Xác định khoảng nghịch biến của hàm số
Tìm các khoảng nghịch biến của hàm số ?
Tập xác định
Ta có:
Do đó hàm số luôn nghịch biến trên từng khoảng xác định.
Mời các bạn học cùng thử sức với đề Đề thi học kì 1 môn Toán lớp 12 sách Kết nối tri thức nha!
Xác định khoảng nghịch biến của hàm số
Tìm các khoảng nghịch biến của hàm số ?
Tập xác định
Ta có:
Do đó hàm số luôn nghịch biến trên từng khoảng xác định.
Chọn đáp án đúng
Chọn hàm số có nhiều điểm cực trị nhất trong các hàm số sau?
Ta có:
Hàm số và
không có điểm cực trị (đạo hàm không đổi dấu).
Hàm số có
. Đạo hàm đổi dấu qua 1 điểm
nên hàm số
chỉ có một điểm cực trị.
Hàm số có
. Đạo hàm đổi dấu qua hai điểm
và
nên hàm số
có hai điểm cực trị.
Vậy hàm số có nhiều điểm cực trị nhất là: .
Tìm tổng số đường tiệm cận
Cho hàm số . Khi đó tổng số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số đã cho là:
Tập xác định
Ta có: suy ra đồ thị hàm số có hai tiệm cận ngang là
Lại có suy ra đồ thị hàm số có hai tiệm cận đứng là
Vậy đồ thị hàm số có tổng số đường tiệm cận đứng và đường tiệm cận ngang bằng 4.
Tìm hàm số tương ứng với đồ thị
Cho hình vẽ:
Đồ thị được cho trong hình vẽ là đồ thị của hàm số nào trong các hàm số sau?
Từ đồ thị ta thấy đây là hàm số bậc 4 trùng phương có hệ số
Mặt khác hàm số đạt cực tiểu tại và giá trị cực tiểu
nên hàm số cần tìm là
.
Tìm tọa độ điểm C
Trong không gian hệ trục tọa độ , cho lăng trụ tam giác
có tọa độ các điểm
. Xác định tọa độ điểm
?
Hình vẽ minh họa
Gọi tọa độ điểm
Vì là hình lăng trụ nên
Vậy tọa độ .
Phân tích vectơ
Cho hình lập phương . Hãy xác định góc giữa cặp vectơ
và
?
Hình vẽ minh họa
Vì (
là hình chữ nhật) nên
(
là hình vuông)
Chọn đáp án chính xác
Trong không gian với hệ trục tọa độ , cho hai vectơ
và
tạo với nhau một góc
. Biết rằng
, tính
?
Ta có:
Vậy đáp án đúng là: .
Xác định tọa độ vectơ
Trong không gian , cho hai điểm
. Tìm tọa độ điểm
thỏa mãn hệ thức
?
Ta có:
Chọn đáp án thích hợp
Bạn Lan thống kê lại chiều cao (đơn vị: cm) của các học sinh nữ lớp 12B và lớp 12C ở bảng sau.
|
Chiều cao(cm) |
[150; 155) |
[155; 160) |
[160; 165) |
[165; 170) |
[175; 180) |
|
Số học sinh nữ lớp 12B |
0 |
5 |
13 |
7 |
0 |
|
Số học sinh nữ lớp 12C |
2 |
10 |
9 |
3 |
1 |
Chọn đáp án có khẳng định đúng.
Ta có
Khoảng biến thiên của mẫu số liệu ghép nhóm về chiều cao của các bạn nữ lớp 12B là 170 - 155 = 15
Khoảng biến thiên của mẫu số liệu ghép nhóm về chiều cao của các bạn nữ lớp 12C là 175 – 150 = 25
Vì 15 < 25 nên mẫu số liệu ghép nhóm về chiều cao của các bạn nữ lớp 12B có độ phân tán ít hơn so với mẫu số liệu ghép nhóm về chiều cao của các bạn nữ lớp 12C, hay nói cách khác chiều cao của các bạn nữ lớp 12B đồng đều hơn chiều cao của các bạn nữ lớp 12C.
Tìm số trung bình
Thống kê mức lương (đơn vị: triệu đồng) của nhân viên hai phân xưởng A và B được ghi lại trong bảng sau:
|
Mức lương |
[5; 6) |
[6; 7) |
[7; 8) |
[8; 9) |
[9; 10) |
|
Phân xưởng A |
4 |
5 |
5 |
4 |
2 |
|
Phân xưởng B |
3 |
6 |
5 |
5 |
1 |
Số trung bình của mẫu số liệu ghép nhóm của đối tương A và đối tượng B lần lượt là:
Ta có:
|
Mức lương |
[5; 6) |
[6; 7) |
[7; 8) |
[8; 9) |
[9; 10) |
|
|
Giá trị đại diện |
5,5 |
6,5 |
7,5 |
8,5 |
9,5 |
|
|
Phân xưởng A |
4 |
5 |
5 |
4 |
2 |
N = 20 |
|
Phân xưởng B |
3 |
6 |
5 |
5 |
1 |
N’ = 20 |
Số trung bình của mẫu số liệu ghép nhóm của đối tượng A là:
Số trung bình của mẫu số liệu ghép nhóm của đối tượng B là:
Chọn giá trị nhỏ nhất của hàm số trên đoạn
Giá trị nhỏ nhất của hàm số trên đoạn
là:
Ta có:
Lại có:
Xác định nhóm chứa tứ phân vị thứ ba
Một vườn thú ghi lại tuổi thọ (đơn vị: năm) của 20 con hổ và thu được kết quả như sau:
|
Tuổi thọ |
[14;15) |
[15;16) |
[16;17) |
[17;18) |
[18;19) |
|
Số con |
1 |
3 |
8 |
6 |
2 |
Nhóm chứa tứ phân vị thứ ba của mẫu số liệu ghép nhóm đã cho là:
Ta có: và
nên tứ phân vị thứ ba của mẫu số liệu thuộc nhóm [17;18).
Xác định tính đúng sai của từng phương án
Cho hàm số
có đồ thị như hình vẽ như sau:

Xét tính đúng sai của các khẳng định sau:
a) Hàm số đã cho nghịch biến trên khoảng
. Đúng||Sai
b) Hàm số đã cho đồng biến trên khoảng
. Sai|| Đúng
c) Hàm số đã cho đồng biến trên khoảng
. Đúng||Sai
d) Hàm số đạt cực tiểu tại
.Sai|| Đúng
Cho hàm số
có đồ thị như hình vẽ như sau:

Xét tính đúng sai của các khẳng định sau:
a) Hàm số đã cho nghịch biến trên khoảng
. Đúng||Sai
b) Hàm số đã cho đồng biến trên khoảng
. Sai|| Đúng
c) Hàm số đã cho đồng biến trên khoảng
. Đúng||Sai
d) Hàm số đạt cực tiểu tại
.Sai|| Đúng
Ta có thể từ đồ thị thiết lập lại bảng biến thiên như sau:
a) Hàm số nghịch biến trên khoảng .
b) Hàm số đồng biến trên khoảng nên khẳng định đồng biến trên khoảng
là sai.
c) Hàm số đồng biến trên khoảng nên nên hàm số đồng biến trên khoảng
.
d) Hàm số đạt cực tiểu tại (chú ý:
gọi là giá trị cực tiểu).
Xác định tính đúng sai của từng phương án
Độ giảm huyết áp của một bệnh nhân được cho bởi công thức
trong đó
là liều lượng thuốc được tiêm cho bệnh nhân (
được tính bằng miligam,
).
a) Độ giảm huyết áp của một bệnh nhân là
. Đúng||Sai
b) Đạo hàm của
là
. Sai||Đúng
c) Phương trình
có nghiệm duy nhất. Sai||Đúng
d) Liều lượng thuốc cần tiêm cho bệnh nhân để huyết áp giảm nhiều nhất là
. Đúng||Sai
Độ giảm huyết áp của một bệnh nhân được cho bởi công thức
trong đó
là liều lượng thuốc được tiêm cho bệnh nhân (
được tính bằng miligam,
).
a) Độ giảm huyết áp của một bệnh nhân là
. Đúng||Sai
b) Đạo hàm của
là
. Sai||Đúng
c) Phương trình
có nghiệm duy nhất. Sai||Đúng
d) Liều lượng thuốc cần tiêm cho bệnh nhân để huyết áp giảm nhiều nhất là
. Đúng||Sai
a) Đúng. Độ giảm huyết áp của một bệnh nhân được viết lại là.
b) Sai. Đạo hàm của là
.
c) Sai. Xét phương trình
d) Đúng. Ta có bảng biến thiên:
Vậy liều lượng thuốc cần tiêm cho bệnh nhân để huyết áp giảm nhiều nhất là 20 mg.
Xác định tính đúng sai của từng phương án
Thống kê độ tuổi khách hàng đến xem phim trong một phòng của rạp chiếu phim sau 1 giờ được ghi lại trong bảng sau:
|
Độ tuổi |
[10; 20) |
[20; 30) |
[30; 40) |
[40; 50) |
[50; 60) |
|
Số khách hàng |
6 |
12 |
16 |
7 |
2 |
Xét tính đúng sai của các khẳng định sau:
a) Giá trị đại diện nhóm [50; 60) là 55. Đúng||Sai
b) Độ tuổi được dự báo là ít xem phim đó nhất là thuộc nhóm [50; 60). Đúng||Sai
c) Nhóm chứa mốt là nửa khoảng [30; 40). Đúng||Sai
d) Độ tuổi được dự báo là thích xem phim đó nhiều nhất là 31 tuổi. Sai||Đúng
Thống kê độ tuổi khách hàng đến xem phim trong một phòng của rạp chiếu phim sau 1 giờ được ghi lại trong bảng sau:
|
Độ tuổi |
[10; 20) |
[20; 30) |
[30; 40) |
[40; 50) |
[50; 60) |
|
Số khách hàng |
6 |
12 |
16 |
7 |
2 |
Xét tính đúng sai của các khẳng định sau:
a) Giá trị đại diện nhóm [50; 60) là 55. Đúng||Sai
b) Độ tuổi được dự báo là ít xem phim đó nhất là thuộc nhóm [50; 60). Đúng||Sai
c) Nhóm chứa mốt là nửa khoảng [30; 40). Đúng||Sai
d) Độ tuổi được dự báo là thích xem phim đó nhiều nhất là 31 tuổi. Sai||Đúng
a) Đúng: Giá trị đại diện nhóm [50;60) là 55
b) Đúng: Độ tuổi được dự báo là ít xem phim đó nhất là thuộc nhóm [50;60) .
c) Đúng: Nhóm chứa mốt là nửa khoảng [30;40).
d) Sai: Khi đó
Ta có mốt là:
Vậy độ tuổi được dự báo là thích xem phim đó nhiều nhất là 33 tuổi.
Xác định tính đúng sai của từng phương án
Trong không gian với hệ trục tọa độ
, cho
, với
là hai vectơ đơn vị trên hai trục tọa độ
, hai điểm
.
a)
. Đúng||Sai
b) Ba điểm
thẳng hàng. Sai||Đúng
c) Điểm
là điểm đối xứng của với
qua
. Khi đó
. Đúng||Sai
d) Điểm
trên mặt phẳng
sao cho
đạt giá trị nhỏ nhất. Khi đó
. Đúng||Sai
Trong không gian với hệ trục tọa độ
, cho
, với
là hai vectơ đơn vị trên hai trục tọa độ
, hai điểm
.
a)
. Đúng||Sai
b) Ba điểm
thẳng hàng. Sai||Đúng
c) Điểm
là điểm đối xứng của với
qua
. Khi đó
. Đúng||Sai
d) Điểm
trên mặt phẳng
sao cho
đạt giá trị nhỏ nhất. Khi đó
. Đúng||Sai
a) Đúng: Vì nên
.
b) Sai: Ta có .
Vì nên
không cùng phương suy ra
không thẳng hàng.
c) Đúng
Vì là điểm đối xứng với
qua
nên
là trung điểm của
.
Ta có suy ra
.
Do đó . Vậy
.
d) Đúng. Gọi là điểm thỏa mãn
.
Ta có:
Do không thay đổi nên
nhỏ nhất khi
nhỏ nhất hay
là hình chiếu của điểm
trên mặt phẳng
.
Do đó suy ra
.
Vậy .
Ghi đáp án vào ô trống
Cho hàm số
với
là tham số. Hỏi có tất cả bao nhiêu giá trị nguyên của tham số
để hàm số đã cho đồng biến trên
?
Cho hàm số
với
là tham số. Hỏi có tất cả bao nhiêu giá trị nguyên của tham số
để hàm số đã cho đồng biến trên
?
Ghi đáp án vào ô trống
Biết rằng đồ thị hàm số
có giá trị tuyệt đối của hoành độ hai điểm cực trị là độ dài hai cạnh của tam giác vuông có cạnh huyền bằng
. Hỏi có bao nhiêu giá trị của tham số
thỏa mãn yêu cầu?
Biết rằng đồ thị hàm số
có giá trị tuyệt đối của hoành độ hai điểm cực trị là độ dài hai cạnh của tam giác vuông có cạnh huyền bằng
. Hỏi có bao nhiêu giá trị của tham số
thỏa mãn yêu cầu?
Ghi đáp án vào ô trống
Cho hàm số
liên tục trên
và có đồ thị của đạo hàm
như hình vẽ sau:

Trên đoạn
, hàm số
đạt giá trị nhỏ nhất tại điểm nào?
Cho hàm số
liên tục trên
và có đồ thị của đạo hàm
như hình vẽ sau:

Trên đoạn
, hàm số
đạt giá trị nhỏ nhất tại điểm nào?
Ghi đáp án vào ô trống
Cho hình lập phương
; đáy là hình vuông cạnh
. Trên cạnh
lần lượt lấy các điểm
sao cho
. Tính số đo góc giữa hai đường thẳng
và
.
Cho hình lập phương
; đáy là hình vuông cạnh
. Trên cạnh
lần lượt lấy các điểm
sao cho
. Tính số đo góc giữa hai đường thẳng
và
.
Ghi đáp án vào ô trống
Bảng dưới đây thống kê cự li ném tạ của một vận động viên.
Cự li | |||||
Tần số | 13 | 45 | 24 | 12 | 6 |
Phương sai của mẫu số liệu ghép nhóm trên là một số thập phân xấp xỉ có dạng
. Tính
.
Bảng dưới đây thống kê cự li ném tạ của một vận động viên.
Cự li | |||||
Tần số | 13 | 45 | 24 | 12 | 6 |
Phương sai của mẫu số liệu ghép nhóm trên là một số thập phân xấp xỉ có dạng
. Tính
.
Ghi đáp án vào ô trống
Cho hàm số
với
là tham số. Giả sử
là tập hợp tất cả các giá trị nguyên của
sao cho đồ thị của hàm số có
điểm cực trị. Tính tổng tất cả các phần tử của tập hợp
?
Cho hàm số
với
là tham số. Giả sử
là tập hợp tất cả các giá trị nguyên của
sao cho đồ thị của hàm số có
điểm cực trị. Tính tổng tất cả các phần tử của tập hợp
?
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: