Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề kiểm tra 15 phút Chương 2 Vectơ và hệ trục tọa độ trong không gian KNTT

Mô tả thêm:

Cùng nhau thử sức với bài kiểm tra 15 phút Toán 12 Kết nối tri thức Chương 2 Vectơ và hệ trục tọa độ trong không gian nhé!

  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Nhận biết

    Chọn kết luận đúng

    Trong không gian cho hình hộp ABCD.A'B'C'D'. Khi đó \overrightarrow{CD} + \overrightarrow{CB} +
\overrightarrow{CC'} bằng:

    Theo quy tắc hình hộp ta có \overrightarrow{CD} + \overrightarrow{CB} +\overrightarrow{CC'} = \overrightarrow{CA'}.

  • Câu 2: Nhận biết

    Tìm tọa độ vectơ

    Trong không gian với hệ trục tọa độ Oxyz, cho ba vectơ \overrightarrow{a} = (2; - 3;3);\overrightarrow{b}
= (0;2; - 1);\overrightarrow{c} = (3; - 1;5). Tìm tọa độ vectơ \overrightarrow{u} = 2\overrightarrow{a} +
3\overrightarrow{b} - 2\overrightarrow{c}?

    Ta có: \left\{ \begin{matrix}
2\overrightarrow{a} = (4; - 6;6) \\
3\overrightarrow{b} = (0;6; - 3) \\
- 2\overrightarrow{c} = ( - 6;2; - 10) \\
\end{matrix} ight.. Khi đó \overrightarrow{u} = 2\overrightarrow{a} +
3\overrightarrow{b} - 2\overrightarrow{c} = ( - 2;2; - 7)

    Vậy \overrightarrow{u} = ( - 2;2; -
7)

  • Câu 3: Thông hiểu

    Tính diện tích tam giác ABC

    Trong không gian hệ trục tọa độ Oxyz, cho tam giác ABCA(1;0;0),B(0;0;1),C(2;1;1). Tính diện tích tam giác ABC?

    Ta có: \left\{ \begin{matrix}
\overrightarrow{AB} = ( - 1;0;1) \\
\overrightarrow{AC} = (1;1;1) \\
\end{matrix} ight.\  \Rightarrow
\overrightarrow{AB}.\overrightarrow{AC} = ( - 1).1 + 0.1 + 1.1 =
0

    Suy ra \overrightarrow{AB}\bot\overrightarrow{AC}. Lại có: \left\{ \begin{matrix}
\left| \overrightarrow{AB} ight| = \sqrt{2} \\
\left| \overrightarrow{AC} ight| = \sqrt{3} \\
\end{matrix} ight.

    Suy ra diện tích tam giác ABC là: S = \frac{1}{2}AB.AC =
\frac{\sqrt{6}}{2}

  • Câu 4: Vận dụng

    Xác định tọa độ điểm C’

    Trong không gian hệ trục tọa độ Oxyz, cho hình hộp ABCD.A'B'C'D' có tọa độ các điểm A( -
3;0;0),B(0;2;0),D(0;0;1),A'(1;2;3). Tìm tọa độ điểm C'?

    Theo quy tắc hình hộp ta có:

    \overrightarrow{AB} +
\overrightarrow{AD} + \overrightarrow{AA'} =
\overrightarrow{AC'}

    Lại có \left\{ \begin{matrix}
\overrightarrow{AB} = (3;2;0) = 3\overrightarrow{i} +
2\overrightarrow{j} + 0.\overrightarrow{k} \\
\overrightarrow{AD} = (3;0;1) = 3.\overrightarrow{i} +
0.\overrightarrow{j} + 1.\overrightarrow{k} \\
\overrightarrow{AA'} = (4;2;3) = 4.\overrightarrow{i} +
2\overrightarrow{j} + 3\overrightarrow{k} \\
\end{matrix} ight.

    \Rightarrow \overrightarrow{AC'} =
10.\overrightarrow{i} + 4.\overrightarrow{j} +
4.\overrightarrow{k}A( -
3;0;0)

    \Rightarrow C'(7;4;4)

    Suy ra C'(7;4;4)

  • Câu 5: Thông hiểu

    Tính giá trị biểu thức

    Trong không gian Oxyz, cho điểm M thỏa mãn \overrightarrow{OM} = (2x - 4)\overrightarrow{i} -4\overrightarrow{j} + (y - 1) \overrightarrow{k}. Khi điểm M \in Oy thì giá trị x + 2y bằng?

    Ta có:

    \left\{ \begin{matrix}
\overrightarrow{OM} = (2x - 4)\overrightarrow{i} - 4\overrightarrow{j} +
(y - 1)\overrightarrow{k} \\
M \in Oy \\
\end{matrix} ight.

    \Rightarrow \left\{ \begin{matrix}
2x - 4 = 0 \\
y - 1 = 0 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
x = 2 \\
y = 1 \\
\end{matrix} ight.

    Vậy x + 2y = 4 

  • Câu 6: Thông hiểu

    Tính góc giữa hai đường thẳng

    Cho tứ diện ABCD đều cạnh bằng a. Gọi O là tâm đường tròn ngoại tiếp tam giác BCD. Góc giữa AOCD bằng:

    Hình vẽ minh họa

    Gọi M là trung điểm của CD

    Vì ABCD là tứ diện đều nên AM\bot
CD;OM\bot CD

    Ta có: \overrightarrow{CD}.\overrightarrow{AO} =
\overrightarrow{CD}.\left( \overrightarrow{AM} + \overrightarrow{MO}
ight)

    =
\overrightarrow{CD}.\overrightarrow{AM} +
\overrightarrow{CD}.\overrightarrow{MO} =
\overrightarrow{0}

    Suy ra \overrightarrow{CD}\bot\overrightarrow{AO} nên số đo góc giữa hai đường thẳng bằng 90^{0}.

  • Câu 7: Vận dụng cao

    Tính x; y theo k để ba điểm thẳng hàng

    Cho hình hộp ABCD.A'B'C'D' và các điểm M,N,P xác định bởi

    \overrightarrow{MA} =
k\overrightarrow{MB'}(k \neq 0),\overrightarrow{NB} =
x\overrightarrow{NC'},\overrightarrow{PC} =
y\overrightarrow{PD'}. Hãy tính x,y theo k để ba điểm M,N,P thẳng hàng.

    Hình vẽ minh họa

    Đặt \overrightarrow{AD} =
\overrightarrow{a},\overrightarrow{AB} =
\overrightarrow{b},\overrightarrow{AA'} =
\overrightarrow{c}.

    Từ giả thiết ta có :

    \overrightarrow{AM} = \frac{k}{k -
1}\left( \overrightarrow{b} + \overrightarrow{c} \right)\ \ \
(1)

    \overrightarrow{AN} = \overrightarrow{b}+ \frac{x}{x - 1}\left( \overrightarrow{a} + \overrightarrow{c} \right) (2)

    \overrightarrow{AP} = \overrightarrow{a} + \overrightarrow{b} +\frac{y}{y - 1}\left( \overrightarrow{c} - \overrightarrow{b}\right)(3)

    Từ đó ta có

    \overrightarrow{MN} =\overrightarrow{AN} - \overrightarrow{AM}= \frac{x}{x -1}\overrightarrow{a} - \frac{1}{k - 1}\overrightarrow{b} + \left(\frac{x}{x - 1} - \frac{k}{k - 1} \right)\overrightarrow{c}

    + \left( \frac{x}{x - 1} - \frac{y}{y -
1} \right)\overrightarrow{c}.

    \overrightarrow{MP} =\overrightarrow{AP} - \overrightarrow{AM}= \overrightarrow{a} -(\frac{y}{y - 1} + \frac{1}{k - 1})\overrightarrow{b} + \left(\frac{y}{y - 1} - \frac{k}{k - 1} \right)\overrightarrow{c}

    Ba điểm M,N,P thẳng hàng khi và chỉ khi tồn tại \lambda sao cho \overrightarrow{MN} =
\lambda\overrightarrow{MP}\ \ (*).

    Thay các vectơ \overrightarrow{MN},\overrightarrow{MP} vào (*) và lưu ý \overrightarrow{a},\overrightarrow{b},\overrightarrow{c} không đồng phẳng ta tính được x = \frac{1 +
k}{1 - k},y = - \frac{1}{k}.

  • Câu 8: Thông hiểu

    Chọn khẳng định đúng

    Trong không gian Oxyz, cho vectơ \overrightarrow{OA} = \overrightarrow{i} -
2\overrightarrow{k}. Tọa độ điểm A là:

    Ta có: \overrightarrow{OA} =
\overrightarrow{i} - 2\overrightarrow{k} \Leftrightarrow A(0;1; -
2)

  • Câu 9: Vận dụng

    Ghi đáp án vào ô trống

    Trong không gian với hệ trục tọa độ Oxyz, cho các điểm A(2;0;0),B(0;2;0),C(0;0;2). Có tất cả bao nhiêu điểm Mtrong không gian thỏa mãn M eq A,M eq B,M eq C\widehat{AMB} = \widehat{BMC} =\widehat{CMA} = 90^{0}?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Trong không gian với hệ trục tọa độ Oxyz, cho các điểm A(2;0;0),B(0;2;0),C(0;0;2). Có tất cả bao nhiêu điểm Mtrong không gian thỏa mãn M eq A,M eq B,M eq C\widehat{AMB} = \widehat{BMC} =\widehat{CMA} = 90^{0}?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 10: Thông hiểu

    Tìm tọa độ điểm M

    Trong không gian hệ trục tọa độ Oxyz, cho hai điểm A(0;1; - 2),B(3; - 1;1). Tìm tọa độ điểm M sao cho \overrightarrow{AM} =
3\overrightarrow{AB}?

    Gọi tọa độ độ điểm M(x;y;z).

    Ta có: \left\{ \begin{matrix}
\overrightarrow{AM} = (x;y - 1;z + 2) \\
\overrightarrow{AB} = (3; - 2;3) \\
\end{matrix} ight.

    Lại có: \overrightarrow{AM} =
3\overrightarrow{AB}

    \Leftrightarrow \left\{ \begin{matrix}
x = 9 \\
y - 1 = - 6 \\
z + 2 = 9 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 9 \\
y = - 5 \\
z = 7 \\
\end{matrix} ight.\  \Rightarrow M(9; - 5;7)

    Vậy đáp án cần tìm là: M(9; -
5;7).

  • Câu 11: Nhận biết

    Chọn phát biểu sai

    Trong không gian Oxyz, cho hai vectơ \overrightarrow{a} = (2;1; - 3)\overrightarrow{b} = ( - 4; - 2;6). Phát biểu nào sau đây sai?

    Dễ thấy \overrightarrow{b} =
2\overrightarrow{a} từ đo suy ra hai vectơ \overrightarrow{a}\overrightarrow{b} ngược hướng và \left| \overrightarrow{b} ight| = 2\left|
\overrightarrow{a} ight|.

    Lại có \overrightarrow{a}.\overrightarrow{b} = 2.( - 4) +
1.( - 2) + ( - 3).6 = - 28 eq 0

    Vậy phát biểu sai là: \overrightarrow{a}.\overrightarrow{b} =
0.

  • Câu 12: Vận dụng

    Chọn phương án đúng

    Cho hình lập phương ABCD.A_{1}B_{1}C_{1}D_{1} có cạnh a. Gọi M là trung điểm AD. Giá trị \overrightarrow{B_{1}M}.\overrightarrow{BD_{1}} là:

    Hình vẽ minh họa

    Ta có: \overrightarrow{B_{1}M}.\overrightarrow{BD_{1}} =
\left( \overrightarrow{B_{1}B} + \overrightarrow{BA} +
\overrightarrow{AM} ight)\left( \overrightarrow{BA} +
\overrightarrow{AD} + \overrightarrow{DD_{1}} ight)

    =
\overrightarrow{B_{1}B}.\overrightarrow{DD_{1}} +
{\overrightarrow{BA}}^{2} +
\overrightarrow{AM}.\overrightarrow{AD} = - a^{2} + a^{2} + \frac{a^{2}}{2} =
\frac{a^{2}}{2}

  • Câu 13: Thông hiểu

    Tính giá trị biểu thức

    Trong không gian Oxyz, cho điểm A( - 3; - 1; - 1). Hình chiếu vuông góc của A trên mặt phẳng (Oyz) là điểm A'(x;y;z). Khi đó giá trị 2x + y + z bằng:

    Hình chiếu vuông góc của A( - 3; - 1; -
1) trên mặt phẳng (Oyz)A'(0; - 1; - 1)

    Suy ra 2x + y + z = - 2.

  • Câu 14: Thông hiểu

    Chọn đẳng thức đúng

    Cho tứ diện ABCD. Đặt \overrightarrow{AB} =
\overrightarrow{a};\overrightarrow{AD} =
\overrightarrow{b};\overrightarrow{AC} = \overrightarrow{c}. Gọi M là trung điểm của BC. Trong các đẳng thức sau, đẳng thức nào đúng?

    Hình vẽ minh họa

    Vì M là trung điểm của BC nên suy ra \overrightarrow{BM} =
\frac{1}{2}\overrightarrow{BC}

    Ta có: \overrightarrow{DM} =
\overrightarrow{DA} + \overrightarrow{AB} + \overrightarrow{BM} =
\overrightarrow{AB} - \overrightarrow{AD} +
\frac{1}{2}\overrightarrow{BC}

    = \overrightarrow{AB} -
\overrightarrow{AD} + \frac{1}{2}\left( \overrightarrow{BA} +
\overrightarrow{AC} ight) = \frac{1}{2}\overrightarrow{AB} +
\frac{1}{2}\overrightarrow{AC} - \overrightarrow{AD}

    = \frac{1}{2}\overrightarrow{a} +
\frac{1}{2}\overrightarrow{b} - \overrightarrow{c} = \frac{1}{2}\left(
\overrightarrow{a} + \overrightarrow{b} - 2\overrightarrow{c}
ight)

  • Câu 15: Nhận biết

    Tính góc giữa hai vecto

    Cho hai vectơ \overrightarrow{a}\overrightarrow{b} thỏa mãn \left| \overrightarrow{a} \right| =
3, \left| \overrightarrow{b}
\right| = 2\overrightarrow{a}.\overrightarrow{b} = -
3. Xác định góc \alpha giữa hai vectơ \overrightarrow{a}\overrightarrow{b}

    Ta có \overrightarrow{a}.\overrightarrow{b} = \left|
\overrightarrow{a} ight|.\left| \overrightarrow{b} ight|.cos\left(
\overrightarrow{a},\overrightarrow{b} ight)

    \Rightarrow \cos\left(
\overrightarrow{a},\overrightarrow{b} ight) =
\frac{\overrightarrow{a}.\overrightarrow{b}}{\left| \overrightarrow{a}
ight|.\left| \overrightarrow{b} ight|} = \frac{- 3}{3.2} = -
\frac{1}{2}

    \Rightarrow \left(
\overrightarrow{a},\overrightarrow{b} ight) = 120^{0}

  • Câu 16: Vận dụng

    Ghi đáp án vào ô trống

    Trong không gian với hệ tọa độ Oxyz, cho \overrightarrow{i},\overrightarrow{j},\overrightarrow{k} lần lượt là các vecto đơn vị nằm trên các trục tọa độ Ox,Oy,Oz\overrightarrow{u} là một vecto tùy ý khác \overrightarrow{0}.

    Tính T = \cos^{2}(\overrightarrow{u},\overrightarrow{i})+ \cos^{2}(\overrightarrow{u},\overrightarrow{j}) +\cos^{2}(\overrightarrow{u},\overrightarrow{k})

    Đáp án: 1

    Đáp án là:

    Trong không gian với hệ tọa độ Oxyz, cho \overrightarrow{i},\overrightarrow{j},\overrightarrow{k} lần lượt là các vecto đơn vị nằm trên các trục tọa độ Ox,Oy,Oz\overrightarrow{u} là một vecto tùy ý khác \overrightarrow{0}.

    Tính T = \cos^{2}(\overrightarrow{u},\overrightarrow{i})+ \cos^{2}(\overrightarrow{u},\overrightarrow{j}) +\cos^{2}(\overrightarrow{u},\overrightarrow{k})

    Đáp án: 1

    Giả sử \overrightarrow{u} =
(x,y,z).

    Ta có \overrightarrow{i}(1,0,0);\overrightarrow{j}(0,1,0);\overrightarrow{k}(0,0,1)

    cos^{2}(\overrightarrow{u},\overrightarrow{i}) +
cos^{2}(\overrightarrow{u},\overrightarrow{j}) +
cos^{2}(\overrightarrow{u},\overrightarrow{k})

    = \left( \frac{x}{\sqrt{x^{2} + y^{2} +
z^{2}}} ight)^{2} + \left( \frac{y}{\sqrt{x^{2} + y^{2} + z^{2}}}
ight)^{2} + \left( \frac{z}{\sqrt{x^{2} + y^{2} + z^{2}}}
ight)^{2}

    = \frac{x^{2} + y^{2} + z^{2}}{x^{2} +
y^{2} + z^{2}} = 1

    Vậy T = 1

  • Câu 17: Nhận biết

    Tìm tọa độ vectơ

    Trong không gian Oxyzcho \overrightarrow{a} = 2\overrightarrow{i} -
3\overrightarrow{k}. Tọa độ của \overrightarrow{a}

    Ta có: \overrightarrow{a} = (2;0; -
3)

  • Câu 18: Nhận biết

    Tìm tọa độ vectơ

    Trong không gian Oxyz, cho hai điểm A(1; - 1; - 3)B( - 2;2;1). Vectơ \overrightarrow{AB} có tọa độ là:

    Ta có:

    \overrightarrow{AB} = ( - 2 - 1;2 + 1;1
+ 3) = ( - 3;3;4)

    Vậy đáp án đúng là: \overrightarrow{AB} =
( - 3;3;4).

  • Câu 19: Thông hiểu

    Xác định tọa độ điểm A’

    Trong không gian Oxyz, cho hình hộp ABCD.A'B'C'D' biết A(1;0;1), B(2;1;2), D(1; - 1;1), C'(4;5; - 5). Tọa độ của điểm A' là:

    Gọi A'(a;b;c)

    ABCD.A'B'C'D' là hình hộp \Rightarrow
\overrightarrow{AC'} = \overrightarrow{AB} + \overrightarrow{AD} +
\overrightarrow{AA'}

    \Leftrightarrow \overrightarrow{AA'}
= \overrightarrow{AC'} - \overrightarrow{AB} -
\overrightarrow{AD}

    \overrightarrow{AB} = (1;1;1), \overrightarrow{AD} = (0; - 1;0), \overrightarrow{AC'} = (3;5; -
6)

    \overrightarrow{AC'} -
\overrightarrow{AB} - \overrightarrow{AD} = (2;5; - 7)

    \overrightarrow{AA'} = (a - 1;b;c -
1)

    (1) \Leftrightarrow \left\{
\begin{matrix}
a - 1 = 2 \\
b = 5 \\
c - 1 = - 7 \\
\end{matrix} ight.\Leftrightarrow \left\{ \begin{matrix}
a = 3 \\
b = 5 \\
c = - 6 \\
\end{matrix} ight.. Vậy: A'(3;5; - 6).

  • Câu 20: Vận dụng cao

    Tìm tọa độ tâm đường tròn nội tiếp tam giác

    Trong không gian Oxyz, cho hai điểm M(2;2;1),N\left( -
\frac{8}{3};\frac{4}{3};\frac{8}{3} ight). Tọa độ tâm đường tròn nội tiếp tam giác OMN là:

    Ta có bài toán sau

    Trong tam giác ABC, gọi I là tâm đường nội tiếp tam giác ABC ta có: a\overrightarrow{IA} + b\overrightarrow{IB}
+ c\overrightarrow{IC} = \overrightarrow{0} với BC = a;AC = b;AB = c

    Hình vẽ minh họa

    Gọi A’ là chân đường phân giác kẻ từ A

    \Rightarrow \overrightarrow{BA} =
\frac{c}{b}\overrightarrow{A'C} \Leftrightarrow
b\overrightarrow{BA'} + c\overrightarrow{CA'} =
\overrightarrow{0}\ \ \ (1)

    \overrightarrow{IA} =\dfrac{c}{A'B}\overrightarrow{A'I} = \dfrac{c}{\dfrac{ac}{b +c}}\overrightarrow{A'I} = \dfrac{b +c}{a}\overrightarrow{A'I}

    \Leftrightarrow a\overrightarrow{IA} +
(b + c)\overrightarrow{IA'} = \overrightarrow{0}

    \Leftrightarrow a\overrightarrow{IA} +
b\overrightarrow{IB} + c\overrightarrow{IC} + b\overrightarrow{BA'}
+ c\overrightarrow{CA'} = \overrightarrow{0}

    \Leftrightarrow a\overrightarrow{IA} +
b\overrightarrow{IB} + c\overrightarrow{IC} =
\overrightarrow{0}

    Áp dụng công thức trong tam giác OMN ta có:

    OM.\overrightarrow{IN} +
ON.\overrightarrow{IM} + MN.\overrightarrow{IO} =
\overrightarrow{0}

    \Rightarrow \left\{ \begin{matrix}x_{I} = \dfrac{OM.x_{n} + ON.x_{M} + MN.x_{O}}{OM + ON + MN} = 0 \\y_{I} = \dfrac{OM.y_{n} + ON.y_{M} + MN.y_{O}}{OM + ON + MN} = 1 \\z_{I} = \dfrac{OM.z_{n} + ON.z_{M} + MN.z_{O}}{OM + ON + MN} = 1 \\\end{matrix} ight.\  \Rightarrow I(0;1;1)

    Vậy đáp án cần tìm là (0;1;1)

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 2 Vectơ và hệ trục tọa độ trong không gian KNTT Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo