Tính diện tích hình phẳng
Diện tích hình phẳng giới hạn bởi các đường
, trục hoành,
và
bằng
Diện tích hình giới hạn là
Cùng nhau thử sức với bài kiểm tra 15 phút Toán 12 Kết nối tri thức Chương 4 Nguyên hàm và tích phân nhé!
Tính diện tích hình phẳng
Diện tích hình phẳng giới hạn bởi các đường
, trục hoành,
và
bằng
Diện tích hình giới hạn là
Chọn đáp án đúng
Tìm họ các nguyên hàm của hàm số
?
Ta có:
Viết phương trình tiếp tuyến
Cho hàm số
là hàm số bậc ba có đồ thị như hình vẽ:

Biết
và
. Phương trình tiếp tuyến với đồ thị hàm số
tại điểm có hoành độ
là:
Từ đồ thị hàm số ta suy ra
Xét tích phân . Đặt
Đổi cận
Do đó
Xét tích phân . Đặt
Đổi cận
Theo bài ra suy ra
Như vậy . Suy ra phương trình tiếp tuyến của đồ thị hàm số tại điểm có hoành độ
là:
.
Tìm khoảng chứa tham số a
Cho đường thẳng
và parabol
(
là tham số thực). Gọi
lần lượt là diện tích của hai hình phẳng được tô đậm và gạch chéo trong hình vẽ bên. Khi
thì
thuộc khoảng nào dưới đây?

Phương trình hoành độ giao điểm của của hai đồ thị:
Theo giả thiết, phương trình có hai nghiệm phân biệt
Khi đó, phương trình có hai nghiệm thỏa mãn:
Diện tích hình phẳng:
Diện tích hình phẳng:
Theo giả thiết ta có:
Tính quãng đường di chuyển
Một ô tô đang chạy với vận tốc
thì người lái hãm phanh. Sau khi hãm phanh, ô tô chuyển động chậm dần đều với vận tốc
trong đó
là khoảng thời gian tính bằng giây kể từ lúc bắt đầu hãm phanh. Hỏi từ lúc hãm phanh đến khi dừng hẳn, ô tô còn di chuyển được bao nhiêu mét?
Khi vật dừng hẳn thì
Quãng đường vật đi được trong khoảng thời gian trên là:
Chọn phương án đúng
Tích phân
có giá trị là:
Thực hiện giải toán theo hai bước sau:
Cách 1: .
Cách 2: Dùng máy tính cầm tay.
Chọn đáp án đúng
Nguyên hàm
của hàm số
thỏa mãn
là
Ta có: .
.
Vậy .
Tính diện tích S
Tính diện tích
của hình phẳng giới hạn bởi đồ thị hai hàm số
và
?
Hoành độ giao điểm của đồ thị hai hàm số là nghiệm của phương trình
Hình vẽ minh hoạ
Diện tích S cần tìm là:
Tìm giá trị tích phân
Giá trị của
bằng
Ta có:
Tính giá trị biểu thức
Cho
với
là các số hữu tỉ. Giá trị của biểu thức
bằng
Đặt khi đó:
Tính giá trị của biểu thức
Biết
, với
. Tính giá trị
?
Ta có:
Khi đó:
Tính diện tích hình phẳng
Diện tích hình phẳng giới hạn bởi hai đường
và
bằng:
Xét phương trình hoành độ giao điểm
Diện tích hình phẳng là:
Chọn mệnh đề đúng
Cho hàm số
thỏa mãn
và
. Mệnh đề nào sau đây đúng?
Ta có:
.
Theo bài ra ta có:
Vậy .
Xác định nguyên hàm
Tìm nguyên hàm
.
Ta có:
Tính tích phân
Cho hai hàm số
có đồ thị như hình vẽ:

Gọi
là diện tích hình phẳng được gạch trong hình vẽ. Khi
thì
bằng bao nhiêu?
Phương trình hoành độ giao điểm
Ký hiệu là diện tích hình phẳng như hình vẽ:
Ta có:
Vì vậy
Chọn công thức tính diện tích hình phẳng
Cho đồ thị của hàm số
như sau:

Diện tích hình phẳng (phần tô đậm trong hình vẽ) được xác định bởi công thức:
Dựa vào hình vẽ ta được: .
Chọn đẳng thức đúng
Cho
. Tìm đẳng thức đúng.
Đặt
Xác định nguyên hàm của hàm số
Tìm nguyên hàm của hàm số ![]()
Ta có:
(Áp dụng công thức )
Tìm nguyên hàm của hàm số
Xác định nguyên hàm của hàm số
?
Ta có: .
Xác định công thức diện tích hình phẳng
Cho đồ thị hàm số
. Diện tích hình phẳng (phần gạch trong hình) là:

Diện tích hình phẳng (phần gạch trong hình) là:
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: