Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề kiểm tra 45 phút Chương 5 Phương pháp tọa độ trong không gian

Mô tả thêm:

Hãy cùng thử sức kiểm tra đánh giá các kiến thức tổng quan với bài kiểm tra phút Chương 5: Phương pháp tọa độ trong không gian Toán 12 sách Kết nối tri thức các em nhé!

  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Vận dụng cao

    Định phương trình mặt cầu

    Cho điểm A(2;\ 5;\ 1) và mặt phẳng (P):6x + 3y - 2z + 24 = 0, H là hình chiếu vuông góc của A trên mặt phẳng (P). Phương trình mặt cầu (S) có diện tích 784\pi và tiếp xúc với mặt phẳng (P) tại H, sao cho điểm A nằm trong mặt cầu là:

    Gọi d là đường thẳng đi qua A và vuông góc với (P).

    Suy ra d:\left\{ \begin{matrix}
x = 2 + 6t \\
y = 5 + 3t \\
z = 1 - 2t \\
\end{matrix} \right.

    H là hình chiếu vuông góc của A trên (P) nên H = d
\cap (P).

    H \in d nên H(2 + 6t;5 + 3t;1 - 2t).

    Mặt khác, H\in(P) nên ta có:

    6(2 + 6t) + 3(5 + 3t) - 2(1 - 2t) + 24 =
0 \Leftrightarrow t = - 1

    Do đó, H( - 4;\ 2;\ 3).

    Gọi I, R lần lượt là tâm và bán kính mặt cầu.

    Theo giả thiết diện tích mặt cầu bằng 784\pi, suy ra 4\pi R^{2} = 784\pi \Rightarrow R =
14.

    Vì mặt cầu tiếp xúc với mặt phẳng (P) tại H nên IH\bot(P) \Rightarrow I \in d.

    Do đó tọa độ điểm I có dạng I(2 + 6t;5 + 3t;1 - 2t), với t \neq - 1.

    Theo giả thiết, tọa độ điểm I thỏa mãn:\left\{ \begin{matrix}
d(I,(P)) = 14 \\
AI < 14 \\
\end{matrix} \right.

    \Leftrightarrow \left\{ \begin{matrix}
\dfrac{\left| 6(2 + 6t) + 3(5 + 3t) - 2(1 - 2t) + 24 \right|}{\sqrt{6^{2}
+ 3^{2} + ( - 2)^{2}}} = 14 \\
\sqrt{(6t)^{2} + (3t)^{2} + ( - 2t)^{2}} < 14 \\
\end{matrix} \right.

    \Leftrightarrow \left\{ \begin{matrix}
\left\lbrack \begin{matrix}
t = 1 \\
t = - 3 \\
\end{matrix} \right.\  \\
- 2 < t < 2 \\
\end{matrix} \right.\  \Leftrightarrow t = 1

    Do đó: I(8 ; 8 ;  - 1).

    Vậy phương trình mặt cầu (S):(x - 8)^{2}
+ (y - 8)^{2} + (z + 1)^{2} = 196.

  • Câu 2: Thông hiểu

    Chọn khẳng định sai

    Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):2x - y + 1 = 0. Trong các mệnh đề sau, mệnh đề nào sai?

    Mặt phẳng (P) có một véc-tơ pháp tuyến \overrightarrow{n_{P}} = (2; - 1;0).

    Ta có \frac{2}{2} = \frac{- 1}{1} eq
\frac{0}{1} nên \overrightarrow{n_{P}} không cùng phương với \overrightarrow{n} = (2; -
1;1).

    Suy ra \overrightarrow{n} = (2; -
1;1) không là vectơ pháp tuyến của (P).

    Vậy khẳng định sai là: “Vectơ \overrightarrow{n} = (2; - 1;1) là một véc-tơ pháp tuyến của (P)”.

  • Câu 3: Vận dụng cao

    Viết phương trình mặt cầu

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d:\frac{x - 2}{2} = \frac{y}{- 1} =
\frac{z}{4} và mặt cầu (S) tâm I(1;2;1), bán kính R. Hai mặt phẳng (P)(Q) chứa d và tiếp xúc với (S) tạo với nhau góc 60^{0}. Hãy viết phương trình mặt cầu (S)?

    Hình vẽ minh họa

    Gọi M,N là tiếp điểm của mặt phẳng (P);(Q) và mặt cầu (S).

    Gọi H là hình chiếu của điểm I trên đường thẳng d

    \Rightarrow
IH = d(I;d) = \sqrt{6}.

    TH1: Góc \widehat{MHN} =
60^{0}:

    Theo bài ra ta có:

    R = IM = IH.\sin30^{0}= \sqrt{6}.\frac{1}{2} = \frac{\sqrt{6}}{2}

    (S):(x - 1)^{2} + (y - 2)^{2} + (z -
1)^{2} = \frac{3}{2}.

    TH2: Góc \widehat{MHN} =
120^{0}:

    Theo bài ra ta có:

    R = IM = IH.\sin60^{0}= \sqrt{6}.\frac{\sqrt{3}}{2} = \frac{\sqrt{18}}{2}

    (S);(x - 1)^{2} + (y - 2)^{2} + (z -
1)^{2} = \frac{9}{2}.

  • Câu 4: Thông hiểu

    Chọn đáp án thích hợp

    Cho 4 điểm A(3; - 2; - 2),\ B(3;2;0),\
C(0;2;1)D( - 1;1;2). Mặt cầu tâm A và tiếp xúc với mặt phẳng (BCD) có phương trình là:

    Mặt phẳng (BCD)đi qua B(3;2;0)và có vectơ pháp tuyến \overrightarrow{n} = \left\lbrack
\overrightarrow{BC},\overrightarrow{BD} \right\rbrack =
(1;2;3)

    \Rightarrow (BCD):x + 2y + 3z - 7 =
0

    Vì mặt cầu (S)có tâm A tiếp xúc với mặt phẳng (BCD)nên bán kính

    R = d\left( A,(BCD) \right) =
\frac{\left| 3 + 2.( - 2) + 3.( - 2) - 7 \right|}{\sqrt{1^{2} + 2^{2} +
3^{2}}} = \sqrt{14}.

    Vậy phương trình mặt cầu (S):(x - 3)^{2}
+ (y + 2)^{2} + (z + 2)^{2} = 14.

  • Câu 5: Nhận biết

    Xác định vecto pháp tuyến của mặt phẳng

    Trong không gian với hệ toạ độ Oxyz, cho mặt phẳng (P) có phương trình 3x + 2y - z + 1 = 0. Mặt phẳng (P) có một vectơ pháp tuyến là:

    Mặt phẳng (P): 3x + 2y - z + 1 =
0 có một vectơ pháp tuyến \overrightarrow{n}(3;2; - 1)

  • Câu 6: Thông hiểu

    Tìm điểm thuộc mặt phẳng

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳngd:\left\{ \begin{matrix}
x = 0 \\
y = 3 - t \\
z = t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight). Gọi (P) là mặt phẳng chứa đường thẳng d và tạo với mặt phẳng (Oxy) một góc 45^{0}. Điểm nào sau đây thuộc mặt phẳng (P)?

    Ta viết phương trình đường thẳngd:\left\{
\begin{matrix}
x = 0 \\
y + z - 3 = 0 \\
\end{matrix} ight.

    Mặt phẳng (P) chứa đường thẳng d nên có dạng:

    \left\{ \begin{matrix}
mx + n(y + z - 3) = 0 \\
m^{2} + n^{2} eq 0 \\
\end{matrix} ight.

    \Leftrightarrow mx + ny + nz - 3n =
0

    (P) có một vectơ pháp tuyến là \overrightarrow{n_{(P)}} = (m;n;n)

    Mặt phẳng (Oxy) có một vectơ pháp tuyến là \overrightarrow{k} = (0;0;1)

    Ta có:

    \cos\left( (P);(Oxy) ight) = \left|
\cos\left( \overrightarrow{n_{(P)}};\overrightarrow{k} ight)
ight|

    \Leftrightarrow \cos45^{0} = \frac{\left|\overrightarrow{n_{(P)}}.\overrightarrow{k} ight|}{\left|\overrightarrow{n_{(P)}} ight|.\left| \overrightarrow{k} ight|}\Leftrightarrow \frac{1}{\sqrt{2}} = \frac{|n|}{\left| m^{2} + n^{2} +n^{2} ight|}

    \Leftrightarrow \left| m^{2} + 2n^{2}
ight| = \sqrt{2}|n| \Leftrightarrow m^{2} = 0 \Leftrightarrow m =
0

    Chọn n = 1 \Rightarrow (P):y + z - 3 = 0
\Rightarrow M(3;2;1) \in (P)

  • Câu 7: Vận dụng

    Tính tổng hai ẩn số a và b

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 2a, cạnh bên SA = a và vuông góc với mặt phẳng đáy. Gọi M là trung điểm cạnh SD. Tan của góc tạo bởi hai mặt phẳng (AMC) và (SBC) bằng:

    Hình vẽ minh họa

    Chọn hệ trục tọa độ sao cho A \equiv
O, như hình vẽ:

    Khi đó ta có:

    \overrightarrow{n_{1}} =\lbrack\overrightarrow{SB},\overrightarrow{SC}brack = \left(2a^{2};0;4a^{2} ight)\overrightarrow{n_{2}} =\lbrack\overrightarrow{MA},\overrightarrow{MC}brack = \left( a^{2}; -a^{2};2a^{2} ight)

    \overrightarrow{SB} = (2a;0; -a),\overrightarrow{SC} = (2a;2a; - a),\overrightarrow{MA} = \left( 0; -a; - \frac{a}{2} ight),\overrightarrow{MC} = \left( 2a;a; -\frac{a}{2} ight)

    A(0;0;0),B(2a;0;0),D(0;2a;0),C(2a;2a;0),S(0;0;a),M\left(0;a;\frac{a}{2} ight)

    Gọi \alpha\left( 0^{\circ} \leq \alpha
\leq 90^{\circ} ight) là góc tạo bởi hai mặt phẳng (AMC)(SBC).

    Ta có \cos\alpha = \left| \cos\left(
\overrightarrow{n_{1}},\overrightarrow{n_{2}} ight) ight| =
\frac{\left| \overrightarrow{n_{1}} \cdot \overrightarrow{n_{2}}
ight|}{\left| \overrightarrow{n_{1}} ight| \cdot \left|
\overrightarrow{n_{2}} ight|}

    = \frac{\left| 2a^{2} \cdot a^{2} +
4a^{2} \cdot 2a^{2} ight|}{\sqrt{\left( 2a^{2} ight)^{2} + \left(
4a^{2} ight)^{2}} \cdot \sqrt{\left( a^{2} ight)^{2} + \left( -
a^{2} ight)^{2} + \left( 2a^{2} ight)^{2}}}

    = \frac{10a^{4}}{\sqrt{20 \cdot 6 \cdot
\left( a^{4} ight)^{2}}} = \frac{5}{\sqrt{30}}

    \tan^{2}\alpha =
\frac{1}{\cos^{2}\alpha} - 1 = \left( \frac{\sqrt{30}}{5} ight)^{2} -
1 = \frac{5}{25}.

    Suy ra \tan\alpha =\frac{\sqrt{5}}{5}.

  • Câu 8: Vận dụng

    PT mp cắt khối tứ diện

    Cho tứ giác ABCD có A\left( {0,1, - 1} ight);\,\,\,\,B\left( {1,1,2} ight);\,\,C\left( {1, - 1,0} ight);\,\,\,\left( {0,0,1} ight). Viết phương trình tổng quát của mặt phẳng (Q) song song với mặt phẳng (BCD) và chia tứ diện thành hai khối AMNF và MNFBCD có tỉ số thể tích bằng \frac{1}{27} .

    Tỷ số thể tích hai khối AMNE và ABCD: {\left( {\frac{{AM}}{{AB}}} ight)^3} = \frac{1}{{27}}

    \Rightarrow \frac{{AM}}{{AB}} = \frac{1}{3} \Rightarrow M chia cạnh BA theo tỷ số -2

    \Rightarrow E\left\{ \begin{array}{l}x=\dfrac{{1 + 2.0}}{3} = \dfrac{1}{3}\\y = \dfrac{{1 + 2.1}}{3} = 1\\z = \dfrac{{2 + 2\left( { - 1} ight)}}{3} = 0\end{array} ight.;\,\,

    \overrightarrow {BC}  =  - 2\left( {0,1,1} ight);\,\,\overrightarrow {BD}  =  - \left( {1,1,1} ight)

    Vecto pháp tuyến của \left( Q ight):\overrightarrow n  = \left( {0,1, - 1} ight)

    \begin{array}{l} \Rightarrow M \in \left( Q ight) \Rightarrow \left( Q ight):\left( {x - \frac{1}{3}} ight)0 + \left( {y - 1} ight)1 + \left( {z - 0} ight)\left( { - 1} ight) = 0\\ \Rightarrow \left( P ight):y - z - 1 = 0\end{array}

  • Câu 9: Thông hiểu

    Tính giá trị biểu thức

    Trong không gian với hệ tọa độ Oxyz, cho 2 đường thẳng \Delta_{1} :\left\{ \begin{matrix}x = 3 + t \\y = 1 + t \\z = 1 + 2t \\\end{matrix}(t \in \mathbb{R}); ight. \Delta_{2}:\frac{x + 2}{2} =\frac{y - 2}{5} = \frac{z}{-1} và điểm M(0;3;0). Đường thẳng d đi qua M, cắt \Delta_{1} và vuông góc với \Delta_{2} có một vectơ chỉ phương là \overrightarrow{u} = (4;a;b). Tính T = a + b

    Hình vẽ minh họa

    Gọi (P) là mặt phẳng chứa M\Delta_{1}.

    Lấy A(3;1;1) \in \Delta_{1}.

    Mặt phẳng (P) có véc-tơ pháp tuyến vuông góc với các véc-tơ \overrightarrow{MA} = (3; - 2;1){\overrightarrow{u}}_{\Delta_{1}} =
(1;1;2).

    Ta có \left\lbrack
\overrightarrow{MA},{\overrightarrow{u}}_{\Delta_{1}} ightbrack = (
- 5; - 5;5).

    Một trong các véc-tơ pháp tuyến của mặt phẳng (P){\overrightarrow{n}}_{(P)} = (1;1; -
1).

    Đường thẳng d nằm trong mặt phẳng (P) và vuông góc với \Delta_{2}\overrightarrow{u_{d}} = \left\lbrack
\overrightarrow{n_{(P)}};\overrightarrow{u_{\Delta_{2}}} ightbrack =
(4; - 1;3)

    Vậy a = - 1;b = 3 \Rightarrow T = a + b =
2.

  • Câu 10: Nhận biết

    Tìm điểm không nằm trên mặt cầu

    Cho mặt cầu (S):\ x^{2} + y^{2} + z^{2} -
4 = 0 và 4 điểm M(1;2;0),\
N(0;1;0),\ P(1;1;1), Q(1; -
1;2). Trong bốn điểm đó, có bao nhiêu điểm không nằm trên mặt cầu (S) ?

    Lần lượt thay tọa độ các điểm M, N, P, Q vào phương trình mặt cầu (S), ta thấy chỉ có tọa độ điểm Q thỏa mãn.

  • Câu 11: Thông hiểu

    Chọn đáp án đúng

    Trong không gian Oxyz, viết phương trình mặt phẳng (P) biết (P) đi qua hai điểm M(0; - 1;0),N( - 1;1;1) và vuông góc với mặt phẳng (Oxz).

    Ta có \overrightarrow{MN} = ( -
1;2;1)(Oxz) có một vectơ pháp tuyến là \overrightarrow{j}\  =
(0;1;0)

    Mặt phẳng (P) có một vectơ pháp tuyến là \overrightarrow{n} = \left\lbrack
\overrightarrow{MN};\overrightarrow{j} ightbrack = ( - 1;0; -
1)

    Do đó, (P) có phương trình là - 1(x - 0) + 0(y + 1) - 1(z - 0) = 0
\Leftrightarrow x + z = 0.

  • Câu 12: Vận dụng

    Chọn đáp án đúng

    Trong không gian Oxyz, cho tam giác ABCA(1; 1; 1), đường trung tuyến kẻ từ B và đường cao kẻ từ C lần lượt có phương trình \frac{x - 8}{10} =
\frac{y + 7}{- 9} = \frac{z - 5}{5};\frac{x - 7}{2} = \frac{y + 1}{5} =
\frac{z - 3}{- 1}. Biết B (a; b; c), khi đó a + b + c bằng

    Hình vẽ minh họa

    Giả sử đường cao là CH:\frac{x - 7}{2} =
\frac{y + 1}{5} = \frac{z - 3}{- 1} ta có vectơ chỉ phương của CH là \overrightarrow {u} = (2; 5; −1).

    B thuộc đường trung tuyến BM:\frac{x -
8}{10} = \frac{y + 7}{- 9} = \frac{z - 5}{5} nên B(8 + 10t; −7 − 9t; 5 + 5 t).

    Suy ra \overrightarrow{AB} = (7 + 10t; -
8 - 9t;4 + 5t)

    CH ⊥ AB nên \overrightarrow{AB}.\overrightarrow{u} =
0⇔ −30t−30 = 0 ⇔ t = −1 ⇒ B(−2; 2; 0).

    Vậy a + b + c = 0.

  • Câu 13: Vận dụng

    Chọn đáp án đúng

    Cho hai điểm A(2, - 3, - 1);\ \ \ B( -
4,5, - 3). Tìm tập hợp các điểm M(x,y,z) thỏa mãn \frac{MA}{MB} = \frac{\sqrt{3}}{2}

    Theo bài ra ta có:

    2MA = \sqrt{3}MB \Leftrightarrow 4MA^{2}
= 3MB^{2}

    \Leftrightarrow 4\left\lbrack (2 -
x)^{2} + ( - 3 - y)^{2} + ( - 1 - z)^{2} \right\rbrack

    = 3\left\lbrack ( - 4 - x)^{2} + (5 -
y)^{2} + ( - 3 - z)^{2} \right\rbrack

    Mặt cầu x^{2} + y^{2} + z^{2} - 40x - 54y
- 10z - 94 = 0

  • Câu 14: Nhận biết

    Tính đường kính mặt cầu

    Cho các điểm A(1;3;1)B(3;2;2). Mặt cầu đi qua hai điểm A, B và tâm thuộc trục Oz có đường kính là:

    Gọi I(0;0;t) trên OzIA = IB \Rightarrow t = 3 \Rightarrow
I(0;0;3)

    \Rightarrow R = IA = \sqrt{14}
\Rightarrow đường kính là: 2\sqrt{14}.

  • Câu 15: Nhận biết

    Tìm phương trình mặt phẳng

    Trong không gian Oxyz, tìm phương trình mặt phẳng (\alpha) cắt ba trục Ox,Oy,Oz lần lượt tại ba điểm A( - 3;0;0),B(0;4;0),C(0;0; -
2)?

    Phương trình mặt phẳng (\alpha): \frac{x}{- 3} + \frac{y}{4} + \frac{z}{- 2}
= 1

    \Leftrightarrow 4x - 3y + 6z = -
12

    \Leftrightarrow 4x - 3y + 6z + 12 =
0

  • Câu 16: Thông hiểu

    Chọn đáp án đúng

    Trong không gian với hệ trục tọa độ Oxyz, cho điểm H(2; - 1; - 2) là hình chiếu vuông góc của gốc tọa độ O xuống mặt phẳng (P), số đo góc giữa mặt phẳng (P) và mặt phẳng (Q):x - y - 11 = 0 bằng bao nhiêu?

    H(2; - 1; - 2) là hình chiếu vuông góc của gốc tọa độ O xuống mặt phẳng (P) nên mặt phẳng (P) có vectơ pháp tuyến \overrightarrow{n_{(P)}} = \overrightarrow{OH} =
(2; - 1; - 2).

    Mặt phẳng (Q) có vectơ pháp tuyến \overrightarrow{n_{(Q)}} = (1; -
1;0).

    Gọi \varphi là số đo góc giữa mặt phẳng (P) và mặt phẳng (Q), ta có:

    \cos\varphi = \frac{\left|
\overrightarrow{n_{(P)}}.\overrightarrow{n_{(Q)}} ight|}{\left|
\overrightarrow{n_{(P)}} ight|.\left| \overrightarrow{n_{(Q)}}
ight|}

    = \frac{\left| 2.1 + ( - 1).( - 1) + ( -
2).0 ight|}{\sqrt{2^{2} + ( - 1)^{2} + ( - 2)^{2}}.\sqrt{1^{2} + ( -
1)^{2} + 0^{2}}} = \frac{\sqrt{2}}{2}

    \Rightarrow \varphi =
45^{0}

  • Câu 17: Vận dụng

    Khoảng cách giữa 2 đường thẳng

    Khoảng cánh giữa hai đường thẳng : {(d_1}):\left\{ \begin{array}{l}x + y = 0\\x - y + z + 4 = 0\end{array} ight. và  ({d_2}):\left\{ \begin{array}{l}x + 3y - 1 = 0\\y + z - 2 = 0\end{array} ight. là:

     Chuyển d1 về dạng tham số :({d_1}):\left\{ \begin{array}{l}x + y = 0\\x - y + z + 4 = 0\end{array} ight. \Rightarrow ({d_1}):\left\{ \begin{array}{l}x = t\\y =  - t\\z =  - 4 - 2t\end{array} ight.

    Qua đó, ta có A(0,0, - 4) \in ({d_1}) và 1 vectơ chỉ phương của (d1): \overrightarrow a  = (1, - 1, - 2).

    Chuyển (d2) về dạng tham số : ({d_2}):\left\{ \begin{array}{l}x + 3y - 1 = 0\\y + z - 2 = 0\end{array} ight. \Rightarrow ({d_2}):\left\{ \begin{array}{l}x =  - 5 + 3t\\y = 2 - t\\z = t\end{array} ight.

    Qua đó, ta có B( - 5,2,0) \in ({d_2}) và 1 vectơ chỉ phương của ({d_2}):\overrightarrow b (3, - 1,1).

    Áp dụng công thức tính Khoảng cách d1 và d2 , ta được:

    d = \frac{{\left| {\left[ {\overrightarrow a ,\overrightarrow b } ight].\overrightarrow {AB} } ight|}}{{\left| {\left[ {\overrightarrow a ,\overrightarrow b } ight]} ight|}} = \frac{9}{{\sqrt {62} }}

    .

  • Câu 18: Thông hiểu

    Tính thể tích khối tứ diện

    Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):2x - 3y + z - 6 = 0 cắt ba trục tọa độ Ox,Oy,Oz lần lượt tại ba điểm A,B,C. Lúc đó thể tích V của khối tứ diện OABC là:

    Gọi A(a;0;0),B(0;b;0),C(0;0;c) lần lượt là giao của mặt phẳng (P) với ba trục tọa độ Ox,Oy,Oz.

    Khi đó A(3;0;0),B(0; -
2;0),C(0;0;6) và tứ diện OABCOA,OB,OC đôi một vuông góc tại O.

    Do đó V_{OABC} = \frac{1}{6}OA.OB.OC =
\frac{1}{6}.3.2.6 = 6

  • Câu 19: Vận dụng cao

    Xác định phương trình mặt phẳng

    Trong không gian, với hệ tọa độ Oxyz, cho các điểm A(0;1;2),B(2; - 2;0),C( - 2;0;1). Mặt phẳng (P) đi qua A, trực tâm H của tam giác ABC và vuông góc với mặt phẳng (ABC) có phương trình là

    Ta có: \overrightarrow{\ AB} = (2; -
3;2),\overrightarrow{AC} = ( - 2; - 1; - 1),\overrightarrow{BC} = ( -
4;2;1)

    \Rightarrow \left\lbrack
\overrightarrow{\ AB};\overrightarrow{AC} ightbrack = (1;6; -
8)

    Gọi tọa độ trực tâm H(a;b;c) khi đó \overrightarrow{\ AH} = (a;b - 1;c -
2),\overrightarrow{BH} = (a - 2;b + 2,c)

    Theo đề bài ta có

    \left\{ \begin{matrix}
\overrightarrow{\ AH}\bot\overrightarrow{BC} \\
\overrightarrow{BH}\bot\overrightarrow{AC} \\
\overrightarrow{\ AB};\overrightarrow{AC};\overrightarrow{\ AH} \in
(ABC) \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
\overrightarrow{\ AH}.\overrightarrow{BC} = 0 \\
\overrightarrow{BH}.\overrightarrow{AC} = 0 \\
\left\lbrack \overrightarrow{\ AB};\overrightarrow{AC}
ightbrack.\overrightarrow{\ AH} = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}- 4a + 2(b - 1) + c - 2 = 0 \\- 2(a - 2) - 1(b + 2) - c = 0 \\a + 6(b - 1) - 8(c - 2) = 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}a = \dfrac{- 22}{101} \\b = \dfrac{70}{101} \\c = \dfrac{176}{101} \\\end{matrix} ight.

    \Rightarrow H\left( \frac{-
22}{101};\frac{70}{101};\frac{176}{101} ight) \Rightarrow
\overrightarrow{AH} = \left( \frac{- 22}{101};\frac{- 31}{101};\frac{-
26}{101} ight)

    Gọi \overrightarrow{n} là VTPT của mặt phẳng (P) ta có:

    \left\{ \begin{matrix}
\overrightarrow{\ AH}\bot\overrightarrow{n} \\
\overrightarrow{n}\bot\overrightarrow{n_{(ABC)}} \\
\end{matrix} ight.\  \Leftrightarrow \overrightarrow{n} = \left\lbrack
\overrightarrow{\ AH};\overrightarrow{n_{(ABC)}} ightbrack = (4; -
2; - 1)

    Phương trình mặt phẳng (P) đi qua A(0; 1; 2) có một VTPT là \overrightarrow{n} = (4; - 2; - 1)

    4(x - 0) - 2(y - 1) - 1(z - 2) =
0

    \Leftrightarrow 4x - 2y - z + 4 =
0

    Vậy (P):4x - 2y - z + 4\  =
0.

  • Câu 20: Thông hiểu

    Tính khoảng cách từ điểm đến đường thẳng

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng (d):\frac{x - 3}{- 2} = \frac{y}{- 1} = \frac{z -
1}{1} và điểm A(2; - 1;0). Khoảng cách từ điểm A đến đường thẳng (d) bằng

    Gọi M(3;0;1) \in d.

    \overrightarrow{AM}(1;1;1);\overrightarrow{u_{d}}(
- 2; - 1;1) \Rightarrow \left\lbrack
\overrightarrow{AM};\overrightarrow{u_{d}} \right\rbrack = (2; -
3;1)

    \Rightarrow \left| \left\lbrack
\overrightarrow{AM};\overrightarrow{u_{d}} \right\rbrack \right| =
\sqrt{14}

    Vậy khoảng cách từ điểm A đến đường thẳng (d) bằng d(A,d) = \frac{\left| \left\lbrack
\overrightarrow{AM};\overrightarrow{u_{d}} \right\rbrack \right|}{\left|
\overrightarrow{u_{d}} \right|} = \frac{\sqrt{14}}{\sqrt{6}} =
\frac{\sqrt{21}}{3}

  • Câu 21: Thông hiểu

    Xác định phương trình mặt phẳng

    Trong không gian với hệ tọa độ Oxyz; cho điểm A(1;2; - 3). Gọi M,N,P là hình chiếu vuông góc của điểm A trên ba trục tọa độ Ox,Oy,Oz. Viết phương trình mặt phẳng (MNP)?

    M(1;0;0),N(0;2;0),P(0;0; - 3) là hình chiếu của A lên các trục tọa độ nên mặt phẳng cần tìm là (MNP):\frac{x}{1} + \frac{y}{2} + \frac{z}{- 3} =
1

    \Rightarrow (MNP):6x + 3y - 2z - 6 =
0

  • Câu 22: Nhận biết

    Viết phương trình mặt phẳng

    Trong không gian Oxyz, cho điểm A(2;3;1)và vectơ \overrightarrow{n} = (1;2; - 3). Viết phương trình mặt phẳng (\alpha) qua A và nhận vectơ \overrightarrow{n} làm vectơ pháp tuyến:

    Viết phương trình mặt phẳng qua A(2;3;1) và có vectơ pháp tuyến \overrightarrow{n} = (1;2; - 3)

    \Rightarrow 1.(x - 2) + 2(x - 3) - 3(z -
1) = 0

    \Leftrightarrow x + 2y - 3z - 5 =
0

    Vậy phương trình mặt phẳng cần tìm là: x
+ 2y - 3z - 5 = 0.

  • Câu 23: Nhận biết

    Tìm đáp án không thích hợp

    Trong không gian Oxyz, phương trình đường thẳng đi qua hai điểm A(1;1;2)B(2; - 1;0) là:

    Ta có \overrightarrow{AB} = (1, - 2, -
2)

    Phương trình đường thẳng AB đi qua B(2; -
1;0) nhận vectơ \overrightarrow{AB} làm vectơ chỉ phương nên có phương trình là: \frac{x - 2}{- 1} =
\frac{y + 1}{2} = \frac{z}{2}.

  • Câu 24: Thông hiểu

    Chọn đáp án đúng

    Cho điểm I(1;0;0)và đường thẳng d:\left\{ \begin{matrix}
x = 1 + t \\
y = 1 + 2t \\
z = - 2 + t \\
\end{matrix} \right.. Phương trình mặt cầu (S) có tâm I và cắt đường thẳng d tại hai điểm A, B sao cho tam giác IAB đều là:

    Đường thẳng\Deltađi qua M = (1;\ 1;\  - 2)và có vectơ chỉ phương \overrightarrow{u} = (1;\ 2;1)

    Ta có \overrightarrow{MI} = (0; -1;2)\left\lbrack
\overrightarrow{u},\overrightarrow{MI} \right\rbrack = (5; - 2; -
1)

    Gọi H là hình chiếu của I trên d.

    Ta có : IH = d(I;AB) = \frac{\left|\left\lbrack \overrightarrow{u},\overrightarrow{MI} \right\rbrack
\right|}{\left| \overrightarrow{u} \right|} = \sqrt{5}.

    Xét tam giác IAB, có IH =
R.\frac{\sqrt{3}}{2} \Rightarrow R = \frac{2IH}{\sqrt{3}} =
\frac{2\sqrt{15}}{3}

    Vậy phương trình mặt cầu là: (x - 1)^{2}
+ y^{2} + z^{2} = \frac{20}{3}.

  • Câu 25: Nhận biết

    Xác định vectơ pháp tuyến của mặt phẳng

    Trong không gian Oxyz, mặt phẳng (P):2x + z - 1 = 0 có một vectơ pháp tuyến là:

    Mặt phẳng (P):2x + z - 1 = 0 có một vectơ pháp tuyến là: \overrightarrow{n}
= (2;0;1).

  • Câu 26: Thông hiểu

    Xét tính đúng sai của các nhận định

    Trong không gian tọa độ Oxyz, cho hai mặt phẳng \left( P_{1} \right):2x +
y + 2z - 1 = 0\left( P_{2}
\right):x - 2y - 2z - 7 = 0.

    a) Vectơ có tọa độ (2\ ;\ 2\ ;1) là một vectơ pháp tuyến của mặt phẳng \left(
P_{1} \right). Sai||Đúng

    b) Vectơ có toạ độ (1\ ;\  - 2\ ;\  -
2) là một vectơ pháp tuyến của mặt phẳng \left( P_{2} \right). Đúng||Sai

    c) Côsin của góc giữa hai vectơ {\overrightarrow{n}}_{1} = (2\ ;\ 1\ ;\
2){\overrightarrow{n}}_{2} =
(1\ ;\  - 2\ ;\  - 2) bằng -
\frac{4}{9}. Đúng||Sai

    d) Góc giữa hai mặt phẳng \left( P_{1}
\right)\left( P_{2}
\right) bằng 116{^\circ}. Sai||Đúng

    Đáp án là:

    Trong không gian tọa độ Oxyz, cho hai mặt phẳng \left( P_{1} \right):2x +
y + 2z - 1 = 0\left( P_{2}
\right):x - 2y - 2z - 7 = 0.

    a) Vectơ có tọa độ (2\ ;\ 2\ ;1) là một vectơ pháp tuyến của mặt phẳng \left(
P_{1} \right). Sai||Đúng

    b) Vectơ có toạ độ (1\ ;\  - 2\ ;\  -
2) là một vectơ pháp tuyến của mặt phẳng \left( P_{2} \right). Đúng||Sai

    c) Côsin của góc giữa hai vectơ {\overrightarrow{n}}_{1} = (2\ ;\ 1\ ;\
2){\overrightarrow{n}}_{2} =
(1\ ;\  - 2\ ;\  - 2) bằng -
\frac{4}{9}. Đúng||Sai

    d) Góc giữa hai mặt phẳng \left( P_{1}
\right)\left( P_{2}
\right) bằng 116{^\circ}. Sai||Đúng

    a) \overrightarrow{n_{\left( P_{1}
\right)}} = (2;1;2) nên mệnh đề sai

    b) \overrightarrow{n_{\left( P_{1}
\right)}} = (1; - 2; - 2) nên mệnh đề đúng

    c) \cos\left(
\overrightarrow{n_{1}},\overrightarrow{n_{2}} \right) = \frac{2.1 + 1( -
2) + 2( - 2)}{3.3} = - \frac{4}{9} mệnh đề đúng

    d) Góc hai mặt phẳng không thể tù nên mệnh đề sai

    a) Sai, b) Đúng, c) Đúng, d) Sai.

  • Câu 27: Nhận biết

    Tính số đo góc nhị diện

    Cho hình lập phương ABCD.A'B'C'D'. Số đo của góc nhị diên\left\lbrack
(BCC'B'),BB',(BDD'B') \right\rbrack bằng

    Hình vẽ minh họa

    Ta có góc nhị diên \left\lbrack
(BCC'B'),BB',(BDD'B') ightbrack bằng \widehat{DBC} = 45{^\circ}.

  • Câu 28: Thông hiểu

    Chọn đáp án đúng

    Trong không gian với hệ tọa độ Oxyz, cho điểm A( - 4; -
2;4) và đường thẳng d:\frac{x +
3}{2} = \frac{y - 1}{- 1} = \frac{z + 1}{4}. Viết phương trình đường thẳng \Delta đi qua A, cắt và vuông góc với đường thẳng d.

    Gọi B\left( x_{B};y_{B};z_{B}
\right) là giao điểm của (d) với (\Delta). Khi đó, ta có:

    \frac{x_{B} + 3}{2} = \frac{y_{B} - 1}{-
1} = \frac{z_{B} + 1}{4} = k

    \Rightarrow B(2k - 3; - k + 1;4k -
1)

    \Rightarrow \overrightarrow{AB} = (2k +
1; - k + 3:4k - 5);\overrightarrow{u_{d}} = (2; - 1;4)

    AB\bot(d) \Leftrightarrow
\overrightarrow{AB}.\overrightarrow{u_{d}} = 0

    \Leftrightarrow 2(2k + 1) - ( - k + 3) +
4.(4k - 5) = 0

    \Leftrightarrow k = \frac{21}{21} = 1
\Rightarrow B( - 1;0;3);(3;2; - 1)

    Phương trình (\Delta) chính là phương trình AB và là:

    \Delta:\frac{x + 4}{3} = \frac{y + 2}{2}
+ \frac{z - 4}{- 1}

  • Câu 29: Nhận biết

    Chọn khẳng định đúng

    Trong không gian tọa độ Oxyz, cho đường thẳng \Delta:\frac{x - 1}{- 2} =
\frac{y + 1}{2} = \frac{z - 2}{- 1} và mặt phẳng (P):2x - y - 2z + 1 = 0. Gọi \alpha là góc giữa đường thẳng \Delta và mặt phẳng (P). Khẳng định nào sau đây đúng?

    Ta có: \Delta có một vectơ chỉ phương là \overrightarrow{u} = ( - 2;2; -
1), (P) có một vectơ pháp tuyến là \overrightarrow{n} = (2; - 1; -
2).

    Từ đó: \sin\alpha = \left| \cos\left(
\overrightarrow{n};\overrightarrow{u} ight) ight| = \left|
\frac{\overrightarrow{n}.\overrightarrow{u}}{\left| \overrightarrow{n}
ight|.\left| \overrightarrow{u} ight|} ight| =
\frac{4}{9}

  • Câu 30: Nhận biết

    Viết phương trình tham số của đường thẳng

    Trong không gian Oxyz, cho hai điểm M(\ 1;\ 0;\ 1)N(\ 3;\ 2;\  - 1). Đường thẳng MN có phương trình tham số là

    Đường thẳng MN nhận \overrightarrow{MN} = (\ 2;\ 2;\  - 2) hoặc \overrightarrow{u}(\ 1;\ 1;\  -
1) là véc tơ chỉ phương nên ta loại ngay phương án \left\{ \begin{matrix}
x = 1 + 2t \\
y = 2t \\
z = 1 + t \\
\end{matrix} \right.\ ., \left\{
\begin{matrix}
x = 1 + t \\
y = t \\
z = 1 + t \\
\end{matrix} \right.\ .\left\{
\begin{matrix}
x = 1 - t \\
y = t \\
z = 1 + t \\
\end{matrix} \right.\ .

    Thay tọa độ điểm M(\ 1;\ 0;\ 1) vào phương trình ở phương án \left\{
\begin{matrix}
x = 1 + t \\
y = t \\
z = 1 - t \\
\end{matrix} \right.\ . ta thấy thỏa mãn.

  • Câu 31: Nhận biết

    Chọn đáp án thích hợp

    Phương trình mặt cầu có bán kính bằng 3 và tâm là giao điểm của ba trục toạ độ?

    Mặt cầu tâm O(0;0;0) và bán kính R = 3 có phương trình: (S):x^{2} +
y^{2} + z^{2} = 9.

  • Câu 32: Nhận biết

    Xác định điểm thuộc đường thẳng

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d: \left\{
\begin{matrix}
x = - 3 + t \\
y = 1 - 2t \\
z = - 2 + t \\
\end{matrix} \right.. Điểm nào sau đây thuộc đường thẳng d?

    Thay tọa độ điểm M( - 3;\ 1;\  -
2) vào phương trình tham số của đường thẳng d

    \left\{ \begin{matrix}
- 3 = - 3 + t \\
1 = 1 - 2t \\
- 2 = - 2 + t \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
t = 0 \\
t = 0 \\
t = 0 \\
\end{matrix} ight..

    Vậy điểm M( - 3;\ 1;\  - 2) thuộc đường thẳng d.

  • Câu 33: Nhận biết

    Tìm tọa độ tâm mặt cầu

    Trong không gian Oxyz, cho mặt cầu (S):(x + 3)^{2} + (y + 1)^{2} + (z -
1)^{2} = 2 có tọa độ tâm I là:

    Tâm của (S) có tọa độ là I( - 3; - 1;1).

  • Câu 34: Vận dụng

    Ghi đáp án vào ô trống

    Trong không gian với hệ trục tọa độ Oxyz, cho bốn điểm A(2; - 3;7),B(0;4;1), C(3;0;5),D(3;3;3). Gọi M là điểm nằm trên mặt phẳng (Oyz) sao cho biểu thức \left| \overrightarrow{MA} + \overrightarrow{MB} +\overrightarrow{MC} + \overrightarrow{MD} ight| đạt giá trị nhỏ nhất. Tìm tọa độ điểm M?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Trong không gian với hệ trục tọa độ Oxyz, cho bốn điểm A(2; - 3;7),B(0;4;1), C(3;0;5),D(3;3;3). Gọi M là điểm nằm trên mặt phẳng (Oyz) sao cho biểu thức \left| \overrightarrow{MA} + \overrightarrow{MB} +\overrightarrow{MC} + \overrightarrow{MD} ight| đạt giá trị nhỏ nhất. Tìm tọa độ điểm M?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 35: Nhận biết

    Chọn đáp án đúng

    Trong không gian Oxyz, hình chiếu vuông góc của điểm M(2;\ 1;\  -
1) trên trục Oz có tọa độ là

    Hình chiếu vuông góc của điểm M(2;\
1;\  - 1) trên trục Oz có tọa độ là: (0;\ 0;\  - 1).

  • Câu 36: Thông hiểu

    Viết phương trình mặt cầu

    Mặt cầu tâm I(2;4;6) và tiếp xúc với mặt phẳng (Oxy) có phương trình:

    Mặt cầu tâm I(2;4;6), bán kính R và tiếp xúc với mặt phẳng (Oxy): z = 0 \Leftrightarrow R = d\left( I;(Oxy)
\right)

    \Leftrightarrow R = \frac{|6|}{1} =
6.

    Vậy (S):(x - 2)^{2} + (y - 4)^{2} + (z -
6)^{2} = 36.

  • Câu 37: Vận dụng

    Tính bán kính

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B, . Cạnh bên , hình chiếu của điểm S lên mặt phẳng đáy trùng với trung điểm của cạnh huyền AC. Bán kính mặt cầu ngoại tiếp khối chóp S.ABC là:

    Tính bán kính

    Gọi M là trung điểm AC, suy ra SM \bot \left( {ABC} ight) \Rightarrow SM \bot AC.

    Tam giác SAC có SM là đường cao và cũng là trung tuyến nên tam giác SAC cân tại S.

    Ta có AC = \sqrt {A{B^2} + B{C^2}}  = a\sqrt 2, suy ra tam giác SAC đều.

    Gọi G là trọng tâm \triangle SAC , suy ra GS = GA = GC.    (1)

    Tam giác ABC vuông tại B, có M là trung điểm cạnh huyền AC nên M là tâm đường tròn ngoại tiếp tam giác ABC.

    Lại có SM \bot \left( {ABC} ight) nên SM là trục của tam giác ABC.

    Mà G thuộc SM nên suy ra GA = GB = GC.

    Từ (1) và (2), suy ra GS = GA = GB = GC hay G là tâm mặt cầu ngoại tiếp khối chóp S.ABC.

    Bán kính mặt cầu R = GS = \frac{2}{3}SM = \frac{{a\sqrt 6 }}{3}.

  • Câu 38: Vận dụng cao

    Tính tổng C

    Trong không gian tọa độ Oxyz cho các điểm A(1;5;0),B(3;3;6) và đường thẳng \Delta:\frac{x + 1}{2} = \frac{y -
1}{- 1} = \frac{z}{2}. Gọi M(a;b;c)
\in \Delta sao cho chu vi tam giác MAB đạt giá trị nhỏ nhất. Tính tổng C = MA + MB + AB?

    Ta cóM(a;b;c) \in \Delta \Rightarrow M(2t
- 1; - t + 1;2t).

    Từ đó ta có: C = MA + MB + AB =
\sqrt{9t^{2} + 20} + \sqrt{9t^{2} - 36t + 56} + 2\sqrt{11}.

    C(t) = \sqrt{9t^{2} + 20} + \sqrt{9t^{2}
- 36t + 56} + 2\sqrt{11}

    \Rightarrow C'(t) =
\frac{9}{\sqrt{9t^{2} + 20}} + \frac{9t - 18}{\sqrt{9t^{2} - 36t + 56}}
= 0

    \Rightarrow t = 1

    Lập BBT ta có: \min C(t) = C(1)
\Rightarrow t = 1 \Rightarrow M(1;0;2).

    Khi đó: C = MA + MB + AB = T

    Đề xuất: Đánh giá f(t) = \sqrt{9t^{2} +
20} + \sqrt{9t^{2} - 36t + 56} như sau

    f(t) = \sqrt{9t^{2} + 20} + \sqrt{9t^{2}
- 36t + 56}

    = \sqrt{9t^{2} + 20} + \sqrt{9(t -
2)^{2} + 20}

    Trong hệ trục Oxy, chọn \overrightarrow{u} = \left( 2t;2\sqrt{5}
\right),\overrightarrow{v} = \left( - 3(t - 2);2\sqrt{5}
\right), \overrightarrow{u} +
\overrightarrow{v} = \left( 6;4\sqrt{5} \right). Khi đó
    f(t) = \left| \overrightarrow{u} \right| +
\left| \overrightarrow{v} \right| \geq \left| \overrightarrow{u} +
\overrightarrow{v} \right| = 2\sqrt{14}.

    Đẳng thức xảy ra khi và chi khi \overrightarrow{u};\overrightarrow{v} cùng hướng\Leftrightarrow \frac{3t}{- 3(t -
2)} = \frac{2\sqrt{5}}{2\sqrt{5}} \Leftrightarrow t = 1 \Rightarrow
M(1;0;2).

  • Câu 39: Thông hiểu

    Tính khoảng cách từ điểm đến đường thẳng

    Trong không gian với hệ tọa độ Oxyz, khoảng cách từ điểm M(2; - 4; - 1) tới đường thẳng \Delta:\left\{ \begin{matrix}
x = t \\
y = 2 - t \\
z = 3 + t \\
\end{matrix} ight. bằng:

    Đường thẳng \Delta đi qua N(0;2;3), có véc-tơ chỉ phương \overrightarrow{u} = (1; - 1;2).

    Ta có \overrightarrow{MN} = ( -
2;6;4)\left\lbrack
\overrightarrow{MN},\overrightarrow{u} ightbrack = (16;8; -
4).

    Vậy khoảng cách từ M đến đường thẳng \Delta là:

    d(M;\Delta) = \frac{\left| \left\lbrack
\overrightarrow{MN},\overrightarrow{u} ightbrack ight|}{\left|
\overrightarrow{u} ight|} = \frac{\sqrt{336}}{\sqrt{6}} =
2\sqrt{14}

  • Câu 40: Nhận biết

    Tính góc giữa hai đường thẳng

    Trong không gian Oxyz, góc giữa hai đường thẳng \Delta_{1}:\left\{
\begin{matrix}
x = 1 - 2t \\
y = - 1 + t \\
z = 2 - 3t \\
\end{matrix} \right.\Delta_{2}:\frac{x - 2}{1} = \frac{x + 1}{- 1} =
\frac{z - 2}{- 2} xấp xỉ bằng

    Ta có:

    \cos\left( \Delta_{1},\Delta_{2} ight)
=
\frac{\overrightarrow{u_{\Delta_{1}}}.\overrightarrow{u_{\Delta_{2}}}}{\left|
\overrightarrow{u_{\Delta_{1}}} ight|.\left|
\overrightarrow{u_{\Delta_{2}}} ight|}= \left| \frac{- 2.1 + 1.( - 1)
+ ( - 3).( - 2)}{\sqrt{( - 2)^{2} + 1^{2} + ( - 3)^{2}}.\sqrt{1^{2} + (
- 1)^{2} + ( - 2)^{2}}} ight|

    = \left| \frac{3}{\sqrt{14}.\sqrt{6}}
ight| = \frac{\sqrt{21}}{14}

    \Rightarrow \left( \Delta_{1},\Delta_{2}
ight) \approx 70,9^{0}.

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 5 Phương pháp tọa độ trong không gian Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo