Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Luyện tập Công thức tính góc trong không gian KNTT

Vndoc.com xin gửi tới bạn đọc bài viết Bài tập trắc nghiệm Toán 12: Công thức tính góc trong không gian sách Kết nối tri thức. Mời các bạn cùng tham khảo chi tiết bài viết dưới đây nhé!

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Tính góc giữa hai vectơ

    Cho hình chóp :\ O(0;0;0)\ ,\ A\ a\ (0;\
;0)\ ,\ B\ a(\ ;0;0)\ ,\ C\ a\ (0;0;\ ) có ba cạnh OA,OB,OC đôi một vuông góc và OA = OB = OC = a. Gọi M là trung điểm cạnh AB. Góc tạo bởi hai vectơ \overrightarrow{BC}\overrightarrow{OM} bằng:

    Hướng dẫn:

    Hình vẽ minh họa

    Chọn hệ trục tọa độ Oxyz như hình vẽ

    Ta có: \left\{ \begin{matrix}O(0;0;0),A(0;a;0),B(a;0;0) \\C(0;0;a),M\left( \dfrac{a}{2};\dfrac{a}{2};0 ight) \\\end{matrix} ight.

    Khi đó ta có: \overrightarrow{BC} = ( -
a;0;a);\overrightarrow{OM} = \left( \frac{a}{2};\frac{a}{2};0
ight)

    \Rightarrow \cos\left(\overrightarrow{BC};\overrightarrow{OM} ight) =\dfrac{\overrightarrow{BC}.\overrightarrow{OM}}{BC.OM} = \dfrac{-\dfrac{a^{2}}{2}}{a\sqrt{2}.\dfrac{a\sqrt{2}}{2}} = -\dfrac{1}{2}

    \Rightarrow \left(
\overrightarrow{BC};\overrightarrow{OM} ight) = 120^{0}

  • Câu 2: Thông hiểu
    Xác định góc giữa đường thẳng và mặt phẳng

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d:\left\{ \begin{matrix}
x = 5 + t \\
y = - 2 + t \\
z = 4 + \sqrt{2}t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight) và mặt phẳng (P):\ x - y + \sqrt{2}z - 7 =
0. Hãy xác định góc giữa đường thẳng d và mặt phẳng (P)?

    Hướng dẫn:

    Đường thẳng d có vectơ chỉ phương \overrightarrow{u} = \left(
1;1;\sqrt{2} ight)

    Mặt phẳng (P) có vectơ pháp tuyến \overrightarrow{n} = \left( 1; -
1;\sqrt{2} ight)

    Gọi \varphi là góc giữa đường thẳng và mặt phẳng, khi đó ta có:

    \sin\varphi = \frac{\left|
\overrightarrow{n}.\overrightarrow{u} ight|}{\left| \overrightarrow{n}
ight|.\left| \overrightarrow{u} ight|} = \frac{\left| 1.1 + 1.( - 1)
+ \sqrt{2}.\sqrt{2} ight|}{\sqrt{1^{2} + 1^{2} +
{\sqrt{2}}^{2}}.\sqrt{1^{2} + ( - 1)^{2} + {\sqrt{2}}^{2}}} =
\frac{1}{2}

    \Rightarrow \varphi =
30^{0}

  • Câu 3: Nhận biết
    Chọn khẳng định đúng

    Trong không gian tọa độ Oxyz, cho đường thẳng \Delta:\frac{x - 1}{- 2} =
\frac{y + 1}{2} = \frac{z - 2}{- 1} và mặt phẳng (P):2x - y - 2z + 1 = 0. Gọi \alpha là góc giữa đường thẳng \Delta và mặt phẳng (P). Khẳng định nào sau đây đúng?

    Hướng dẫn:

    Ta có: \Delta có một vectơ chỉ phương là \overrightarrow{u} = ( - 2;2; -
1), (P) có một vectơ pháp tuyến là \overrightarrow{n} = (2; - 1; -
2).

    Từ đó: \sin\alpha = \left| \cos\left(
\overrightarrow{n};\overrightarrow{u} ight) ight| = \left|
\frac{\overrightarrow{n}.\overrightarrow{u}}{\left| \overrightarrow{n}
ight|.\left| \overrightarrow{u} ight|} ight| =
\frac{4}{9}

  • Câu 4: Thông hiểu
    Chọn đáp án đúng

    Trong không gian Oxyz, mặt phẳng (P):3x + 4y + 5z + 8 = 0 và đường thẳng d là giao tuyến của hai mặt phẳng (\alpha):x - 2y + 1 = 0,(\beta):x - 2z
- 3 = 0. Góc giữa d(P) bằng:

    Hướng dẫn:

    Ta có: (P),(\alpha),(\beta) có vectơ pháp tuyến lần lượt là\left\{
\begin{matrix}
\overrightarrow{n_{(P)}} = (3;4;5) \\
\overrightarrow{n_{\alpha}} = (1; - 2;0) \\
\overrightarrow{n_{\beta}} = (1;0; - 2) \\
\end{matrix} ight.

    Vectơ chỉ phương của d\overrightarrow{u} = \left\lbrack
\overrightarrow{n_{\alpha}};\overrightarrow{n_{\beta}} ightbrack =
(4;2;2)

    Gọi\varphi là góc giữa d(P), ta có:

    \sin\varphi = \frac{\left|
\overrightarrow{n_{(P)}}.\overrightarrow{u} ight|}{\left|
\overrightarrow{n_{(P)}} ight|.\left| \overrightarrow{u} ight|} =
\frac{\sqrt{3}}{2} \Rightarrow \varphi = 60^{0}

  • Câu 5: Thông hiểu
    Tìm khoảng chứa giá trị biểu thức

    Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):ax + by + cz - 1 = 0,(c < 0) đi qua hai điểm A(0;1;0),B(1;0;0) tạo với mặt phẳng (Oyz) một góc 60^{0}. Khi đó a + b + c thuộc khoảng nào dưới đây?

    Hướng dẫn:

    Mặt phẳng (P) đi qua hai điểm A, B nên \left\{ \begin{matrix}
b - 1 = 0 \\
a - 1 = 0 \\
\end{matrix} ight.\  \Rightarrow a = b = 1

    (P) tạo với mặt phẳng (Oyz) một góc 60^{0} nên

    \cos\left( (P);(Oyz) ight) =
\frac{|a|}{\sqrt{a^{2} + b^{2} + c^{2}}.\sqrt{1}} =
\frac{1}{2}(*)

    Thay a = b = 1 vào phương trình (*) được:

    \sqrt{2 + c^{2}} = 2 \Rightarrow c = -
\sqrt{2}

    \Rightarrow a + b + c = 2 - \sqrt{2} \in
(0;3)

  • Câu 6: Nhận biết
    Tính góc giữa (P) và trục Ox

    Trong không gian Oxyz, cho mặt phẳng (P): - \sqrt{3}x + y + 1 = 0. Tính góc tạo bởi (P) với trục Ox?

    Hướng dẫn:

    Mặt phẳng (P): - \sqrt{3}x + y + 1 =
0 có một vectơ pháp tuyến là \overrightarrow{n} = \left( - \sqrt{3};1;0
ight)

    Trục Ox có một vectơ chỉ phương là \overrightarrow{i} = (1;0;0)

    Gọi α là góc giữa Ox và mặt phẳng (P):

    \sin\alpha = \left| \cos\alpha ight| =
\frac{\left| \overrightarrow{u}.\overrightarrow{n} ight|}{\left|
\overrightarrow{u} ight|.\left| \overrightarrow{n} ight|} = \frac{|1
- 2 - 2|}{\sqrt{6}.\sqrt{6}} = \frac{1}{2} \Rightarrow \alpha =
30^{0}

  • Câu 7: Thông hiểu
    Tính góc giữa hai mặt phẳng

    Trong không gian với hệ trục tọa độ Oxyz, cho các điểm A\left( - 1;\sqrt{3};0 ight),B\left(1;\sqrt{3};0 ight),C\left( 0;0;\sqrt{3} ight) và điểm M thuộc trục Oz sao cho hai mặt phẳng (MAB)(ABC) vuông góc với nhau. Tính góc giữa hai mặt phẳng (MAB)(OAB).

    Hướng dẫn:

    Ta có: M(0;0;m) thuộc trục Oz.

    Ta có \overrightarrow{AM} = (1; -
\sqrt{3};m),\overrightarrow{AB} = (2;0;0),\overrightarrow{AC} = (1; -
\sqrt{3};\sqrt{3}).

    \Rightarrow {\overrightarrow{n}}_{1} =
\lbrack\overrightarrow{AB},\overrightarrow{AC}brack = (0; - 2\sqrt{3};
- 2\sqrt{3}),{\overrightarrow{n}}_{2} =
\lbrack\overrightarrow{AB},\overrightarrow{AM}brack = (0; - 2m; -
2\sqrt{3})

    Mặt phẳng (ABC) có một vectơ pháp tuyến là {\overrightarrow{n}}_{1}, mặt phẳng (MAB) có một vectơ pháp tuyến là {\overrightarrow{n}}_{2}.

    Hai mặt phẳng (MAB)(ABC) vuông góc với nhau khi và chỉ khi

    {\overrightarrow{n}}_{1}\bot{\overrightarrow{n}}_{2}
\Leftrightarrow 0.0 + \left( - 2\sqrt{3} ight).( - 2m) + \left( -
2\sqrt{3} ight).( - 2\sqrt{3}) = 0 \Leftrightarrow m = - \sqrt{3}.

    Mặt phẳng (OAB) có một vectơ pháp tuyến là {\overrightarrow{n}}_{3} =
\lbrack\overrightarrow{OA},\overrightarrow{OB}brack = (0;0; -
2\sqrt{3}).

    Gọi \varphi là góc giữa hai mặt phẳng (MAB)(OAB). Khi đó

    cos\varphi = \left| cos\left(
{\overrightarrow{n}}_{2},{\overrightarrow{n}}_{3} ight) ight| =
\frac{\left| {\overrightarrow{n}}_{2}.{\overrightarrow{n}}_{3}
ight|}{\left| {\overrightarrow{n}}_{2} ight|.\left|
{\overrightarrow{n}}_{3} ight|} = \frac{12}{2\sqrt{6}.2\sqrt{3}} =
\frac{1}{\sqrt{2}}

    Vậy góc cần tìm bằng 45^{0}

  • Câu 8: Thông hiểu
    Chọn đáp án đúng

    Trong không gian với hệ tọa độ Oxyz ,cho đường thẳng d:\frac{x - 5}{2} = \frac{y + 7}{2} = \frac{z -
12}{- 1} và mặt phẳng (\alpha):x +
2y - 3z - 3 = 0. Gọi M là giao điểm của d(\alpha), A thuộc d sao cho AM
= \sqrt{14}. Tính khoảng cách từ A đến mặt phẳng (\alpha).

    Hướng dẫn:

    Hình vẽ minh họa

    Đường thẳng d:\frac{x - 5}{2} = \frac{y +
7}{2} = \frac{z - 12}{- 1} có một vectơ chỉ phương là: \overrightarrow{u} = (2;2; - 1)

    Mặt phẳng (\alpha):x + 2y - 3z - 3 =
0 có một vectơ pháp tuyến là \overrightarrow{n} = (1;2; - 3)

    Ta có: \sin\left( d;(\alpha) ight) =
\frac{\left| \overrightarrow{u}.\overrightarrow{n} ight|}{\left|
\overrightarrow{u} ight|.\left| \overrightarrow{n} ight|} =
\frac{3\sqrt{14}}{14}

    Gọi H là hình chiếu vuông góc của A lên mặt phẳng (α).

    Khi đó tam giác ∆MAH vuông tại H nên \sin\left( d;(\alpha) ight) = \sin\widehat{AMH}
= \frac{AH}{AM}

    AH = \sin\left( d;(\alpha) ight).AM =
3

    Vậy khoảng cách từ A đến mặt phẳng (α) bằng 3.

  • Câu 9: Thông hiểu
    Xác định tọa độ điểm thuộc mặt phẳng

    Trong không gian Oxyz, cho hai mặt phẳng (P):x + 2y - 2z + 2018 = 0,(Q):x +
my + (m - 1)z + 2017 = 0 (với m là tham số thực). Khi hai mặt phẳng (P)(Q) tạo với nhau một góc nhỏ nhất thì điểm M nào dưới đây nằm trong (Q) ?

    Hướng dẫn:

    Ta có: (P) có 1 VTPT {\overrightarrow{n}}_{P} = (1;2; - 2),(Q) có 1 VTPT {\overrightarrow{n}}_{Q} = (1;m;m
- 1).

    Gọi \alpha là góc giữa (P)(Q).

    Ta có:

    cos\alpha = \frac{\left|
{\overrightarrow{n}}_{P} \cdot {\overrightarrow{n}}_{Q} ight|}{\left|
{\overrightarrow{n}}_{P} ight| \cdot \left| {\overrightarrow{n}}_{Q}
ight|} = \frac{|1 + 2m - 2m + 2|}{3\sqrt{1 + m^{2} + (m - 1)^{2}}} =
\frac{1}{\sqrt{2m^{2} - 2m + 2}} = \frac{1}{\sqrt{2\left( m -
\frac{1}{2} ight)^{2} + \frac{3}{2}}}.

    Do 0 \leq \alpha \leq 90^{\circ} nên \alpha nhỏ nhất khi cos\alpha lớn nhất \Leftrightarrow \sqrt{2\left( m - \frac{1}{2}
ight)^{2} + \frac{3}{2}} nhỏ nhất

    \Leftrightarrow m =
\frac{1}{2}.

    \Rightarrow (Q):2x + y - z + 4034 = 0
\Rightarrow M( - 2017;1;1) \in (Q).

  • Câu 10: Nhận biết
    Chọn đáp án đúng

    Trong không gian Oxyz đường thẳng \Delta:\frac{x}{1} = \frac{y}{2} =
\frac{z}{- 1} = 1 và mặt phẳng (\alpha):x - y + 2z = 0. Góc giữa mặt phẳng (\alpha) và đường thẳng \Delta bằng:

    Hướng dẫn:

    Mặt phẳng (\alpha):x - y + 2z =
0 có một vectơ pháp tuyến là \overrightarrow{n} = (1; - 1;2)

    Đường thẳng \Delta:\frac{x}{1} =
\frac{y}{2} = \frac{z}{- 1} = 1 có một vectơ chỉ phương là \overrightarrow{u} = (1;2; - 1)

    Gọi α là góc giữa đường thẳng \Delta và mặt phẳng (\alpha):

    \sin\alpha = \left| \cos\alpha ight| =
\frac{\left| \overrightarrow{u}.\overrightarrow{n} ight|}{\left|
\overrightarrow{u} ight|.\left| \overrightarrow{n} ight|} = \frac{|1
- 2 - 2|}{\sqrt{6}.\sqrt{6}} = \frac{1}{2} \Rightarrow \alpha =
30^{0}

  • Câu 11: Nhận biết
    Chọn đáp án đúng

    Trong không gian với hệ tọa độ Oxyz cho đường thẳng d:\left\{ \begin{matrix}
x = 1 - t \\
y = 2 + 2t \\
z = 3 + t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight) và mặt phẳng (P):x - y + 3 = 0. Tính số đo góc giữa đường thẳng d và mặt phẳng (P).

    Hướng dẫn:

    Đường thẳng d có vectơ chỉ phương là \overrightarrow{u} = ( - 1;2;1)

    Mặt phẳng (P) có vectơ pháp tuyến là \overrightarrow{n} = (1; - 1;0)

    Gọi α là góc giữa đường thẳng d và mặt phẳng (P) .

    Khi đó ta có:

    \sin\alpha = \frac{\left|
\overrightarrow{u}.\overrightarrow{n} ight|}{\left| \overrightarrow{u}
ight|.\left| \overrightarrow{n} ight|} = \frac{\left| - 1.1 + 2.( -
1) + 1.0 ight|}{\sqrt{( - 1)^{2} + 2^{2} + 1^{2}}.\sqrt{1^{2} + ( -
1)^{2} + 0^{2}}} = \frac{\sqrt{3}}{2}

    \Rightarrow \alpha = 60^{0}

  • Câu 12: Nhận biết
    Chọn công thức đúng

    Trong không gian Oxyz, cho hai mặt phẳng (P);(Q) có các vectơ pháp tuyến là \overrightarrow{a}\left(
a_{1};b_{1};c_{1} ight),\overrightarrow{b}\left( a_{2};b_{2};c_{2}
ight). Góc \alpha là góc giữa hai mặt phẳng đó \cos\alpha là biểu thức nào sau đây?

    Hướng dẫn:

    Theo công thức góc giữa hai mặt phẳng ta có:

    \cos\alpha = \cos\left(
\overrightarrow{a};\overrightarrow{b} ight) = \frac{\left| a_{1}a_{2}
+ b_{1}b_{2} + c_{1}c_{2} ight|}{\left| \overrightarrow{a}
ight|.\left| \overrightarrow{b} ight|}

  • Câu 13: Vận dụng
    Chọn kết quả chính xác

    Cho hình chóp tứ giác đều S.ABCD có AB =
a;SA = a\sqrt{2}. Gọi G là trọng tâm tam giác SCD. Góc giữa đường thẳng BG với đường thẳng SA bằng:

    Hướng dẫn:

    Gọi O = AC ∩ BD

    Tam giác SAO vuông nên suy ra SO =
\sqrt{SA^{2} - AO^{2}} = \frac{a\sqrt{6}}{2}

    Gắn tọa độ như hình vẽ:

    Ta có: \left\{ \begin{matrix}A(0;0;0),B(a;0;0),C(a;a;0) \\D(0;a;0),O\left( \dfrac{a}{2};\dfrac{a}{2};0 ight),S\left(\dfrac{a}{2};\dfrac{a}{2};\dfrac{a\sqrt{6}}{2} ight) \\\end{matrix} ight.

    Vì G là trọng tâm tam giác SCD nên G\left(
\frac{a}{2};\frac{5a}{6};\frac{a\sqrt{6}}{6} ight)

    Ta có: \left\{ \begin{matrix}\overrightarrow{AS} = \left( \dfrac{a}{2};\dfrac{a}{2};\dfrac{a\sqrt{6}}{2}ight) = \dfrac{a}{2}\left( 1;1;\sqrt{6} ight) \\\overrightarrow{BG} = \left( -\dfrac{a}{2};\dfrac{5a}{6};\dfrac{a\sqrt{6}}{6} ight) = \dfrac{a}{6}\left(- 3;5;\sqrt{6} ight) \\\end{matrix} ight.

    Góc giữa đường thẳng BG với đường thẳng SA bằng:

    \cos(BG;SA) = \frac{\left|
\overrightarrow{AS}.\overrightarrow{BG} ight|}{BG.AS} = \frac{| - 3 +
5 + 6|}{\sqrt{40}.\sqrt{8}} = \frac{\sqrt{5}}{5}

    Vậy đáp án cần tìm là: \arccos\frac{\sqrt{5}}{5}.

  • Câu 14: Vận dụng
    Tính khoảng cách từ M đến (P)

    Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):x + y - 2z - 5 = 0 và đường thẳng\Delta:\frac{x - 1}{2} = \frac{y -
2}{1} = \frac{z}{3}. Gọi A là giao điểm của \Delta(P)M là điểm thuộc đường thẳng \Delta sao cho AM = \sqrt{84}. Tính khoảng cách từ M đến mặt phẳng (P).

    Hướng dẫn:

    Gọi \alpha = \left( \Delta,(P)
ight)

    Khi đó ta có: \cos\alpha = \frac{|1.2 +
1.1 - 2.3|}{\sqrt{1^{2} + 1^{2} + ( - 2)^{2}}.\sqrt{2^{2} + 1^{2} +
3^{2}}} = \frac{\sqrt{21}}{14}

    Gọi H là hình chiếu của M lên mặt phẳng (P), khi đó:

    HM = MA.cos\alpha = \sqrt{84}.\frac{\sqrt{21}}{14}
= 3

  • Câu 15: Vận dụng cao
    Tìm giá trị biểu thức T

    Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng d:\frac{x + 2}{4} = \frac{y - 1}{- 4} = \frac{z +
2}{3} và mặt phẳng (P):2x - y + 2z
+ 1 = 0. Đường thẳng ∆ đi qua E( -
2;1; - 2) song song với (P) đồng thời tạo với d góc bé nhất. Biết rằng \Delta có một vectơ chỉ phương \overrightarrow{u} = (m;n;1). Tính T = m^{2} + n^{2}

    Hướng dẫn:

    Ta có: ∆ // (P) nên \overrightarrow{u_{(\Delta)}}\bot\overrightarrow{u_{(d)}}
\Rightarrow \overrightarrow{u_{(\Delta)}}.\overrightarrow{u_{(d)}} =
0

    \Rightarrow n = 2m + 2 \Rightarrow
\overrightarrow{u_{(\Delta)}} = (m;2m + 2;1)

    Do đó, gọi α góc giữa hai đường thẳng ∆ và d, ta có:

    \cos\alpha = \frac{\left|\overrightarrow{u_{(\Delta)}}.\overrightarrow{u_{(d)}} ight|}{\left|\overrightarrow{u_{(\Delta)}} ight|.\left| \overrightarrow{u_{(d)}}ight|}= \frac{|4m + 5|}{\sqrt{41\left( 5m^{2} + 8m + 5 ight)}}=\frac{1}{\sqrt{41}}.\sqrt{\frac{16m^{2} + 40m + 25}{5m^{2} + 8m +5}}

    Góc α nhỏ nhất khi và chỉ khi cos α đạt giá trị lớn nhất.

    Xét hàm số f(m) = \frac{16m^{2} + 40m +
25}{5m^{2} + 8m + 5} trên \mathbb{R}, ta có:

    f'(m) = \frac{- 72m^{2} -90m}{\left( 5m^{2} + 8m + 5 ight)^{2}} = 0 \Leftrightarrow\left\lbrack \begin{matrix}m = 0 \\m = - \dfrac{5}{4} \\\end{matrix} ight.

    Bảng biến thiên:

    Suy ra max \max_{x\mathbb{\in R}}f(m) =
f(0) = 5.

    Với m = 0 suy ra n = 2. Do đó T = -4.

  • Câu 16: Nhận biết
    Tính góc giữa hai mặt phẳng

    Trong không gian Oxyz cho hai mặt phẳng (P):x + z + 4 = 0,(Q):x - 2y + 2z
+ 4 = 0. Góc giữa hai mặt phẳng (P);(Q) bằng:

    Hướng dẫn:

    Ta có: (P):x + z + 4 = 0 có 1 vectơ pháp tuyến là \overrightarrow{n_{1}} =
(1;0;1)

    (Q):x - 2y + 2z + 4 = 0 có 1 vectơ pháp tuyến là \overrightarrow{n_{2}} =
(1; - 2;2)

    Khi đó:

    \cos\left( (P);(Q) ight) = \cos\left(
\overrightarrow{n_{1}};\overrightarrow{n_{2}} ight)= \frac{\left|
\overrightarrow{n_{1}}.\overrightarrow{n_{2}} ight|}{\left|
\overrightarrow{n_{1}} ight|.\left| \overrightarrow{n_{2}} ight|} =
\frac{1}{\sqrt{2}}

    \Rightarrow \left( (P);(Q) ight) =
45^{0}

  • Câu 17: Thông hiểu
    Xác định phương trình mặt phẳng

    Trong không gian Oxyz, cho hai điểm A(3;0;1),B(6; - 2;1). Phương trình mặt phẳng (P) đi qua A;B và tạo với mặt phẳng (Oyz) một góc \alpha thỏa mãn \cos\alpha = \frac{2}{7}

    Hướng dẫn:

    Giả sử (P) có vectơ pháp tuyến \overrightarrow{n_{1}} =
(a;b;c)

    (P) có vectơ chỉ phương \overrightarrow{AB} = (3; - 2;0) \Rightarrow
\overrightarrow{n_{1}}\bot\overrightarrow{AB} \Rightarrow
\overrightarrow{n_{1}}.\overrightarrow{AB} = 0

    \Rightarrow 3a + b( - 2) + 0.c = 0
\Rightarrow a = \frac{3}{2}b\ \ \ (1)

    (Oyz) có phương trình x = 0 nên có vectơ pháp tuyến \overrightarrow{n_{2}} = (1;0;0)

    \cos\alpha = \frac{2}{7}
\Leftrightarrow \frac{\left|
\overrightarrow{n_{1}}.\overrightarrow{n_{2}} ight|}{\left|
\overrightarrow{n_{1}} ight|.\left| \overrightarrow{n_{2}} ight|} =
\frac{2}{7}

    \Leftrightarrow \frac{|a.1 + b.0 +
c.0|}{\sqrt{a^{2} + b^{2} + c^{2}}.\sqrt{1^{2} + 0^{2} + 0^{2}}} =
\frac{2}{7}

    \Leftrightarrow \frac{|a|}{\sqrt{a^{2} +
b^{2} + c^{2}}} = \frac{2}{7} \Leftrightarrow 7|a| = 2\sqrt{a^{2} +
b^{2} + c^{2}}

    \Leftrightarrow 79a^{2} = 4\left( a^{2}
+ b^{2} + c^{2} ight) \Leftrightarrow 45a^{2} - 4b^{2} - 4c^{2} = 0\ \
\ (2)

    Thay (1) vào (2) ta được 4b^{2} - c^{2} =
0

    Chọn c = 2 ta có 4b^{2} - 2^{2} = 0\Rightarrow \left\lbrack \begin{matrix}b = 1 \Rightarrow a = \dfrac{2}{3} \Rightarrow \overrightarrow{n} =\left( \dfrac{2}{3};1;2 ight) \\b = - 1 \Rightarrow a = \dfrac{- 2}{3} \Rightarrow \overrightarrow{n} =\left( - \dfrac{2}{3}; - 1;2 ight) \\\end{matrix} ight.

    Hay \left\lbrack \begin{matrix}
\overrightarrow{n} = (2;3;6) \\
\overrightarrow{n} = (2;3; - 6) \\
\end{matrix} ight., Vậy \left\lbrack \begin{matrix}
(P):2x + 3y + 6z - 12 = 0 \\
(P):2x + 3y - 6z = 0 \\
\end{matrix} ight..

  • Câu 18: Thông hiểu
    Tìm tham số m

    Trong không gian với hệ tọa độ Oxyz, cho các điểm A(1;0;0),B(0;2;0),C(0;0;m). Để mặt phẳng (ABC) hợp với mặt phẳng (Oxy) một góc 60^{0} thì giá trị của m là

    Hướng dẫn:

    Mặt phẳng Oxy có vectơ pháp tuyến là \overrightarrow{k} = (0;0;1)

    Ta có \overrightarrow{AB} = ( -
1;2;0);\overrightarrow{AC} = ( - 1;0;m), suy ra vectơ pháp tuyến của mặt phẳng (ABC)\overrightarrow{n} = \left\lbrack
\overrightarrow{AB};\overrightarrow{AC} ightbrack =
(2m;m;2)

    Theo bài ra ta có:

    cos60^{0} = \frac{\left|
\overrightarrow{k}.\overrightarrow{n} ight|}{\left| \overrightarrow{k}
ight|.\left| \overrightarrow{n} ight|} \Leftrightarrow \sqrt{5m^{2}
+ 4} = 4

    \Leftrightarrow m^{2} = \frac{12}{5}
\Leftrightarrow m = \pm \sqrt{\frac{12}{5}}

  • Câu 19: Vận dụng cao
    Tìm góc giữa hai mặt phẳng

    Cho hình hộp chữ nhật ABCD.A'B'C'D', có AB = 2a;AD = a\sqrt{2}, góc giữa AC' và mặt phẳng (ABCD) bằng 30^{0}. Gọi H là hình chiếu vuông góc của A trên AB′ và K là hình chiếu vuông góc của A trên AD'. Tính góc giữa hai mặt phẳng (AHK)(ABB'A')

    60^{0}

    Hướng dẫn:

    Hình vẽ minh họa

    Do ABCD \cdot
A^{'}B^{'}C^{'}D^{'} là hình hộp chữ nhật nên A^{'}C^{'} là hình chiếu vuông góc của A^{'}C trên (ABCD) \Rightarrow \left( A^{'}C,(ABCD)
ight) = \left( A^{'}C,A^{'}C^{'} ight) =
CA^{'}C^{'} = 30^{\circ}.

    Ta có AC = \sqrt{AB^{2} + AD^{2}} =
a\sqrt{3};tanCA^{'}C^{'} = \frac{CC^{'}}{A^{'}C^{'}}
\Rightarrow CC^{'} = a.

    Kết hợp với giả thiết ta được ABB^{'}A^{'} là hình vuông và có H là tâm.

    Gọi E,F lần lượt là hình chiếu vuông góc của K trên A^{'}D^{'}\& A^{'}A.

    Ta có \frac{1}{AK^{2}} =
\frac{1}{A^{'}A^{2}} + \frac{1}{AD^{2}} \Rightarrow AK =
\frac{a\sqrt{6}}{3};A^{'}K = \sqrt{A^{'}A^{2} - AK^{2}} =
\frac{a}{\sqrt{3}};

    \frac{1}{KF^{2}} = \frac{1}{KA^{2}} +
\frac{1}{A^{'}K^{2}} \Rightarrow KF = \frac{a\sqrt{2}}{3};KE =
\sqrt{A^{'}K^{2} - KF^{2}} \Rightarrow KE = \frac{a}{3}

    Ta chọn hệ trục tọa độ Oxyz thỏa mãn O \equiv A^{'} còn D^{'},B^{'},A theo thứ tự thuộc các tia Ox,Oy,Oz.

    Khi đó ta có tọa độ các điểm lần lượt là:

    A(0;0;a),B^{'}(0;a;0),H\left(
0;\frac{a}{2};\frac{a}{2} ight),K\left(
\frac{a\sqrt{2}}{3};0;\frac{a}{3} ight),E\left(
\frac{a\sqrt{2}}{3};0;0 ight),F\left( 0;0;\frac{a\sqrt{2}}{3}
ight)

    Mặt phẳng \left( ABB^{'}A^{'}
ight) là mặt phẳng (yOz) nên có VTPT là {\overrightarrow{n}}_{1} =
(1;0;0);

    Ta có \lbrack\overrightarrow{AK},\overrightarrow{AH}brack
=
\frac{a^{2}}{6}{\overrightarrow{n}}_{2},{\overrightarrow{n}}_{2}(2;\sqrt{2};\sqrt{2}).

    Mặt phẳng (AKH) có VTPT là {\overrightarrow{n}}_{2} =
(2;\sqrt{2};\sqrt{2});

    Gọi \alpha là góc giữa hai mặt phẳng (AHK)\left( ABB^{'}A^{'} ight).

    Ta có cos\alpha = \left| cos\left(
{\overrightarrow{n}}_{1},{\overrightarrow{n}}_{2} ight) ight| =
\frac{1}{\sqrt{2}} \Rightarrow \alpha = 45^{\circ}.

  • Câu 20: Vận dụng
    Tính góc giữa hai mặt phẳng

    Cho hình lập phương ABCD.A'B'C'D' có tâm O. Gọi I là tâm của hình vuông A'B'C'D' và điểm M \in OI sao cho MO = 2MI (tham khảo hình vẽ).

    Khi đó sin của góc tạo bởi hai mặt phẳng (MC’D′) và (MAB) bằng

    Hướng dẫn:

    Gắn hệ tọa độ như hình vẽ:

    Cạnh hình lập phương là 1, ta được tọa độ các điểm như sau:

    \left\{ \begin{matrix}M\left( \dfrac{1}{2};\dfrac{1}{2};\dfrac{1}{6}ight),C'(0;1;0),D'(1;1;0) \\A(1;0;1),B(0;0;1) \\\end{matrix} ight.

    Khi đó \left\{ \begin{matrix}\overrightarrow{n_{(MC'D')}} = (0;1;3) \\\overrightarrow{n_{(MAB)}} = (0;5;3) \\\end{matrix} ight.\Rightarrow \cos\left( (MC'D');(MAB)ight)= \frac{|5.1 + 3.3|}{\sqrt{5^{2} + 3^{2}}.\sqrt{1^{2} + 3^{2}}}= \frac{7\sqrt{85}}{85}

    Suy ra \sin\left( (MC'D');(MAB)
ight) = \sqrt{1 - \left( \frac{7\sqrt{85}}{85} ight)^{2}} =
\frac{6\sqrt{85}}{85}

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (30%):
    2/3
  • Thông hiểu (45%):
    2/3
  • Vận dụng (15%):
    2/3
  • Vận dụng cao (10%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo
🖼️

Toán 12 - Kết nối tri thức

Xem thêm