{2\sqrt{x + 2}} = \frac{\sqrt{x + 2} - 1}{2\sqrt{x +
2}}

    y' = 0 \Leftrightarrow \sqrt{x + 2}
= 1 \Leftrightarrow x = - 1

    \left\{ \begin{matrix}f( - 1) = - \dfrac{3}{2} \\f(34) = 11 \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}m = - \dfrac{3}{2} \\M = 11 \\\end{matrix} ight.\  \Rightarrow A = \frac{13}{2}

  • Câu 27: Thông hiểu

    Tính tổng các phần tử tập S

    Cho hàm số y = \frac{x}{x - 1}\ \
(C) và đường thẳng \ d:y = - x +
m. Gọi S là tập các số thực m để đường thẳng d cắt đồ thị (C) tại hai điểm phân biệt A\ ,\ B sao cho tam giác OAB (O là gốc tọa độ) có bán kính đường tròn ngoại tiếp bằng 2\sqrt{2}. Tổng các phần tử của S bằng

    Xét phương trình \frac{x}{x - 1} = - x +
m,\ \(điều kiện x eq
1).

    Phương trình tương đương x^{2} - mx + m =
0 (1).

    Đồ thị (C) và đường thẳng d cắt nhau tại hai điểm phân biệt AB khi và chỉ khi phương trình (1) có hai nghiệm phân biệt x eq 1 điều kiện cần và đủ là m < 0 \vee m > 4.

    Khi đó hai giao điểm là A(x_{1}; - x_{1}
+ m); B(x_{2}; - x_{2} +
m).

    Ta có \left\{ \begin{matrix}
OA = \sqrt{m^{2} - 2m};OB = \sqrt{m^{2} - 2m} \\
AB = \sqrt{2(m^{2} - 4m)};d(O,d) = \frac{|m|}{\sqrt{2}} \\
\end{matrix} ight.;.

    S_{\Delta OAB} = \frac{1}{2}.AB.d(O,d)=
\frac{1}{2}.\frac{|m|}{\sqrt{2}}.\sqrt{2(m^{2} - 4m)} =
\frac{OA.OB.AB}{4R}.

    Suy ra \frac{1}{2}.\frac{|m|}{\sqrt{2}}\sqrt{2(m^{2} -
4m)} = \frac{(m^{2} - 2m).\sqrt{2(m^{2} -
4m)}}{4.2\sqrt{2}}

    \Leftrightarrow m^{2} - 2m = 4|m|
\Leftrightarrow \left\lbrack \begin{matrix}
m = 0(l) \\
m = 6(n) \\
m = - 2(n) \\
\end{matrix} ight..

    Vậy tổng các phần từ của S bằng 4.

  • Câu 28: Nhận biết

    Chọn hàm số tương ứng đồ thị

    Đường cong trong hình vẽ dưới đây là đồ thị của hàm số y = f(x):

    Hàm số y = f(x) là hàm số:

    Đồ thị hàm số bậc ba có dạng y = ax^{3} +
bx^{2} + cx + d có hệ số a >
0 nên hàm số cần tìm là y = x^{3} -
3x + 2.

  • Câu 29: Thông hiểu

    Chọn đáp án thích hợp

    Cho hàm số y = f(x) liên tục trên \mathbb{R} và có đồ thị như hình sau:

    (I). Hàm số nghịch biến trên khoảng (0;1).

    (II). Hàm số đồng biến trên khoảng ( -
1;2).

    (III). Hàm số có ba điểm cực trị.

    (IV). Hàm số có giá trị lớn nhất bằng 2.

    Trong các mệnh đề đã cho có bao nhiêu mệnh đề đúng?

    Xét trên (0;1) ta thấy đồ thị đi xuống (từ trái sang phải) nên hàm số nghịch biến. Do đó (I) đúng

    Xét trên ( - 1;2) ta thấy đồ thị đi lên, rồi đi xuống, rồi đi lên. Do đó (II) sai.

    Dựa vào đồ thị hàm số ta thấy có ba điểm cực trị. Do đó (III) đúng.

    Hàm số không có giá trị lớn nhất trên \mathbb{R}. Do đó (IV) sai.

    Vậy có 2 mệnh đề đúng.

  • Câu 30: Thông hiểu

    Chọn đáp án đúng

    Giá trị cực tiểu y_{CT} của hàm số y = x^{3} - 3x^{2} + 4 là:

    Ta có y' = 3x^{2} - 6x,\ \
y'' = 6x - 6

    \begin{matrix}
y' = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 2 \\
\end{matrix} ight.\  \\
y''(0) = - 6,y''(2) = 6 \\
\end{matrix}

    Do đó hàm số đạt cực tiểu tại x = 2
\Rightarrow y_{CT} = y(2) = 0.

  • Câu 31: Vận dụng

    Tìm m để AB đạt giá trị nhỏ nhất

    Tìm m để đường thẳng y = 2x + m cắt đồ thị hàm số y = \frac{x + 3}{x + 1} tại hai điểm A,\ B sao cho độ dài AB là nhỏ nhất.

    Gọi hàm số y = \frac{x + 3}{x +
1} có đồ thị là (C) và đường thẳng y = 2x + m có đồ thị là (d).

    Xét phương trình hoành độ giao điểm của (C)(d): \frac{x
+ 3}{x + 1} = 2x + m,\ \ \forall x eq - 1.

    \Leftrightarrow x + 3 = 2x^{2} + 2x + mx
+ m\ \ \  \Leftrightarrow 2x^{2} + (m + 1)x + m - 3 = 0,\ \ \forall x
eq 1\ \ \ \ (1)

    Để (d) cắt (C) tại hai điểm A,B\ \  \LeftrightarrowPhương trình (1) có hai nghiệm phân biệt khác - 1

    \Leftrightarrow \left\{ \begin{matrix}
\Delta > 0 \\
g( - 1) eq 0 \\
\end{matrix} ight. với g(x) =
2x^{2} + (m + 1)x + m - 3

    \Leftrightarrow \left\{ \begin{matrix}
(m + 1)^{2} - 4.2.(m - 3) > 0 \\
- 2 eq 0 \\
\end{matrix} ight.\  \Leftrightarrow m^{2} - 6m + 25 > 0,\ \
\forall m.

    Giả sử hoành độ giao điểm của (C)(d)x_{1},x_{2}.

    Khi đó A\left( x_{1};2x_{1} + m
ight)B\left( x_{2};2x_{2} + m ight).

    Theo hệ thức Vi-ét ta có x_{1} + x_{2} =
- \frac{m + 1}{2};\ \ \ x_{1}x_{2} = \frac{m - 3}{2}

    Ta có AB = \sqrt{\left( x_{2} - x_{1}
ight)^{2} + \left( 2x_{2} - 2x_{1} ight)^{2}}= \sqrt{5\left( x_{1}
- x_{2} ight)^{2}} = \sqrt{5\left( x_{1} + x_{2} ight)^{2} -
20x_{1}x_{2}}

    AB = \sqrt{5.\left( \frac{m + 1}{2}
ight)^{2} - 20.\frac{m - 3}{2}}

    = \sqrt{\frac{5m^{2} + 10m + 5 - 40m +
120}{4}}

    = \frac{\sqrt{5(m - 3)^{2} + 80}}{2}
\geq 2\sqrt{5}.

    Dấu " = " xảy ra khi và chỉ khi m = 3.

    Vậy m = 3 thì độ dài AB đạt giá trị nhỏ nhất bằng 2\sqrt{5}.

  • Câu 32: Thông hiểu

    Tìm tổng số đường tiệm cận của đồ thị hàm số

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Tổng số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số đã cho là:

    Hàm số y = f(x) có tập xác định: D\mathbb{= R}\backslash\left\{ 0
ight\}.

    Ta có:

    \lim_{x ightarrow + \infty}f(x) = +
\infty Không tồn tại tiệm cận ngang khi x \to  + \infty .

    \lim_{x ightarrow - \infty}f(x) =
2 vậy hàm số y = f(x) có tiệm cận ngang y = 2.

    \underset{\mathbf{x
ightarrow}\mathbf{0}^{\mathbf{+}}}{\mathbf{\lim}}\mathbf{f}\left(
\mathbf{x} ight)\mathbf{= + \infty}; \mathop {\lim }\limits_{x \to {0^ - }} f\left( x ight) =  - 4.

    Đồ thị hàm số y = f(x) có tiệm cận đứng x = 0.

    Vậy tổng số tiệm cận đứng và ngang là 2.

  • Câu 33: Thông hiểu

    Chọn khẳng định đúng trong các khẳng định dưới đây

    Cho hàm số có đồ thị hàm số như hình vẽ.

    Chọn khẳng định đúng trong các khẳng định dưới đây

    Chọn khẳng định đúng trong các khẳng định dưới đây?

    Dựa vào đồ thị hàm số ta thấy:

    \mathop {\lim }\limits_{x \to \infty } y =  - \infty => Hệ số a < 0 => Loại đáp án C và D

    Đồ thị hàm số đi qua điểm \left( {0;d} ight) => d > 0

    Hàm số có ba cực trị => ab < 0

    Do a < 0 => b > 0

    Đồ thị hàm số đi qua điểm có tọa độ \left( {0;c} ight) => c > 0

  • Câu 34: Nhận biết

    Xác định khoảng đồng biến của hàm số

    Cho hàm số y =
f(x) có đồ thị như hình vẽ:

    Hàm số y = f(x) đồng biến trên khoảng nào sau đây?

    Từ đồ thị của hàm số y = f(x) ta xác định được hàm số đồng biến trên các khoảng ( - 2; - 1).

  • Câu 35: Vận dụng

    Chọn đáp án thích hợp

    Cho hàm số y = f'(x)có đồ thị như hình vẽ

    Hàm số y = f\left( 2 - x^{2}
\right) đồng biến trên khoảng nào dưới đây

    Hàm số y = f\left( 2 - x^{2}
ight) có  y' = -
2x.f'\left( 2 - x^{2} ight)

     

    \begin{matrix} y' = - 2x.f'\left( 2 - x^{2} ight) > 0 \end{matrix}

    \Leftrightarrow
\left\lbrack \begin{matrix}
\left\{ \begin{matrix}
x > 0 \\
1 < 2 - x^{2} < 2 \\
\end{matrix} ight.\  \\
\left\{ \begin{matrix}
x < 0 \\
\left\lbrack \begin{matrix}
2 - x^{2} < 1 \\
2 - x^{2} > 2 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \\
\end{matrix} ight.\Leftrightarrow \left[ \begin{gathered}
  \left\{ \begin{gathered}
  x > 0 \hfill \\
   - 1 < x < 1 \hfill \\ 
\end{gathered}  ight. \hfill \\
  \left\{ \begin{gathered}
  x < 0 \hfill \\
  \left[ \begin{gathered}
  x <  - 1 \hfill \\
  x > 1 \hfill \\ 
\end{gathered}  ight. \hfill \\ 
\end{gathered}  ight. \hfill \\ 
\end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}
  0 < x < 1 \hfill \\
  x <  - 1 \hfill \\ 
\end{gathered}  ight.

    Do đó hàm số đồng biến trên (0;1).

  • Câu 36: Vận dụng cao

    Chọn đáp án đúng:

    Đồ thị hàm số y = \frac{2x + 1}{x-1} có tâm đối xứng I. Tiếp tuyến d tại điểm M thuộc đồ thị tạo với hai đường tiệm cận của tam giác IAB. Chu vi nhỏ nhất của tam giác IAB là:

  • Câu 37: Thông hiểu

    Xác định số giá trị nguyên của tham số m

    Số giá trị nguyên của tham số m để hàm số y = \frac{1}{3}x^{3} - 2mx^{2} +
4x - 5 đồng biến trên \mathbb{R}?

    Theo yêu cầu bài toán \Leftrightarrow
y' = x^{2} - 4mx + 4 \geq 0;\forall x\mathbb{\in R}

    \Leftrightarrow \left\{ \begin{matrix}
a = 1 > 0 \\
\Delta' \leq 0 \\
\end{matrix} ight.\  \Leftrightarrow 4m^{2} - 4 \leq 0 \Leftrightarrow
- 1 \leq m \leq 1

    m\mathbb{\in Z \Rightarrow}m \in
\left\{ - 1;0;1 ight\}

    Vậy có tất cả 3 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.

  • Câu 38: Thông hiểu

    Ghi đáp án vào ô trống

    Một hãng điện thoại đưa ra quy luật bán buôn cho từng đại lí, đó là đại lí càng nhập nhiều chiếc điện thoại của hãng thì giá bán buôn một chiếc điện thoại càng giảm. Cụ thể, nếu đại lí mua x điện thoại thì giá tiền của mỗi điện thoại là 4000-2x(nghìn đồng), x \in N^{*},x < 2000. Đại lí nhập cùng một lúc bao nhiêu chiếc điện thoại thì hãng có thể thu về nhiều tiền nhất từ đại lí đó?

    Đáp án: 1000||1 000

    Đáp án là:

    Một hãng điện thoại đưa ra quy luật bán buôn cho từng đại lí, đó là đại lí càng nhập nhiều chiếc điện thoại của hãng thì giá bán buôn một chiếc điện thoại càng giảm. Cụ thể, nếu đại lí mua x điện thoại thì giá tiền của mỗi điện thoại là 4000-2x(nghìn đồng), x \in N^{*},x < 2000. Đại lí nhập cùng một lúc bao nhiêu chiếc điện thoại thì hãng có thể thu về nhiều tiền nhất từ đại lí đó?

    Đáp án: 1000||1 000

    Số tiền hãng thu được khi đại lí nhập x chiếc điện thoại là f(x) = x(4000 - 2x).

    Ta có: f'(x) = - \ 4x +
4000.

    Khi đó, f'(x) = 0 \Leftrightarrow x =
1\ 000 \Rightarrow f(x) = 2000000

    Học sinh tự vẽ bảng biến thiên

    Ta suy ra:

    Đại lí nhập cùng lúc 1\ 000 chiếc điện thoại thì hãng có thể thu nhiều tiền nhất từ đại lí đó với 2 000 000 000(đồng).

    Đáp số: 1000.

  • Câu 39: Thông hiểu

    Tìm m để hàm số thỏa mãn yêu cầu

    Cho hàm số y = - x^{3} - 3x^{2} + mx +
2 với m là tham số. Với điều kiện nào của tham số m thì hàm số đã cho có cực đại và cực tiểu?

    Ta có: y' = - 3x^{2} - 6x +
m(*)

    Để hàm số có cực đại và cực tiểu thì phương trình (*) có hai nghiệm phân biệt

    \Rightarrow \Delta' > 0
\Leftrightarrow 9 + 3m > 0 \Leftrightarrow m > - 3.

    Vậy đáp án cần tìm là m > -
3.

  • Câu 40: Nhận biết

    Xác định số cực trị của hàm số

    Cho hàm số y = f(x) xác định trên \mathbb{R}\backslash\left\{ 0
ight\} và có bảng xét dấu đạo hàm f'(x) như sau:

    Hàm số y = f(x) có bao nhiêu điểm cực trị?

    Dựa vào bảng xét dấu đạo hàm ta thấy hàm số y = f(x) có 1 điểm cực trị.

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 1 Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo