Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề kiểm tra 45 phút Chương 5 Phương pháp tọa độ trong không gian

Mô tả thêm:

Hãy cùng thử sức kiểm tra đánh giá các kiến thức tổng quan với bài kiểm tra phút Chương 5: Phương pháp tọa độ trong không gian Toán 12 sách Kết nối tri thức các em nhé!

  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Vận dụng

    Chọn đáp án đúng

    Trong không gian với hệ tọa độ Oxyz. Viết phương trình đường thẳng \Deltađi qua điểm B(1;1;2) cắt đường thẳng d:\frac{x - 2}{1} = \frac{y - 3}{- 2} = \frac{z +
1}{1} tại C sao cho tam giác OBCcó diện tích bằng \frac{\sqrt{83}}{2}.

    Ta có:

    C \in d \Rightarrow C(2 + t;3 - 2t; - 1
+ t)

    \overrightarrow{OC} = (2 + t;3 - 2t; - 1
+ t)

    \overrightarrow{OB} =
(1;1;2)

    \left\lbrack
\overrightarrow{OB},\overrightarrow{OC} ightbrack = (5t - 7;t + 5;1
- 3t)

    S_{\Delta OBC} = \frac{1}{2}\left|
\left\lbrack \overrightarrow{OB},\overrightarrow{OC} ightbrack
ight|

    \Leftrightarrow \left\lbrack
\begin{matrix}
t = 2 \Rightarrow \overrightarrow{BC} = (3; - 2; - 1) \\
t = \frac{- 4}{35} \Rightarrow \overrightarrow{BC} = \left(
\frac{31}{35};\frac{78}{35}; - \frac{109}{35} ight) \\
\end{matrix} ight.

    \Delta đi qua điểm B và có vectơ chỉ phương \overrightarrow{BC}

    Vậy phương trình của \Delta\frac{x - 1}{3} = \frac{y - 1}{- 2} =
\frac{z - 2}{- 1}\frac{x -
1}{31} = \frac{y - 1}{78} = \frac{z - 2}{- 109}.

  • Câu 2: Nhận biết

    Chọn đáp án thích hợp

    Phương trình mặt câu tâm I(a,b,c) có bán kính R là:

    Đáp án cần tìm là:

    x^{2} + y^{2} + z^{2}
- 2ax - 2by - 2cz + d = 0,a^{2} + b^{2} + c^{2} - d >
0.

  • Câu 3: Nhận biết

    Tính góc giữa hai đường thẳng

    Trong không gian Oxyz, cho hai đường thẳng \Delta_{1}:\frac{x - 1}{- 2} =
\frac{y + 2}{1} = \frac{z - 3}{2}\Delta_{2}:\frac{x + 3}{1} = \frac{y - 1}{1} =
\frac{z + 2}{- 4}. Góc giữa hai đường thẳng \Delta_{1};\Delta_{2} bằng?

    Véc tơ chỉ phương của \Delta_{1}\overrightarrow{u_{1}} = ( -
2;1;2)

    Véc tơ chỉ phương của \Delta_{2}\overrightarrow{u_{2}} = (1;1; -
4)

    \cos\left( \Delta_{1};\Delta_{2} \right)
= \frac{\left| \overrightarrow{u_{1}}.\overrightarrow{u_{2}}
\right|}{\left| \overrightarrow{u_{1}} \right|.\left|
\overrightarrow{u_{2}} \right|} = \frac{\sqrt{2}}{2}.

    Do đó góc giữa hai đường thẳng \Delta_{1}\Delta_{2}45^{0}

  • Câu 4: Thông hiểu

    Tìm mặt phẳng cách đều hai mặt phẳng cho trước

    Trong không gian với hệ trục tọa độ Oxyz, cho hai mặt phẳng (P):x + y - 2z + 5 = 0(Q): - x - y + 2z + 9 = 0. Mặt phẳng nào sau đây cách đều hai mặt phẳng (P) và (Q)?

    Gọi (R) là mặt phẳng cách đều hai mặt phẳng (P) và (Q) thì (P)//(Q)//(R)

    Do đó (R) có dạng x + y − 2z + m = 0.

    Gọi A(1; 0; 3) ∈ (P) , B(1; 0; −4) ∈ (Q).

    Khi đó trung điểm M của đoạn AB nằm trên (R), tức M\left( 1;0; - \frac{1}{2} ight) \in
(R).

    Suy ra 1 + 0 - 2.\left( - \frac{1}{2}
ight) + m = 0 \Leftrightarrow m = - 2.

    Vậy (R): x + y − 2z − 2 = 0 hay (R): −x − y + 2z + 2 = 0.

  • Câu 5: Nhận biết

    Chọn đáp án đúng

    Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):x - 2y + z - 3 = 0 và điểm A(1;2;0). Viết phương trình đường thẳng qua A và vuông góc với (P).

    Mặt phẳng (P) có vectơ pháp tuyến là \overrightarrow{n} = (1; -
2;1) nên đường thẳng cần tìm có vectơ chỉ phương là \overrightarrow{n} = (1; - 2;1).

    Vậy phương trình đường thẳng đi qua A và vuông góc với (P) là: \frac{x - 1}{1} = \frac{y - 2}{- 2} =
\frac{z}{1}

  • Câu 6: Vận dụng

    Tính giá trị của biểu thức

    Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(0;2; - 2),B(2;2; - 4). Giả sử I(a;b;c) là tâm đường tròn ngoại tiếp tam giác OAB. Tính T = a^{2} + b^{2} + c^{2}.

    Ta có OA = AB = 2\sqrt{2} nên tam giác OAB cân tại OAB, vì vậy I thuộc đường trung tuyến qua A(d):\left\{ \begin{matrix}
x = 1 + t \\
y = 1 - t \\
z = - 2 \\
\end{matrix} \right.\  \Rightarrow I(1 + t;1 - t; - 2)

    IA = IO \Leftrightarrow t = 0
\Rightarrow I(2;0; - 2)

    Do đó T = 8

  • Câu 7: Thông hiểu

    Xét tính đúng sai của các nhận định

    Trong không gian Oxyz, cho hai điểm A(2\ ;\ 4\ ;\ 1), B( - 2\ ;\ 2\ ;\  - 3). Gọi I là tâm mặt cầu (S) có đường kính AB. Các nhận định dưới đây đúng hay sai?

    a) I(0\ ;\ 3\ ;\  - 1), R = 6.Đúng||Sai

    b) Phương trình mặt phẳng tiếp xúc mặt cầu tại A là (P):2x + y + 2z - 10 = 0. Đúng||Sai

    c) Bán kính đường tròn giao tuyến của mặt cầu với (Q):2x - y + 2z - 1 = 05.Sai||Đúng

    d) Gọi I' là tâm mặt cầu (S') sao cho diện tích mặt cầu (S) gấp 4 lần diện tích mặt cầu (S'). Khi đó, II' = \frac{11}{2}. Đúng||Sai

    Đáp án là:

    Trong không gian Oxyz, cho hai điểm A(2\ ;\ 4\ ;\ 1), B( - 2\ ;\ 2\ ;\  - 3). Gọi I là tâm mặt cầu (S) có đường kính AB. Các nhận định dưới đây đúng hay sai?

    a) I(0\ ;\ 3\ ;\  - 1), R = 6.Đúng||Sai

    b) Phương trình mặt phẳng tiếp xúc mặt cầu tại A là (P):2x + y + 2z - 10 = 0. Đúng||Sai

    c) Bán kính đường tròn giao tuyến của mặt cầu với (Q):2x - y + 2z - 1 = 05.Sai||Đúng

    d) Gọi I' là tâm mặt cầu (S') sao cho diện tích mặt cầu (S) gấp 4 lần diện tích mặt cầu (S'). Khi đó, II' = \frac{11}{2}. Đúng||Sai

    a) I là trung điểm của AB \Rightarrow I(0\ ;\ 3\ ;\  - 1).

    Có: \overrightarrow{IA} = (2\ ;\ 1\ ;\ 2)
\Rightarrow IA = \sqrt{2^{2} + 1^{2} + 2^{2}} = 3.

    b) (P)\overrightarrow{n_{(P)}} = \overrightarrow{IA} =
(2\ ;\ 1\ ;\ 2) và đi qua điểm A(2; 4 ; 1) nên ta có phương trình:

    (P):2x + y + 2z - 10 = 0

    c) Gọi r là bán kính của đường tròn giao tuyến của mặt cầu với (Q).

    d\left( I;(Q) \right) = \frac{| - 3 - 2 -
1|}{\sqrt{2^{2} + ( - 1)^{2} + 2^{2}}} = 2.

    r = \sqrt{3^{2} - 2^{2}} =
\sqrt{5}.

    d) Diện tích mặt cầu (S) = 4.\pi.3^{2} =
36\pi

    \Rightarrow Diện tích mặt cầu (S') = 9\pi \Rightarrow r'=\frac{3}{2}

    (S') tiếp xúc (S) nên II' = R + r' = 3 + \frac{3}{2} =
\frac{11}{2}.

  • Câu 8: Nhận biết

    Viết phương trình đường thẳng

    Trong không gian Oxyz, hãy viết phương trình của đường thẳng d đi qua điểm M( - 1;0;0) và vuông góc với mặt phẳng (P):x + 2y - z + 1 =
0?

    Đường thẳng d đi qua điểm M( - 1;0;0) và có một véc-tơ chỉ phương là \overrightarrow{u} = (1;2; - 1) nên d có phương trình chính tắc là d:\frac{x + 1}{1} = \frac{y}{2} = \frac{z}{-
1}.

  • Câu 9: Thông hiểu

    Tìm m để hai mặt phẳng song song

    Trong không gian với hệ trục tọa độ Oxyz, cho hai mặt phẳng (\alpha):2x + 3y - z - 1 = 0(\beta):4x + 6y - mz - 2 = 0. Tìm m để hai mặt phẳng (\alpha)(\beta) song song với nhau.

    Mặt phẳng (\alpha) có vectơ pháp tuyến \overrightarrow{n_{1}} = (2;3; -
1)

    Mặt phẳng (\beta) có vectơ pháp tuyến \overrightarrow{n_{2}} = (4;6; -
m)

    Để (\alpha)//(\beta) thì \frac{2}{4} = \frac{3}{6} = \frac{- 1}{- m} eq
\frac{- 1}{- 2}

    Vậy không tồn tại giá trị m thỏa mãn yêu cầu bài toán.

  • Câu 10: Vận dụng

    Ghi đáp án vào ô trống

    Cho hình chóp S.ABCD có đáy là hình thoi cạnh a, \widehat{ABC} = 60^{0}, mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Gọi H,M,N lần lượt là trung điểm các cạnh AB,SA,SDP là giao điểm của (HMN) với CD. Khoảng cách từ trung điểm K của đoạn thẳng SP đến mặt phẳng (HMN) bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hình chóp S.ABCD có đáy là hình thoi cạnh a, \widehat{ABC} = 60^{0}, mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Gọi H,M,N lần lượt là trung điểm các cạnh AB,SA,SDP là giao điểm của (HMN) với CD. Khoảng cách từ trung điểm K của đoạn thẳng SP đến mặt phẳng (HMN) bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 11: Nhận biết

    Viết phương trình mặt phẳng

    Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(2;3;1),B(0;1;2). Phương trình mặt phẳng (P) đi qua A và vuông góc với đường thẳng AB là:

    Ta có: \overrightarrow{AB} = ( - 2; -
2;1) là vectơ pháp tuyến của mặt phẳng (P)

    Phương trình mặt phẳng (P) là:

    - 2(x - 2) - 2(y - 3) + (z - 1) =
0

    \Leftrightarrow (P):2x + 2y - z - 9 =
0

  • Câu 12: Nhận biết

    Tìm tọa độ tâm mặt cầu

    Trong không gian với hệ toạ độ Oxyz, mặt cầu (S):(x - 1)^{2} + y^{2} + (z + 3)^{2} =
16 có tâm là

    Mặt cầu (S):(x - 1)^{2} + y^{2} + (z +
3)^{2} = 16 có tâm là: I(1;0; -
3) .

  • Câu 13: Thông hiểu

    Tìm khoảng chứa giá trị biểu thức

    Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):ax + by + cz - 1 = 0,(c < 0) đi qua hai điểm A(0;1;0),B(1;0;0) tạo với mặt phẳng (Oyz) một góc 60^{0}. Khi đó a + b + c thuộc khoảng nào dưới đây?

    Mặt phẳng (P) đi qua hai điểm A, B nên \left\{ \begin{matrix}
b - 1 = 0 \\
a - 1 = 0 \\
\end{matrix} ight.\  \Rightarrow a = b = 1

    (P) tạo với mặt phẳng (Oyz) một góc 60^{0} nên

    \cos\left( (P);(Oyz) ight) =
\frac{|a|}{\sqrt{a^{2} + b^{2} + c^{2}}.\sqrt{1}} =
\frac{1}{2}(*)

    Thay a = b = 1 vào phương trình (*) được:

    \sqrt{2 + c^{2}} = 2 \Rightarrow c = -
\sqrt{2}

    \Rightarrow a + b + c = 2 - \sqrt{2} \in
(0;3)

  • Câu 14: Thông hiểu

    Tìm khoảng cách từ điểm đến mặt phẳng

    Trong không gian với hệ toạ độ Oxyz, tam giácABCA(1,2,
- 1),B( - 2,1,0),C(2,3,2). Điểm G là trọng tâm của tam giác ABC. Khoảng cách từ A đến mặt phẳng (OGB) bằng bao nhiêu?

    Do G là trọng tâm tam giác \Delta ABC \Rightarrow G\left(
\frac{1}{3},2,\frac{1}{3} \right)

    Gọi \overrightarrow{n} là một vtpt của mặt phẳng (OGB)

    \Rightarrow \overrightarrow{n} =
\overrightarrow{OG} \land \overrightarrow{OB} = \left( - \frac{1}{3}, -
\frac{2}{3},\frac{13}{3} \right)

    Phương trình mặt phẳng:

    (OGB):x + 2y - 13z
= 0 \Rightarrow d\left( A,(OGB) \right) =
\frac{3\sqrt{174}}{29}

  • Câu 15: Nhận biết

    Viết phương trình đường thẳng d

    Trong không gian Oxyz, cho đường thẳng d đi qua điểm A(4; - 1;3) và có một vecto chỉ phương \overrightarrow{u} = (2;5; - 6). Phương trình của d là:

    Đường thẳng d đi qua điểm A(4; - 1;3) và có một vectơ chỉ phương \overrightarrow{u} = (2;5; - 6), phương trình của d\left\{ \begin{matrix}
x = 4 + 2t \\
y = - 1 + 5t \\
z = 3 - 6t \\
\end{matrix} \right.

  • Câu 16: Nhận biết

    Viết phương trình mặt cầu

    Phương trình mặt cầu có tâm I( - 1;2; -
3), bán kính R = 3 là:

    Mặt cầu có tâm I( - 1;2; - 3), bán kính R = 3 có phương trình: (x + 1)^{2} + (y - 2)^{2} + (z + 3)^{2} =
9.

  • Câu 17: Thông hiểu

    Xác định phương trình mặt cầu

    Cho điểm I(1;7;5)và đường thẳng d:\frac{x - 1}{2} = \frac{y - 6}{- 1} =
\frac{z}{3}. Phương trình mặt cầu có tâm I và cắt đường thẳng d tại hai điểm A, B sao cho tam giác diện tích tam giác IAB bằng 2\sqrt{6015} là:

    Gọi H là hình chiếu của I(1;7;5) trên d

    \Rightarrow H(0;0; - 4) \Rightarrow IH =d(I;\ d) = 2\sqrt{3}

    S_{\Delta AIB} = \frac{IH.AB}{2}
\Rightarrow AB = \frac{2S_{\Delta AIB}}{IH} = \sqrt{8020}

    \Rightarrow R^{2} = IH^{2} + \left(
\frac{AB}{2} \right)^{2} = 2017

    Vậy phương trình mặt cầu là: (x - 1)^{2}
+ (y - 7)^{2} + (z - 5)^{2} = 2017.

  • Câu 18: Vận dụng cao

    Viết phương trình mặt phẳng

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P):x + 2y - 2z + 1 = 0, 2 điểm A(1;0;0),B( - 1;2;0)(S):(x - 1)^{2} + (y - 2)^{2}
+ z^{2} = 25. Viết phương trình mặt phẳng (\alpha) vuông với mặt phẳng (P), song song với đường thẳng AB, đồng thời cắt mặt cầu (S) theo đường tròn có bán kính bằng r = 2\sqrt{2}?

    Mặt cầu (S):(x - 1)^{2} + (y - 2)^{2} +
z^{2} = 5 có tâm I(1;2;0) và bán kính R = \sqrt{5}

    Gọi \overrightarrow{n_{\alpha}} là một vectơ pháp tuyến của mặt phẳng (\alpha)

    Ta có : {\overrightarrow{n}}_{\alpha} =
\left\lbrack \overrightarrow{n_{P}},\overrightarrow{AB} \right\rbrack
\Rightarrow \overrightarrow{n_{\alpha}} = (4;4;6) = 2(2;2;3) =
2\overrightarrow{n_{1}}

    Lúc đó mặt phẳng (\alpha) có dạng: 2x + 2y + 3z + m = 0

    Gọi J là hình chiếu của I lên mặt phẳng (\alpha)

    Ta có :R^{2} = r^{2} + IJ^{2} \Rightarrow
IJ^{2} = 17

    \Rightarrow d\left( I,(\alpha) \right) =
\sqrt{17} \Leftrightarrow |6 + m| = 17 \Leftrightarrow m =
11 hoặc m = - 23

    Vậy phương trình mặt phẳng (\alpha):2x +
2y + 3z + 11 = 0 hoặc 2x + 2y + 3z -
23 = 0

  • Câu 19: Nhận biết

    Xác định phương trình mặt phẳng

    Trong không gian Oxyz, phương trình của mặt phẳng (Oxy) là:

    Trong không gian Oxyz, phương trình của mặt phẳng (Oxy) là: z = 0

  • Câu 20: Nhận biết

    Tính góc giữa đường thẳng và mặt phẳng

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P):x - y + 2z + 1 = 0 và đường thẳng (d):\frac{x - 1}{1} = \frac{y}{2} = \frac{z
+ 1}{- 1}. Tính góc giữa đường thẳng (d) và mặt phẳng (P).

    Ta có: \overrightarrow{u_{d}} = (1;2; -
1);\overrightarrow{n_{(P)}} = (1; - 1;2)

    Do đó: \cos\left(
\overrightarrow{u_{d}};\overrightarrow{n_{(P)}} ight) = \frac{|1 - 2 -
2|}{\sqrt{6}.\sqrt{6}} = \frac{1}{2}

    Suy ra góc giữa đường thẳng d và mặt phẳng (P) bằng 90^{0} -
60^{0} = 30^{0}.

  • Câu 21: Thông hiểu

    Tìm tham số m thỏa mãn yêu cầu bài toán

    Trong không gian Oxyz, hai đường thẳng d_{1}:\frac{x - 2}{1} = \frac{y +
1}{\sqrt{2}} = \frac{z - 3}{1}d_{2}:\frac{x + 5}{1} = \frac{y + 3}{\sqrt{2}} =
\frac{z - 5}{m} tạo với nhau góc 60^{0}, giá trị của tham số m bằng

    Ta có vectơ chỉ phương của hai đường thẳng d_{1};d_{2} lần lượt là \overrightarrow{u_{1}} = \left( 1;\sqrt{2};1
\right)\overrightarrow{u_{2}} =
\left( 1;\sqrt{2};m \right).

    Theo công thức tính góc tạo bởi hai đường thẳng thì \cos\varphi = \frac{\left|
\overrightarrow{u_{1}}.\overrightarrow{u_{2}} \right|}{\left|
\overrightarrow{u_{1}} \right|.\left| \overrightarrow{u_{2}}
\right|} với \varphi =
\widehat{\left( d_{1};d_{2} \right)}.

    Từ giả thiết suy ra

    \frac{1}{2} = \frac{|3 +
m|}{2\sqrt{m^{2} + 3}} \Leftrightarrow \sqrt{m^{2} + 3} = |3 +
m|

    \Leftrightarrow m^{2} + 3 = (3 +
m)^{2}

    \Leftrightarrow m^{2} + 3 = m^{2} + 6m +
9 \Leftrightarrow m = - 1

  • Câu 22: Nhận biết

    Xác định phương trình mặt phẳng

    Trong không gian Oxyz, viết phương trình của mặt phẳng (P) đi qua điểm M( - 3; - 2;3) và vuông góc với trục Ox.

    Vì mặt phẳng (P) vuông góc với Ox nên có một vectơ pháp tuyến là vectơ \overrightarrow{i} =
(1;0;0).

    Phương trình tổng quát của mặt phẳng (P) là

    1\left( x - ( - 3) ight) + 0\left( y -
( - 2) ight) + 0(z - 3) = 0

    \Leftrightarrow x + 3 = 0.

  • Câu 23: Nhận biết

    Tìm khẳng định đúng

    Chọn khẳng định đúng

    Câu đúng là: Nếu hai mặt phẳng song song thì hai vectơ pháp tuyến tương ứng cùng phương

  • Câu 24: Vận dụng

    Tính giá trị biểu thức

    Trong không gian Oxyz,cho tam giác ABC vuông tại C, \widehat{ABC} = 60^{0},AB = 3\sqrt{2}, đường thẳng AB có phương trình \frac{x - 3}{1} = \frac{y - 4}{1} = \frac{z
+ 8}{- 4}, đường thẳng AC nằm trên mặt phẳng (\alpha):x + z - 1 =
0. Biết B là điểm có hoành độ dương, gọi (a;b;c) là tọa độ của C. Tính T = a + b + c?

    Hình vẽ minh họa

    Ta thấy đường thẳng AB có một VTCP là , \overrightarrow{u} = (1;1; - 4) mặt phẳng (α) có một VTPT là \overrightarrow{n} =
(1;0;1) nên góc giữa AB và (α) là \varphi với

    \sin\varphi = \frac{\left| 1.1 + 1.0 + ( - 4).1
ight|}{\sqrt{1^{2} + 1^{2} + ( - 4)^{2}}.\sqrt{1^{2} + 0^{2} + 1^{2}}}
= \frac{1}{2}

    Suy ra \varphi = 30^{0} =
\widehat{BAC}

    Hơn nữa, AC ⊂ (α) và BC ⊥ AC nên C là hình chiếu của B trên (α).

    Ta tìm tọa độ của B

    Ta viết lại AB:\left\{ \begin{matrix}
x = 3 + t \\
y = 4 + t \\
z = - 8 - 4t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight) . Điểm A là giao điểm của AB và (α).

    Xét phương trình (3 + t) + ( - 8 - t) - 1
= 0 \Leftrightarrow t = - 2.

    Vậy A(1;2;0).

    Gọi B(3 + t';4 + t'; - 8 -
4t'), ta có AB = 3\sqrt{2}
\Leftrightarrow (t' + 2)^{2} + (t' + 2)^{2} + ( - 4t' -
8)^{2} = 18

    Suy ra t’ = −1 hoặc t’ = −3.

    Mà B có hoành độ dương nên ta chọn t = −1, khi đó B(2; 3; −4).

    Đường thẳng BC vuông góc với (α) nên nhận \overrightarrow{n} = (1;0;1) làm một VTCP, do đó BC:\left\{ \begin{matrix}
x = 2 + t \\
y = 3 \\
z = - 4 + t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)

    C chính là giao điểm của BC và (α).

    Xét phương trình (2 + t) + ( - 4 + t) - 1
= 0 \Leftrightarrow t = \frac{3}{2}

    Suy ra C\left( \frac{7}{2};3; -
\frac{5}{2} ight). Vậy T = a + b
+ c = 4.

  • Câu 25: Nhận biết

    Tính góc giữa hai mặt phẳng

    Trong không gian Oxyz, cho hai mặt phẳng (P):\ x - 2y - z + 1 = 0, (Q):\ x + y + 2z + 7 = 0. Tính góc giữa hai mặt phẳng đó.

    Ta có:

    \overrightarrow{n_{P}}(1\ ;\  - 2\ ;\  -
1)là một véctơ pháp tuyến của (P).

    \overrightarrow{n_{Q}}(1\ ;\ 1\ ;\
2)là một véctơ pháp tuyến của (Q).

    Gọi \alphalà góc giữa hai mặt phẳng (P)(Q) là:

    \cos\alpha = \frac{\left|
{\overrightarrow{n}}_{P}.{\overrightarrow{n}}_{Q} ight|}{\left|
{\overrightarrow{n}}_{P} ight|.\left| {\overrightarrow{n}}_{Q}
ight|} = \frac{|1 - 2 - 2|}{\sqrt{6}.\sqrt{6}} =
\frac{1}{2}

    \Rightarrow \alpha = 60^{0}.

  • Câu 26: Thông hiểu

    Viết phương trình mặt cầu

    Trong không gian (Oxyz), cho mặt phẳng(P):2x - y - z + 4 = 0 và điểm I(2; - 3; - 1); mặt cầu (S) tâm I và tiếp xúc mặt phẳng (P) có phương trình là

    Mặt cầu (S) tâm I và tiếp xúc mặt phẳng (P) có bán kính là:

    R = \frac{\left| 2.2 - ( - 3) - ( - 1) + 4
ight|}{\sqrt{2^{2} + ( - 1)^{2} + ( - 1)^{2}}} =
2\sqrt{6}.

    Phương trình mặt cầu (S)

    (x - 2)^{2} + (y + 3)^{2} + (z + 1)^{2} =
\left( 2\sqrt{6} ight)^{2} = 24

  • Câu 27: Thông hiểu

    Viết phương trình mặt phẳng

    Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(2;1; - 1)B(1;0;1) và mặt phẳng (P):x + 2y - z = 0. Viết phương trình mặt phẳng (Q) qua A;B và vuông góc với (P)?

    Mặt phẳng (P) có một vectơ pháp tuyến là \overrightarrow{n_{1}} = (1;2; -
1);\overrightarrow{AB} = ( - 1; - 1;2)

    Mặt phẳng (Q) có một vectơ pháp tuyến là \overrightarrow{n} = \left\lbrack
\overrightarrow{n_{1}};\overrightarrow{AB} ightbrack = (3; -
1;1)

    Từ đó, phương trình mặt phẳng (Q)(Q):3x
- y + z - 4 = 0.

  • Câu 28: Vận dụng

    Tính bán kính đường tròn

    Trong không gian với hệ tọa độ Oxyz, cho điểm M thuộc mặt cầu (S): (x − 3)^2 + (y + 1)^2 + z^ 2 = 9 và ba điểm A(1; 0; 0), B(2; 1; 3), C(0; 2; −3). Biết rằng quỹ tích các điểm M thỏa mãn MA^{2} + 2\overrightarrow{MB}.\overrightarrow{MC}= 8 là đường tròn cố định, tính bán kính r đường tròn này?

    Ta có:\left\{ \begin{matrix}\overrightarrow{MA} = (1 - x; - y; - z) \\\overrightarrow{MB} = (2 - x;1 - y;3 - z) \\\overrightarrow{MC} = ( - x;2 - y; - 3 - z) \\\end{matrix} ight. khi đó:

    MA^{2} +2\overrightarrow{MB}.\overrightarrow{MC} = 8

    \Leftrightarrow (x - 1)^{2} + y^{2} +z^{2} + 2\left\lbrack x(x - 2) + (y - 1)(y - 2) + (z - 3)(z + 3)ightbrack = 8

    \Leftrightarrow 3.\left( x^{2} + y^{2} +z^{2} ight) - 6x - 6y - 21 = 0

    \Leftrightarrow M \in (S'):x^{2} +y^{2} + z^{2} - 2x - 2y - 7 = 0

    M \in (S):(x - 3)^{2} + (y + 1)^{2} +z^{2} = 9

    \Leftrightarrow x^{2} + y^{2} + z^{2} -6x + 2y + 1 = 0

    Suy ra M ∈ (P): 4x − 4y − 8 = 0.

    Như vậy quỹ tích điểm M là đường tròn giao tuyến của (S) tâm I(3; −1; 0), bán kính R = 3 và (P)

    Ta có: d\left( I;(P) ight) = \sqrt{2}\Leftrightarrow r = \sqrt{R^{2} - d^{2}} = \sqrt{7}

  • Câu 29: Thông hiểu

    Tìm tọa độ hình chiếu A’ của A

    Trong không gian với hệ tọa độ Oxyz, cho điểm A(1;1;1) và đường thẳng (d):\left\{ \begin{matrix}
x = 6 - 4t \\
y = - 2 - t \\
z = - 1 + 2t \\
\end{matrix} \right.. Tìm tọa độ hình chiếu A’ của A trên (d)

    Ta có A' \in (d) nên gọi A'(6 - 4t; - 2 - t; - 1 + 2t); \overrightarrow{AA'} = (5 - 4t; - 3 - t;
- 2 + 2t);

    đường thẳng (d) có vectơ chỉ phương \overrightarrow{u}( - 4; -
1;2)

    AA'\bot(d) \Rightarrow
\overrightarrow{AA'}\bot\overrightarrow{u} \Leftrightarrow
\overrightarrow{AA'}.\overrightarrow{u} = 0

    \Leftrightarrow (5 - 4t).( - 4) + ( - 3
- t).( - 1) + ( - 2 + 2t).2 = 0

    \Leftrightarrow t = 1

    \Rightarrow A'(2; -
3;1).

    Vậy A'(2; - 3;1).

  • Câu 30: Thông hiểu

    Hai đường thẳng cắt nhau

    Hai đường thẳng \left( {d'} ight):\left\{ \begin{array}{l}x = 2 + 4t\\y =  - 3m - t\\z = 2t - 1\end{array} ight.\left( d ight):\left\{ \begin{array}{l}x = 4 - 2m\\y = m + 2\\z =  - m\end{array} ight.với cắt nhau tại M có tọa độ là :

     

    Để (d’) cắt (d) tại M \Leftrightarrow \left\{ \begin{array}{l}2 + 4t = 4 - 2m\\ - 3 - t = m + 2\\2t - 1 =  - m\end{array} ight. \\\Leftrightarrow \left\{ \begin{array}{l}2t + m = 1\\t + m =  - 5\end{array} ight. \\\Leftrightarrow t = 6;m =  - 11

    \Rightarrow M\left( {26, - 9,11} ight)

     

  • Câu 31: Vận dụng

    Tìm phương trình mặt cầu thỏa mãn điều kiện

    Cho hình lập phương QABC.DEFG có cạnh bằng 1 có \overrightarrow{OA},\ \ \overrightarrow{OC},\ \
\overrightarrow{OG} trùng với ba trục \overrightarrow{Ox},\ \overrightarrow{Oy},\
\overrightarrow{Oz}. Viết phương trình mặt cầu \left( S_{1} \right) ngoại tiếp hình lập phương.

    \left( S_{1} \right) có tâm I là trung điểm chung của 4 đường chéo: I\left(
\frac{1}{2},\frac{1}{2},\frac{1}{2} \right), bán kính R_{1} = \frac{1}{2}OE =
\frac{\sqrt{3}}{2}

    \Rightarrow \left( S_{1} \right):\left(
x - \frac{1}{2} \right)^{2} + \left( y - \frac{1}{2} \right)^{2} +
\left( z - \frac{1}{2} \right)^{2} = \frac{3}{4}

    \Rightarrow \left( S_{1} \right):x^{2} +
y^{2} + z^{2} - x - y - z = 0

  • Câu 32: Thông hiểu

    Chọn đáp án đúng

    Trong không gian với hệ tọa độ Oxyz, cho điểm A(2;0; - 1) và mặt phẳng (P):x + y - 1 = 0. Đường thẳng đi qua A đồng thời song song với (P) và mặt phẳng (Oxy) có phương trình là:

    Ta có: \left\{ \begin{matrix}\overrightarrow{n_{(P)}} = (1;1;0) \\\overrightarrow{n_{(Oxy)}} = (0;0;1) \\\end{matrix} ight.. Gọi d là đường thẳng đi qua A đồng thời song song với (P) và mặt phẳng (Oxy).

    Khi đó: \left\{ \begin{matrix}\overrightarrow{u_{d}}\bot\overrightarrow{u_{(P)}} \\\overrightarrow{u_{d}}\bot\overrightarrow{u_{(Oxy)}} \\\end{matrix} ight.\  \Rightarrow \overrightarrow{u_{d}} = \left\lbrack\overrightarrow{n_{(P)}};\overrightarrow{n_{(Oxy)}} ightbrack = (1;- 1;0)

    Vậy \left\{ \begin{matrix}x = 2 + t \\y = - t \\z = - 1 \\\end{matrix} ight..

  • Câu 33: Vận dụng cao

    Tìm giá trị biểu thức T

    Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng d:\frac{x + 2}{4} = \frac{y - 1}{- 4} = \frac{z +
2}{3} và mặt phẳng (P):2x - y + 2z
+ 1 = 0. Đường thẳng ∆ đi qua E( -
2;1; - 2) song song với (P) đồng thời tạo với d góc bé nhất. Biết rằng \Delta có một vectơ chỉ phương \overrightarrow{u} = (m;n;1). Tính T = m^{2} + n^{2}

    Ta có: ∆ // (P) nên \overrightarrow{u_{(\Delta)}}\bot\overrightarrow{u_{(d)}}
\Rightarrow \overrightarrow{u_{(\Delta)}}.\overrightarrow{u_{(d)}} =
0

    \Rightarrow n = 2m + 2 \Rightarrow
\overrightarrow{u_{(\Delta)}} = (m;2m + 2;1)

    Do đó, gọi α góc giữa hai đường thẳng ∆ và d, ta có:

    \cos\alpha = \frac{\left|\overrightarrow{u_{(\Delta)}}.\overrightarrow{u_{(d)}} ight|}{\left|\overrightarrow{u_{(\Delta)}} ight|.\left| \overrightarrow{u_{(d)}}ight|}= \frac{|4m + 5|}{\sqrt{41\left( 5m^{2} + 8m + 5 ight)}}=\frac{1}{\sqrt{41}}.\sqrt{\frac{16m^{2} + 40m + 25}{5m^{2} + 8m +5}}

    Góc α nhỏ nhất khi và chỉ khi cos α đạt giá trị lớn nhất.

    Xét hàm số f(m) = \frac{16m^{2} + 40m +
25}{5m^{2} + 8m + 5} trên \mathbb{R}, ta có:

    f'(m) = \frac{- 72m^{2} -90m}{\left( 5m^{2} + 8m + 5 ight)^{2}} = 0 \Leftrightarrow\left\lbrack \begin{matrix}m = 0 \\m = - \dfrac{5}{4} \\\end{matrix} ight.

    Bảng biến thiên:

    Suy ra max \max_{x\mathbb{\in R}}f(m) =
f(0) = 5.

    Với m = 0 suy ra n = 2. Do đó T = -4.

  • Câu 34: Thông hiểu

    Xác định tọa độ điểm thuộc mặt phẳng

    Trong không gian Oxyz, cho hai mặt phẳng (P):x + 2y - 2z + 2018 = 0,(Q):x +
my + (m - 1)z + 2017 = 0 (với m là tham số thực). Khi hai mặt phẳng (P)(Q) tạo với nhau một góc nhỏ nhất thì điểm M nào dưới đây nằm trong (Q) ?

    Ta có: (P) có 1 VTPT {\overrightarrow{n}}_{P} = (1;2; - 2),(Q) có 1 VTPT {\overrightarrow{n}}_{Q} = (1;m;m
- 1).

    Gọi \alpha là góc giữa (P)(Q).

    Ta có:

    cos\alpha = \frac{\left|
{\overrightarrow{n}}_{P} \cdot {\overrightarrow{n}}_{Q} ight|}{\left|
{\overrightarrow{n}}_{P} ight| \cdot \left| {\overrightarrow{n}}_{Q}
ight|} = \frac{|1 + 2m - 2m + 2|}{3\sqrt{1 + m^{2} + (m - 1)^{2}}} =
\frac{1}{\sqrt{2m^{2} - 2m + 2}} = \frac{1}{\sqrt{2\left( m -
\frac{1}{2} ight)^{2} + \frac{3}{2}}}.

    Do 0 \leq \alpha \leq 90^{\circ} nên \alpha nhỏ nhất khi cos\alpha lớn nhất \Leftrightarrow \sqrt{2\left( m - \frac{1}{2}
ight)^{2} + \frac{3}{2}} nhỏ nhất

    \Leftrightarrow m =
\frac{1}{2}.

    \Rightarrow (Q):2x + y - z + 4034 = 0
\Rightarrow M( - 2017;1;1) \in (Q).

  • Câu 35: Nhận biết

    Tính bán kính mặt cầu

    Trong không gian Oxyz, cho mặt cầu (S):(x - 5)^{2} + (y - 1)^{2} + (z +
2)^{2} = 9. Tính bán kính R của (S)?

    Bán kính mặt cầu là: R = \sqrt{9} =
3

  • Câu 36: Thông hiểu

    Xác định phương trình tham số của d’

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d:\frac{x - 12}{4} = \frac{y - 9}{3} = \frac{z -
1}{1}, và mặt thẳng (P)\ :3x + 5y -
z - 2 = 0. Gọi d'là hình chiếu của d lên (P).Phương trình tham số của d'

    Cách 1:

    Gọi A = d \cap (P)

    \begin{matrix}
A \in d \Rightarrow A(12 + 4a;9 + 3a;1 + a) \\
A \in (P) \Rightarrow a = - 3 \Rightarrow A(0;0; - 2) \\
\end{matrix}

    d đi qua điểm B(12;9;1)

    Gọi H là hình chiếu của B lên (P)

    (P)có vectơ pháp tuyến \overrightarrow{n_{P}} = (3;5; - 1)

    BH đi qua B(12;9;1) và có vectơ chỉ phương \overrightarrow{a_{BH}} = \overrightarrow{n_{P}} =
(3;5; - 1)

    \begin{matrix}
BH:\left\{ \begin{matrix}
x = 12 + 3t \\
y = 9 + 5t \\
z = 1 - t \\
\end{matrix} ight.\  \\
H \in BH \Rightarrow H(12 + 3t;9 + 5t;1 - t) \\
H \in (P) \Rightarrow t = - \frac{78}{35} \Rightarrow H\left(
\frac{186}{35}; - \frac{15}{7};\frac{113}{35} ight) \\
\overrightarrow{AH} = \left( \frac{186}{35}; -
\frac{15}{7};\frac{183}{35} ight) \\
\end{matrix}

    d' đi qua A(0;0; - 2) và có vectơ chỉ phương \overrightarrow{a_{d'}} = (62; -
25;61)

    Vậy phương trình tham số của d'\left\{ \begin{matrix}
x = 62t \\
y = - 25t \\
z = - 2 + 61t \\
\end{matrix} ight.

    Cách 2:

     

    • Gọi (Q) qua d và vuông góc với (P)

     

    d đi qua điểm B(12;9;1) và có vectơ chỉ phương \overrightarrow{a_{d}} = (4;3;1)

    (P) có vectơ pháp tuyến \overrightarrow{n_{P}} = (3;5; - 1)

    (Q) qua B(12;9;1) có vectơ pháp tuyến \overrightarrow{n_{Q}} = \left\lbrack
\overrightarrow{a_{d}},\overrightarrow{n_{P}} ightbrack = ( -
8;7;11)

    (Q):8x - 7y - 11z - 22 = 0

     

    • d' là giao tuyến của (Q)(P)

     

    Tìm một điểm thuộc d', bằng cách cho y = 0

    Ta có hệ \left\{ \begin{matrix}
3x - z = 2 \\
8x - 11z = 22 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
x = 0 \\
y = - 2 \\
\end{matrix} ight.\  \Rightarrow M(0;0; - 2) \in d'

    d' đi qua điểm M(0;0; - 2)và có vectơ chỉ phương \overrightarrow{a_{d}} = \left\lbrack
\overrightarrow{n_{P}};\overrightarrow{n_{Q}} ightbrack = (62; -
25;61)

    Vậy phương trình tham số của d'\left\{ \begin{matrix}
x = 62t \\
y = - 25t \\
z = - 2 + 61t \\
\end{matrix} ight.

  • Câu 37: Nhận biết

    Tìm đáp án không thích hợp

    Trong không gian Oxyz, cho đường thẳng d:\frac{x - 2}{1} = \frac{y + 3}{- 2}
= \frac{z + 1}{1}. Vectơ nào trong các vectơ dưới đây không phải là vectơ chỉ phương của đường thẳng d?

    Đường thẳng d có 1 vectơ chỉ phương là \overrightarrow{u_{2}} = (1; -
2;1). Do đó vectơ \overrightarrow{u_{4}} = (1;2;1) không là vectơ chỉ phương của d.

  • Câu 38: Vận dụng

    Tính khoảng cách từ điểm đến đường thẳng

    Trong không gian với hệ trục toạ độ Oxyz, cho điểm M thoả mãn OM
= 7. Biết rằng khoảng cách từ M tới mặt phẳng (Oxz),(Oyz) lần lượt là 2 và 3. Tính khoảng cách từ M đến mặt phẳng (Oxy).

    Ta có: (Oxz):y = 0,(Oyz):x =
0

    Giả sử M(a;b;c) khi đó ta có:

    \left\{ \begin{matrix}
OM = 7 \\
d\left( M;(Oxz) \right) = 2 \\
d\left( M;(Oyz) \right) = 3 \\
\end{matrix} \right.\  \Leftrightarrow \left\{ \begin{matrix}
a^{2} + b^{2} + c^{2} = 49 \\
b^{2} = 4 \\
a^{2} = 9 \\
\end{matrix} \right.\  \Rightarrow c^{2} = 36

    d\left( M;(Oxy) \right) = \sqrt{c^{2}}
= 6

  • Câu 39: Vận dụng cao

    Tính giá trị của biểu thức

    Trong hệ tọa độ không gian Oxyz, cho mặt phẳng (P):x - 2y + 2z - 1 =
0 và hai đường thẳng d_{1}:\frac{x
- 1}{2} = \frac{y - 3}{- 3} = \frac{z}{2};d_{2}:\frac{x - 5}{6} =
\frac{y}{4} = \frac{z + 5}{- 5} . Biết rằng có 2 điểm M_{1};M_{2} trên d_{1} và hai điểm N_1;N_2 trên d_{2} sao cho M_{1}N_{1};N_{1}N_{2} song song mặt phẳng (P) đồng thời cách mặt phẳng (P) một khoảng bằng 2. Tính d = M_{1}N_{1} + N_{1}N_{2}.

    Gọi (Q) là mặt phẳng song song với (P) sao cho khoảng cách giữa (P)(Q) bằng .

    Suy ra (Q) có phương trình dạng x - 2y + 2z + m = 0;(m \neq - 1)(Q) chứa  M_{1}N_{1}  hoặc  N_{1}N_{2} .

    Theo giả thiết khoảng cách từ mp (Q) đến (P) bằng 2 nên ta có

    \frac{|m + 1|}{3} = 2 \Leftrightarrow
\left\lbrack \begin{matrix}
m = 5 \\
m = - 7 \\
\end{matrix} \right.

    Vậy có 2 mặt phẳng song song và cách (P) một khoảng bằng 2 là:

    \left( Q_{1} \right):x - 2y + 2z + 5 =
0\left( Q_{2} \right):x - 2y +
2z - 7 = 0.

    + Theo giả thiết M_{1} = d_{1} \cap
\left( Q_{1} \right),N_{1} = d_{2} \cap \left( Q_{1} \right) suy ra M_{1}(1; - 3; - 5),N_{1}(4; - 3; - 5)
\Rightarrow M_{1}N_{1} = 5\sqrt{2}

    M_{2} = d_{1} \cap \left( Q_{2}
\right),N_{2} = d_{2} \cap \left( Q_{2} \right) suy ra M_{2}(3;0;2),N_{2}( - 1; - 4;0) \Rightarrow
M_{2}N_{2} = 6

    Vậy d = 6 + 5\sqrt{2}.

  • Câu 40: Vận dụng cao

    Chọn câu sai

    Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, hình chiếu vuông góc của đỉnh S trên mặt phẳng(ABC) là trung điểm H của cạnh BC. Góc giữa đường thẳng SA và mặt phẳng (ABC) bằng 60^0. Gọi G là trọng tâm tam giác SAC, R là bán kính mặt cầu có tâm G và tiếp xúc với mặt phẳng (SAB). Đẳng thức nào sau đây sai?

    Chọn câu sai 

    Ta có {60^0} = \widehat {SA,\left( {ABC} ight)} = \widehat {SA,HA} = \widehat {SAH}.

    Tam giác ABC đều cạnh a nên AH = \frac{{a\sqrt 3 }}{2} .

    Trong tam giác vuông SHA, ta có SH = AH.\tan \widehat {SAH} = \frac{{3a}}{2}.

    Vì mặt cầu có tâm G và tiếp xúc với (SAB) nên bán kính mặt cầu R = d\left[ {G,\left( {SAB} ight)} ight].

    Ta có d\left[ {G,\left( {SAB} ight)} ight] = \frac{1}{3}d\left[ {C,\left( {SAB} ight)} ight] = \frac{2}{3}d\left[ {H,\left( {SAB} ight)} ight].

    Gọi M, E lần lượt là trung điểm của AB và MB.

    Suy ra \left\{ \begin{array}{l}CM \bot AB\\CM = \dfrac{{a\sqrt 3 }}{2}\end{array} ight. và  \left\{ \begin{array}{l}HE \bot AB\\HE = \dfrac{1}{2}CM = \dfrac{{a\sqrt 3 }}{4}\end{array} ight..

    Gọi K là hình chiếu vuông góc của H trên SE , suy ra HK \bot SE    (1).

    Ta có \left\{ \begin{array}{l}HE \bot AB\\AB \bot SH\end{array} ight. \Rightarrow AB \bot \left( {SHE} ight) \Rightarrow AB \bot HK.   (2)

    Từ (1) và (2) , suy ra HK \bot \left( {SAB} ight)  nên  d\left[ {H,\left( {SAB} ight)} ight] = HK.

    Trong tam giác vuông SHE, ta có HK = \frac{{SH.HE}}{{\sqrt {S{H^2} + H{E^2}} }} = \frac{{3a}}{{2\sqrt {13} }}.

    Vậy R = \frac{2}{3}HK = \frac{a}{{\sqrt {13} }}.

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 5 Phương pháp tọa độ trong không gian Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo