Tính giá trị của biểu thức
Biết hàm số
có nguyên hàm là
với
và
là phân số tối giản. Tính giá trị biểu thức
.
Ta có:
khi đó
Vậy đáp án cần tìm là:
Cùng nhau thử sức với bài kiểm tra 15 phút Toán 12 Kết nối tri thức Chương 4 Nguyên hàm và tích phân nhé!
Tính giá trị của biểu thức
Biết hàm số
có nguyên hàm là
với
và
là phân số tối giản. Tính giá trị biểu thức
.
Ta có:
khi đó
Vậy đáp án cần tìm là:
Tìm số điểm cực trị của hàm số
Cho hàm số
là một nguyên hàm của
. Khi đó số điểm cực trị của hàm số
là:
Ta có: là một nguyên hàm của hàm số
. Do
là nghiệm bội 1 còn
là nghiệm bội 2 nên hàm số
có hai điểm cực trị.
Tìm mệnh đề sai
Mệnh đề nào sau đây sai?
Đáp án sai là: là một nguyên hàm của
trên
Tính giá trị của biểu thức
Biết rằng
. Tính giá trị biểu thức
?
Ta có:
Khi đó
Suy ra .
Xác định thể tích của vật
Vật thể
giới hạn bởi mặt phẳng có phương trình
và
. Cắt vật thể
với mặt phẳng vuông góc với trục
tại điểm có hoành độ bằng
ta được thiết diện có diện tích bằng
. Thể tích của vật thể
:
Thể tích của vật thể B là:
Tính tích phân
Cho
và
, khi đó
bằng:
Ta có:
Tìm khẳng định sai
Cho
và đặt
. Khẳng định nào sau đây sai?
Ta có:
Đặt
Đổi cận từ đó ta có:
Vậy khẳng định sai là: .
Tìm khẳng định sai
Cho các hàm số
và
liên tục trên
và số
tùy ý. Trong các khẳng định sau, khẳng định nào sai?
Khẳng định sai là:
Tìm công thức nguyên hàm của hàm số
Xác định nguyên hàm
của hàm số
thỏa mãn
?
Ta có:
Theo bài ra ta có:
Vậy
Chọn đáp án đúng
Tính thể tích khối tròn xoay sinh ra khi quay hình phẳng giới hạn bởi các đường sau xung quanh trục
:
.
Thể tích khối tròn xoay
.
Chọn đáp án đúng
Theo phương pháp đổi biến số
, nguyên hàm của
là:
Ta có:
.
Đặt .
.
Tính thể tích khối tròn xoay
Cho tam giác
vuông tại
, cạnh
và
là trung điểm của cạnh
. Khi đó thể tích của khối tròn xoay do tam giác
quanh cạnh
là:
Hình vẽ minh họa
Khi quay tam giác BMC quanh cạnh AB tạo ra 2 khối tròn xoay có thể tích là
Tính thể tích quả bóng
Một quả bóng bầu dục có khoảng cách giữa 2 điểm xa nhất bằng 10 cm và cắt quả bóng bằng mặt phẳng trung trực của đoạn thẳng đó thì được đường tròn có diện tích bằng
. Thể tích của quả bóng bằng (Tính gần đúng đến hai chữ số thập phân, đơn vị lít)
Quả bóng bầu dục sẽ có dạng elip.
Độ dài trục lớn bằng
Ta có diện tích đường tròn thiết diện là
Ta sẽ có phương trình elip
Chọn đáp án đúng
Tìm họ nguyên hàm của hàm số
?
Ta có:
Tìm giá trị tham số a
Kí hiệu
là hình phẳng giới hạn bởi đồ thị
với trục hoành (
). Quay hình
xung quanh trục hoành ta thu được khối tròn xoay có thể tích
. Tìm
?
Phương trình hoành độ giao điểm
Trường hợp 1: Với thì thể tích khối tròn xoay là:
Trường hợp 2: Với thì thể tích khối tròn xoay là:
Vậy .
Chọn công thức đúng
Cho hàm số
liên tục trên đoạn
. Gọi
là hình phẳng giới hạn bởi đồ thị
, trục hoành, hai đường thẳng
(như hình vẽ bên).

Giả sử
là diện tích của hình phẳng
. Chọn công thức đúng?
Dựa vào đồ thị hình vẽ ta thấy:
+ Đồ thị cắt trục hoành tại điểm
+ Trên đoạn , đồ thị ở phía dưới trục hoành nên
+ Trên đoạn , đồ thị ở phía trên trục hoành nên
Do đó:
Chọn đáp án đúng
Một vật chuyển động trong 3 giờ với vận tốc v (km/h) phụ thuộc thời gian t (h) có đồ thị là một phần của đường parabol có đỉnh
và trục đối xứng song song với trục tung như hình dưới. Tính quãng đường s mà vật di chuyển được trong 3 giờ đó.

Ta tìm được phương trình của parabol là
Như vậy, quãng đường s mà vật di chuyển được trong 3 giờ là:
Tính tỉ số hai cạnh
Một cổng chào có dạng hình Parabol chiều cao
, chiều rộng chân đế
. Người ta căng hai sợi dây trang trí
,
nằm ngang đồng thời chia hình giới hạn bởi Parabol và mặt đất thành ba phần có diện tích bằng nhau (xem hình vẽ bên). Tỉ số
bằng

Chọn hệ trục tọa độ như hình vẽ.

Phương trình Parabol có dạng
.
đi qua điểm có tọa độ
suy ra:
.
Từ hình vẽ ta có: .
Diện tích hình phẳng giới bạn bởi Parabol và đường thẳng là
.
Diện tích hình phẳng giới hạn bởi Parabol và đường thẳng
là
Từ giả thiết suy ra .
Vậy .
Tính quãng đường S
Một ô tô bắt đầu chuyển động nhanh dần đều với vận tốc
. Đi được 12 giây, người lái xe phát hiện chướng ngại vật và phanh gấp, ô tô tiếp tục chuyển động chậm dần đều với gia tốc
. Tính quãng đường
đi được của ô tô từ lúc bắt đầu chuyển bánh cho đến khi dừng hẳn?
Quãng đường xe đi được trong 12s đầu là
Sau khi đi được 12s vật đạt vận tốc , sau đó vận tốc của vật có phương trình
Vật dừng hẳn sau 2s kể từ khi phanh.
Quãng đường vật đi được từ khi đạp phanh đến khi dừng hẳn là
Vậy tổng quãng đường ô tô đi được là
Tính quãng đường vật đi được
Một vật chuyển động với vận tốc thay đổi theo thời gian được tính bởi công thức
, thời gian tính theo đơn vị giây, quãng đường vật đi được tính theo đơn vị m. Biết tại thời điểm
thì vật đi được quãng đường là 10m. Hỏi tại thời điểm
thì vật đi được quãng đường là bao nhiêu?
Ta có:
.
.
Suy ra: Khi s, vật đi được quãng đường
m.
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: