Tìm giá trị nhỏ nhất của hàm số trên khoảng
Tính giá trị nhỏ nhất của hàm số
trên khoảng
.
Cách 1:
Dấu xảy ra khi
.
Vậy
Cách 2:
Xét hàm số trên khoảng
Ta có
Cho
Cùng nhau thử sức với bài kiểm tra 15 phút Toán 12 Kết nối tri thức Chương 1 Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số nhé!
Tìm giá trị nhỏ nhất của hàm số trên khoảng
Tính giá trị nhỏ nhất của hàm số
trên khoảng
.
Cách 1:
Dấu xảy ra khi
.
Vậy
Cách 2:
Xét hàm số trên khoảng
Ta có
Cho
Tìm giá trị cực đại và giá trị cực tiểu của hàmsố
Cho hàm số
có bảng biến thiên như sau:

Tìm giá trị cực đại và giá trị cực tiểu của hàm số đã cho.
Từ bảng biến thiên ta có: .
Tìm tiệm cận của đồ thị hàm số
Số đường tiệm cận của đồ thị hàm số
là:
Tập xác định
suy ra
là tiệm cận ngang.
suy ra
là tiệm cận ngang.
Vậy không là tiệm cận đứng của đồ thị hàm số đã cho.
suy ra
là tiệm cận đứng của đồ thị hàm số đã cho
Vậy đồ thị hàm số đã cho có 2 tiệm cận ngang và 1 tiệm cận đứng.
Xác định hàm số y = f(x)
Đường cong trong hình vẽ dưới đây là đồ thị của hàm số nào dưới đây?
![]() |
Dựa vào đồ thị hàm số ta thấy
=> Hệ số a > 0
=> Loại đáp án B và đáp án D
Mặt khác hàm số có ba điểm cực trị
=> Loại đáp án C
Chọn khẳng định đúng
Cho hàm số
xác định và liên tục trên
và có đồ thị của hàm số
là đường cong như hình vẽ sau:

Chọn khẳng định đúng?
Từ đồ thị hàm số ta có bảng biến thiên như sau:
Từ bảng biến thiên suy ra khẳng định đúng là: “Hàm số nghịch biến trên khoảng
”.
Tìm khoảng đồng biến của hàm số
Cho hàm số
xác định trên
và có bảng biến thiên như hình bên dưới

Hàm số
đồng biến trên khoảng nào dưới đây?
Dựa vào bảng biến thiên, ta thấy hàm số đồng biến trên .
Ghi đáp án đúng vào ô trống
Cho hàm số
có đạo hàm trên
và số
có đồ thị như hình vẽ sau. Tìm số điểm cực tiểu của hàm số
.

Đáp án: 2
Cho hàm số
có đạo hàm trên
và số
có đồ thị như hình vẽ sau. Tìm số điểm cực tiểu của hàm số
.

Đáp án: 2
Ta có
Ta có bảng biến thiên:
Từ bảng biến thiên ta có hàm số đạt cực tiểu tại
và
. Do đó hàm số
có
điểm cực tiểu.
Tính giá trị nhỏ nhất của hàm số
Cho hàm số
, đồ thị của hàm số
là đường cong như hình vẽ:

Giá trị nhỏ nhất của hàm số
trên đoạn
bằng:
Ta có:
trong đó các nghiệm
là nghiệm đơn và
là nghiệm kép.
nên ta có bảng biến thiên của hàm
như sau:
Vậy .
Chọn mệnh đề đúng
Cho hàm số
có bảng biến thiên như hình dưới đây. Mệnh đề nào sau đây là đúng?

Từ bảng biến thiên ta thấy hàm số đã cho nghịch biến trên khoảng .
Ghi đáp án vào ô trống
Cho hàm số
. Hàm số
có đồ thị như hình vẽ:

Gọi
là tập hợp tất cả các giá trị nguyên dương của tham số
sao cho hàm số
đồng biến trên khoảng
. Hỏi tập hợp
có tất cả bao nhiêu phần tử?
Cho hàm số
. Hàm số
có đồ thị như hình vẽ:

Gọi
là tập hợp tất cả các giá trị nguyên dương của tham số
sao cho hàm số
đồng biến trên khoảng
. Hỏi tập hợp
có tất cả bao nhiêu phần tử?
Tìm khoảng chứa tham số m theo yêu cầu
Biết đường thẳng
cắt đồ thị hàm số
tại ba điểm phân biệt sao cho một giao điểm cách đều hai giao điểm còn lại. Khi có
thuộc khoảng nào sau đây?
Phương trình hoành độ giao điểm là
Xét hàm số
Đồ thị có điểm uốn là
Để đường thẳng cắt đồ thị hàm số
tại ba điểm phân biệt sao cho một giao điểm cách đều hai giao điểm còn lại
Tìm tiệm cận ngang
Đồ thị hàm số
có đường tiệm cận ngang là
Ta có:
Suy ra tiệm cận ngang là .
Ghi đáp án vào ô trống
Hai thành phố A và B cách nhau một con sông. Người ta xây dựng một cây cầu EF bắc qua sông biết rằng thành phố A cách con sông một khoảng là 5km và thành phố B cách con sông một khoảng là 7km (hình vẽ), biết HE + KF = 24km và độ dài EF không đổi. Hỏi cần xây cây cầu cách thành phố B là bao nhiêu km để đường đi từ thành phố A đến thành phố B là ngắn nhất (đi theo đường AEFB) ? (kết quả làm tròn đến hàng đơn vị)

Đáp án: 16 km
Hai thành phố A và B cách nhau một con sông. Người ta xây dựng một cây cầu EF bắc qua sông biết rằng thành phố A cách con sông một khoảng là 5km và thành phố B cách con sông một khoảng là 7km (hình vẽ), biết HE + KF = 24km và độ dài EF không đổi. Hỏi cần xây cây cầu cách thành phố B là bao nhiêu km để đường đi từ thành phố A đến thành phố B là ngắn nhất (đi theo đường AEFB) ? (kết quả làm tròn đến hàng đơn vị)

Đáp án: 16 km
Đặt , với
Ta có:
Nhận định ngắn nhất khi
nhỏ nhất ( vì
không đổi).
Xét hàm số
.
Cho
Bảng biến thiên
Vậy
Khi đó
Chọn phương án đúng
Hình vẽ sau đây là đồ thị của một trong bốn hàm số cho ở các đáp án
. Hỏi đó là hàm số nào?

Dựa vào đồ thị, ta có , loại phương án
.
Xét phương án có
, hàm số không có cực tri, loại phương án
.
Xét phương án có
và
đổi dấu khi đi qua các điểm
nên hàm số đạt cực tri tại
và
, loại phương án
.
Vậy phương án đúng là .
Chọn đáp án đúng
Cho hàm số
có đồ thị như hình vẽ. Giá trị lớn nhất của hàm số
trên đoạn
là:

Dựa vào đồ thị ta thấy trên đoạn hàm số
có giá trị lớn nhất bằng
khi
Suy ra
Tìm giá trị nhỏ nhất của hàm số trên đoạn
Cho hàm số
liên tục trên đoạn
có đồ thị như hình vẽ:

Tìm giá trị nhỏ nhất của hàm số trên đoạn
?
Trên đoạn ta có:
và
Vậy .
Định m để hàm số nghịch biến trên R
Cho hàm số
. Có bao nhiêu giá trị nguyên của tham số m để hàm số nghịch biến trên
?
Ta có:
Để hàm số đã cho nghịch biến trên
Do nên có tất cả 5 giá trị của m thỏa mãn điều kiện.
Tính số điểm cực trị của hàm số
Cho hàm số y = f(x). Biết hàm số y = f’(x) có đồ thị như hình vẽ bên dưới. Số điểm cực trị của hàm số
là:

Ta có:
Do

Vậy hàm số có ba điểm cực trị.
Chọn mệnh đề đúng
Cho hàm số
. Mệnh đề nào sau đây là đúng?
TXĐ: . Ta có:
là TCN;
là TCĐ;
là TCĐ.
Vậy hàm số có hai tiệm cận đứng và một tiệm cận ngang.
Chọn đáp án đúng
Số điểm cực trị của hàm số
là:
Tập xác định
Ta có:
Ta có bảng xét dấu:
Vậy hàm số có hai điểm cực trị.
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: