Tìm mệnh đề sai
Mệnh đề nào sau đây sai?
Đáp án sai là: là một nguyên hàm của
trên
Cùng nhau thử sức với bài kiểm tra 15 phút Toán 12 Kết nối tri thức Chương 4 Nguyên hàm và tích phân nhé!
Tìm mệnh đề sai
Mệnh đề nào sau đây sai?
Đáp án sai là: là một nguyên hàm của
trên
Tính giá trị của n
Nếu
thì n bằng
Ta có:
Đặt . Đổi cận:
.
Xác định tích phân I
Tích phân
có giá trị là:
Tích phân có giá trị là:
.
Đáp án đúng là .
Chọn đáp án đúng
Tính thể tích khối tròn xoay sinh ra khi quay hình phẳng giới hạn bởi các đường sau xung quanh trục
:
.
Thể tích khối tròn xoay
.
Tính diện tích các cánh hoa
Một viên gạch hoa hình vuông cạnh
. Người thiết kế đã sử dụng bốn đường parabol có chung đỉnh tại tâm viên gạch để tạo ra bốn cánh hoa (được tô đen như hình vẽ dưới).

Tính diện tích mỗi cánh hoa của viên gạch.

Chọn hệ tọa độ như hình vẽ (1 đơn vị trên trục bằng ), các cánh hoa tạo bởi các đường parabol có phương trình
,
,
,
.
Diện tích một cánh hoa (nằm trong góc phàn tư thứ nhất) bằng diện tích hình phẳng giới hạn bởi hai đồ thị hàm số,
và hai đường thẳng
.
Do đó diện tích một cánh hoa bằng
.
Chọn đáp án đúng
Cho hàm số
liên tục trên
. Gọi
là hình phẳng giới hạn bởi hai đồ thị
và các đường thẳng
. Diện tích hình
được tính theo công thức?
Ta có diện tích hình (H) được tính bằng công thức .
Tính diện tích nhỏ nhất
Diện tích nhỏ nhất giới hạn bởi parabol
và đường thẳng
là:
Hoành độ giao điểm của đồ thị hai hàm số là nghiệm của phương trình
Vì nên phương trình luôn có 2 nghiệm phân biệt
với
Ta có: .
Diện tích hình phẳng giới hạn bởi (P) và (d) là:
Vậy diện tích nhỏ nhất giới hạn bởi parabol và đường thẳng
là
.
Chọn phương án đúng
Tìm nguyên hàm của hàm số
.
Ta có
Tính giá trị của tham số a
Biết
, a là các số hữu tỉ. Giá trị của a là:
Ta có:
Đặt
Đổi cận .
.
Tính diện tích hình phẳng
Diện tích hình phẳng giới hạn bởi hai đường
và
bằng:
Xét phương trình hoành độ giao điểm
Diện tích hình phẳng là:
Tính giá trị của S
Diện tích hình phẳng giới hạn bởi đường cong
và đường thẳng
bằng S. Giá trị của S là
Ta có: Phương trình tung độ giao điểm
.
Chọn kết luận đúng
Hàm số
được gọi là nguyên hàm của hàm số
trên đoạn
nếu:
Hàm số được gọi là nguyên hàm của hàm số
trên đoạn
nếu với mọi
, ta có
, ngoài ra
và
.
Chọn đáp án đúng
Cho hàm số
thỏa mãn
và
với mọi
. Tính
?
Ta có:
Với
Do đó
Vậy
Tìm nguyên hàm của hàm số
Tìm nguyên hàm
của hàm số
, biết
.
Ta có:
Mà
Vậy đáp án cần tìm là:
Tính tích phân I
Cho tích phân
nếu đặt
thì
trong đó
Ta có:
Tính thể tích khối tròn xoay
Tính thể tích khối tròn xoay khi cho hình phẳng giới hạn bởi đồ thị các hàm số
và
quay quanh trục Ox.
Xét phương trình hoành độ giao điểm
Khi đó thể tích khối tròn xoay có được khi quay hình phẳng giới hạn bởi các đồ thị hàm số
quay quanh trục Ox được tính bởi công thức
Ta thấy trên thì
, do vậy ta có công thức
(đvtt)
Chọn đáp án đúng
Cho
. Tính
.
Ta có
Chọn đáp án đúng
Tích phân
có giá trị bằng
Ta có:
Ta thử bằng máy tính để tìm ra kết quả.
Chọn đáp án đúng
Cho
. Khi đó
là:
Ta có:
Khi đó
Tìm nguyên hàm của hàm số
Biết
. Khi đó
tương ứng bằng
Ta có:
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: