Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Luyện tập Biểu thức tọa độ của các phép toán vectơ KNTT

Vndoc.com xin gửi tới bạn đọc bài viết Bài tập trắc nghiệm Toán 12: Biểu thức tọa độ của các phép toán vectơ sách Kết nối tri thức. Mời các bạn cùng tham khảo chi tiết bài viết dưới đây nhé!

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Vận dụng
    Ghi đáp án vào ô trống

    Trong không gian với hệ trục tọa độ Oxyz, cho các điểm A(2;0;0),B(0;2;0),C(0;0;2). Có tất cả bao nhiêu điểm Mtrong không gian thỏa mãn M eq A,M eq B,M eq C\widehat{AMB} = \widehat{BMC} =\widehat{CMA} = 90^{0}?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Trong không gian với hệ trục tọa độ Oxyz, cho các điểm A(2;0;0),B(0;2;0),C(0;0;2). Có tất cả bao nhiêu điểm Mtrong không gian thỏa mãn M eq A,M eq B,M eq C\widehat{AMB} = \widehat{BMC} =\widehat{CMA} = 90^{0}?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 2: Vận dụng cao
    Tính giá trị biểu thức

    Trong không gian với hệ trục tọa độ Oxyz, cho hai điểm A(1;2; - 2),B\left(
\frac{8}{3};\frac{4}{3};\frac{8}{3} ight). Biết I(a;b;c) là tâm đường tròn nội tiếp tam giác OAB. Tính giá trị biểu thức U = a - b + c?

    Hướng dẫn:

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}\overrightarrow{OA} = (1;2; - 2) \Rightarrow OA = 3 \\\overrightarrow{OB} = \left( \dfrac{8}{3};\dfrac{4}{3};\dfrac{8}{3} ight)\Rightarrow OB = 4 \\\end{matrix} ight.

    Gọi D là chân đường phân giác kẻ từ O ta có:

    \overrightarrow{DA} = -
\frac{DA}{DB}.\overrightarrow{DB} = -
\frac{OA}{OB}.\overrightarrow{DB}

    \Rightarrow \overrightarrow{DA} = -
\frac{3}{4}.\overrightarrow{DB} \Rightarrow \overrightarrow{OD} =
\frac{4\overrightarrow{OA} + 3\overrightarrow{OB}}{7}. Do đó D\left( \frac{12}{7};\frac{12}{7};0
ight)

    Ta có: \overrightarrow{AD} = \left(
\frac{5}{7}; - \frac{2}{7};2 ight) \Rightarrow AD =
\frac{15}{7}

    \overrightarrow{ID} = -
\frac{AD}{AO}.\overrightarrow{IO} = - \frac{5}{7}\overrightarrow{IO}
\Rightarrow \overrightarrow{OI} = \frac{7}{12}\overrightarrow{OD}
\Rightarrow D(1;1;0)

    \Rightarrow \left\{ \begin{matrix}
a = 1 \\
b = 1 \\
c = 0 \\
\end{matrix} ight.\  \Rightarrow U = 0

  • Câu 3: Thông hiểu
    Chọn đáp án đúng

    Trong không gian Oxyz, cho tọa độ ba điểm A( - 1; -
2;3),B(0;3;1),C(4;2;2). Tính cosin góc \widehat{BAC}?

    Hướng dẫn:

    Ta có: \left\{ \begin{matrix}
\overrightarrow{AB} = (1;5; - 2) \\
\overrightarrow{AC} = (5;4; - 1) \\
\end{matrix} ight..

    \cos\widehat{BAC} = \cos\left(
\overrightarrow{AB};\overrightarrow{AC} ight) =
\frac{\overrightarrow{AB}.\overrightarrow{AC}}{\left|
\overrightarrow{AB} ight|.\left| \overrightarrow{AC} ight|} =
\frac{5 + 20 + 2}{\sqrt{30}.\sqrt{42}} =
\frac{9}{2\sqrt{35}}

  • Câu 4: Thông hiểu
    Tính giá trị biểu thức

    Trong không gian Oxyz, cho các điểm M( - 2;6;1),M'(a;b;c) đối xứng nhau qua mặt phẳng (Oyz). Tính giá trị biểu thức S = 7a - 2b + 2017c -
1?

    Hướng dẫn:

    Gọi H là hình chiếu của M trên mặt phẳng (Oyz) suy ra H(0; 6; 1)

    Do M’ đối xứng với M qua (Oyz) nên MM’ nhận H làm trung điểm suy ra M’(2; 6; 1) suy ra a = 2; b = 6; c = 1

    Vậy S = 7a - 2b + 2017c - 1 =
2018.

  • Câu 5: Nhận biết
    Chọn khẳng định sai

    Trong không gian Oxyz, cho hai vectơ \overrightarrow{a} = (1; -
2;0)\overrightarrow{b} = ( -
2;3;1). Khẳng định nào sau đây sai?

    Hướng dẫn:

    Ta có: \overrightarrow{a} +
\overrightarrow{b} = ( - 1;1;1) suy ra “\overrightarrow{a} + \overrightarrow{b} = ( - 1;1;
- 1)” là khẳng định sai.

  • Câu 6: Nhận biết
    Tìm điều kiện tham số m thỏa mãn yêu cầu

    Trong không gian Oxyz, cho hai vectơ \overrightarrow{u} = (2; -
1;1)\overrightarrow{v} = (0; -
3; - m). Xác định giá trị tham số m để \overrightarrow{u}.\overrightarrow{v} =
1?

    Hướng dẫn:

    Ta có: \overrightarrow{u}.\overrightarrow{v} = 1
\Leftrightarrow 3 - m = 1 \Leftrightarrow m = 2

    Vậy m = 2 là giá trị cần tìm.

  • Câu 7: Nhận biết
    Tính cosin của hai vectơ

    Trong không gian Oxyz, cho hai vectơ \overrightarrow{a} = (2;1;0)\overrightarrow{b} = ( - 1;0; -
2). Tính \cos\left(
\overrightarrow{a};\overrightarrow{b} ight)?

    Hướng dẫn:

    Ta có: \cos\left(
\overrightarrow{a};\overrightarrow{b} ight) =
\frac{\overrightarrow{a}.\overrightarrow{b}}{\left| \overrightarrow{a}
ight|.\left| \overrightarrow{b} ight|} = \frac{-
2}{\sqrt{5}.\sqrt{5}} = - \frac{2}{5}

  • Câu 8: Nhận biết
    Tìm tọa độ vectơ

    Biết rằng \overrightarrow{a} =
(0;1;3)\overrightarrow{b} = ( -
2;3;1). Tính \overrightarrow{x} =3\overrightarrow{a} + 2\overrightarrow{b}?

    Hướng dẫn:

    Ta có: \left\{ \begin{matrix}
3\overrightarrow{a} = (0;3;9) \\
2\overrightarrow{b} = ( - 4;6;2) \\
\end{matrix} ight.\  \Rightarrow \overrightarrow{x} =
3\overrightarrow{a} + 2\overrightarrow{b} = ( - 4;9;11)

  • Câu 9: Vận dụng
    Ghi đáp án vào ô trống

    Trong không gian với hệ trục tọa độ Oxyz cho hình thang ABCD vuông tại AB. Biết rằng tọa độ các điểm A(1;2;1),B(2;0; - 1),C(6;1;0),D(a;b;c) và hình thang ABCD có diện tích bằng 6\sqrt{2}. Tính giá trị biểu thức a+b+c?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Trong không gian với hệ trục tọa độ Oxyz cho hình thang ABCD vuông tại AB. Biết rằng tọa độ các điểm A(1;2;1),B(2;0; - 1),C(6;1;0),D(a;b;c) và hình thang ABCD có diện tích bằng 6\sqrt{2}. Tính giá trị biểu thức a+b+c?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 10: Thông hiểu
    Tính độ dài đoạn thẳng AC’

    Trong không gian hệ trục tọa độ Oxyz, cho hình hộp ABCD.A'B'C'D' có tọa độ các điểm A(0;0;0),B(a;0;0),D(0;2a;0),A'(0;0;2a) với a eq 0. Độ dài đoạn thẳng AC' là:

    Hướng dẫn:

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
\overrightarrow{AB} = (a;0;0) \\
\overrightarrow{AD} = (0;2a;0) \\
\overrightarrow{AA'} = (0;0;2a) \\
\end{matrix} ight.

    Theo quy tắc hình hộp ta có:

    \overrightarrow{AB} +
\overrightarrow{AD} + \overrightarrow{AA'} =
\overrightarrow{AC'} \Rightarrow \overrightarrow{AC'} =
(a;2a;2a)

    Suy ra AC' = \left|
\overrightarrow{AC'} ight| = \sqrt{a^{2} + (2a)^{2} + (2a)^{2}} =
3|a|

    Vậy độ dài AC’ bằng 3|a|.

  • Câu 11: Thông hiểu
    Tìm tọa độ vectơ

    Trong không gian với hệ trục tọa độ Oxyz cho \overrightarrow{a} = (2; - 1;3),\overrightarrow{b}
= (1; - 3;2),\overrightarrow{c} = (3;2; - 4). Gọi \overrightarrow{x} là vectơ thỏa mãn \left\{ \begin{matrix}
\overrightarrow{x}.\overrightarrow{a} = 4 \\
\overrightarrow{x}.\overrightarrow{b} = - 5 \\
\overrightarrow{x}.\overrightarrow{c} = 8 \\
\end{matrix} ight.. Tìm tọa độ \overrightarrow{x}?

    Hướng dẫn:

    Giả sử \overrightarrow{x} =
(x;y;z), khi đó:

    \left\{ \begin{matrix}
\overrightarrow{x}.\overrightarrow{a} = 4 \\
\overrightarrow{x}.\overrightarrow{b} = - 5 \\
\overrightarrow{x}.\overrightarrow{c} = 8 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
2x - y + 3z = 4 \\
x - 3y + 2z = - 5 \\
3x + 2y - 4z = 8 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 2 \\
y = 3 \\
z = 1 \\
\end{matrix} ight.\  \Rightarrow \overrightarrow{x} =
(2;3;1)

  • Câu 12: Thông hiểu
    Tính giá trị biểu thức

    Trong không gian với hệ trục tọa độ Oxyz, cho hai điểm B(1;2; - 3),C(7;4 - 2). Tìm tọa độ điểm E thỏa mãn đẳng thức \overrightarrow{CE} =
2\overrightarrow{EB}?

    Hướng dẫn:

    Gọi E(x;y;z)

    Ta có: \left\{ \begin{matrix}
\overrightarrow{CE} = (x - 7;y - 4;z + 2) \\
2\overrightarrow{EB} = (2 - 2x;4 - 2y; - 6 - 2z) \\
\end{matrix} ight.

    Theo bài ra ta có:

    \overrightarrow{CE} =2\overrightarrow{EB} \Leftrightarrow \left\{ \begin{matrix}x - 7 = 2 - 2x \\y - 4 = 4 - 2y \\z + 2 = - 6 - 2z \\\end{matrix} ight.\Leftrightarrow \left\{ \begin{matrix}x = 3 \\y = \dfrac{8}{3} \\z = - \dfrac{8}{3} \\\end{matrix} ight.\  \Rightarrow E\left( 3;\frac{8}{3}; - \dfrac{8}{3}ight)

    Vậy điểm E có tọa độ là E\left(
3;\frac{8}{3}; - \frac{8}{3} ight).

  • Câu 13: Nhận biết
    Tìm tọa độ vectơ

    Trong không gian với hệ trục tọa độ Oxyz, cho ba vectơ \overrightarrow{a} = (1;2;3);\overrightarrow{b} =
(2;2; - 1);\overrightarrow{c} = (4;0; - 4). Tọa độ vectơ \overrightarrow{d} = \overrightarrow{a} -
\overrightarrow{b} + 2\overrightarrow{c} là:

    Hướng dẫn:

    Ta có:

    \overrightarrow{d} = \overrightarrow{a}
- \overrightarrow{b} + 2\overrightarrow{c} = \left( 1 - 2 + 2.4;2 - 2 +
2.0;3 + 1 + 2.( - 4) ight) = (7;0; - 4)

    Vậy \overrightarrow{d}(7;0; -
4)

  • Câu 14: Nhận biết
    Tính tích vô hướng hai vectơ

    Trong không gian Oxyz, cho các điểm A(2;1;4),B( - 2;2;6),C(6;0; -
1). Tích \overrightarrow{AB}.\overrightarrow{AC} bằng:

    Hướng dẫn:

    Ta có: \left\{ \begin{matrix}
\overrightarrow{AB} = ( - 4;1; - 10) \\
\overrightarrow{AC} = (4; - 1; - 5) \\
\end{matrix} ight.. Khi đó \overrightarrow{AB}.\overrightarrow{AC} =
33.

  • Câu 15: Thông hiểu
    Định các giá trị tham số m

    Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm M(2;3; - 1),N( - 1;1;1),P(1;m - 1;2). Tìm giá trị của tham số m để tam giác MNP vuông tại N?

    Hướng dẫn:

    Ta có: \left\{ \begin{matrix}
\overrightarrow{MN} = ( - 3; - 2;2) \\
\overrightarrow{NP} = (2;m - 2;1) \\
\end{matrix} ight..

    Tam giác MNP vuông tại N \Leftrightarrow
\overrightarrow{MN}.\overrightarrow{NP} = 0 \Leftrightarrow - 6 - 2(m -
2) + 2 = 0 \Leftrightarrow m = 0

    Vậy đáp án cần tìm là m = 0.

  • Câu 16: Nhận biết
    Tìm tọa độ trọng tâm của tam giác

    Trong không gian Oxyz, cho tọa độ ba điểm A(5; - 2;0),B( -
2;3;0),C(0;2;3). Tọa độ trọng tâm G của tam giác ABC là:

    Hướng dẫn:

    Tọa độ trọng tâm G của tam giác ABC bằng:

    \left\{ \begin{matrix}x_{G} = \dfrac{x_{A} + x_{B} + x_{C}}{3} = \dfrac{5 + ( - 2) + 0}{3} = 1\\y_{G} = \dfrac{y_{A} + y_{B} + y_{C}}{3} = \dfrac{- 2 + 3 + 2}{3} = 1 \\z_{G} = \dfrac{z_{A} + z_{B} + z_{C}}{3} = \dfrac{0 + 0 + 3}{3} = 1 \\\end{matrix} ight.\  \Rightarrow G(1;1;1)

    Vậy trọng tâm G tìm được là G(1;1;1).

  • Câu 17: Thông hiểu
    Tìm tọa độ trọng tâm của tam giác

    Trong không gian với hệ trục tọa độ Oxyz, cho hình hộp ABCD.A'B'C'D'A(0;0;0),B(3;0;0),C(0;3;0),D'(0;3; -3). Tọa độ trọng tâm tam giác A'B'C

    Hướng dẫn:

    Hình vẽ minh họa

    Gọi I là trung điểm của đoạn BD’ suy ra I\left( \frac{3}{2};\frac{3}{2}; - \frac{3}{2}ight)

    Gọi G(a;b;c) là trọng tâm tam giác A'B'C

    Ta có: \overrightarrow{DI} =3\overrightarrow{IG} với \left\{\begin{matrix}\overrightarrow{DI} = \left( \frac{3}{2}; - \frac{3}{2}; - \frac{3}{2}ight) \\\overrightarrow{IG} = \left( a - \frac{3}{2};b - \frac{3}{2};c +\frac{3}{2} ight) \\\end{matrix} ight.

    Do đó:

    \left\{ \begin{matrix}\frac{3}{2} = 3\left( a - \frac{3}{2} ight) \\- \frac{3}{2} = 3\left( b - \frac{3}{2} ight) \\- \frac{3}{2} = 3\left( c + \frac{3}{2} ight) \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}a = 2 \\b = 1 \\c = - 2 \\\end{matrix} ight.\  \Rightarrow G(2;1; - 2)

    Vậy tọa độ trọng tâm tam giác cần tìm là (2;1; - 2)

  • Câu 18: Thông hiểu
    Chọn đẳng thức đúng

    Trong không gian hệ trục tọa độ Oxyz, cho các vectơ \overrightarrow{a} = (2;3;1),\overrightarrow{b} =
( - 1;5;2),\overrightarrow{c} = (4; - 1;3),\overrightarrow{x} = ( -
3;22;5). Đẳng thức nào dưới đây đúng?

    Hướng dẫn:

    Đặt \overrightarrow{x} =
m\overrightarrow{a} + n\overrightarrow{b} + p\overrightarrow{c};\left(
m;n;p\mathbb{\in R} ight)

    \Rightarrow ( - 3;22;5) = m(2;3;1) + n(
- 1;5;2) + p(4; - 1;3)

    \Rightarrow \left\{ \begin{matrix}
2m - m + 4p = - 3 \\
3m + 5m - p = 22 \\
m + 2m + 3p = 5 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
m = 2 \\
n = 3 \\
p = - 1 \\
\end{matrix} ight.

    Vậy \overrightarrow{x} =
2\overrightarrow{a} + 3\overrightarrow{b} - \overrightarrow{c} là đẳng thức đúng.

  • Câu 19: Thông hiểu
    Tìm tọa độ điểm D

    Trong không gian với hệ trục tọa độ Oxyz, cho các điểm A(3; - 4;0),B( - 1;1;3),C(3;1;0). Xác định tọa độ điểm D \in Ox sao cho AD = BC?

    Hướng dẫn:

    Ta có: D(x;0;0) \in Ox

    AD = BC \Leftrightarrow \sqrt{(x -
3)^{2} + 16} = 5

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = 0 \Rightarrow D(0;0;0) \\
x = 6 \Rightarrow D(6;0;0) \\
\end{matrix} ight.

    Vậy đáp án cần tìm là: D(0;0;0) hoặc D(6;0;0)

  • Câu 20: Nhận biết
    Tìm tọa độ trung điểm

    Trong không gian Oxyz, cho hai điểm A(1;1;3)B( - 1;2;3). Trung điểm của đoạn thẳng AB có tọa độ là:

    Hướng dẫn:

    Gọi M\left( x_{M};y_{M};z_{M}
ight) là trung điểm của đoạn thẳng AB, ta có:

    \left\{ \begin{matrix}x_{M} = \dfrac{x_{A} + x_{B}}{2} = 0 \\y_{M} = \dfrac{y_{A} + y_{B}}{2} = \dfrac{3}{2} \\z_{M} = \dfrac{z_{A} + z_{B}}{2} = 3 \\\end{matrix} ight.\  \Rightarrow M\left( 0;\dfrac{3}{2};3ight)

    Vậy tọa độ trung điểm của AB là: \left(
0;\frac{3}{2};3 ight).

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (40%):
    2/3
  • Thông hiểu (45%):
    2/3
  • Vận dụng (10%):
    2/3
  • Vận dụng cao (5%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo
🖼️

Toán 12 - Kết nối tri thức

Xem thêm