Tìm tọa độ vecto
Trong không gian
, cho
và
. Vectơ
có tọa độ là
Ta có:
và
khi đó:
Hãy cùng thử sức kiểm tra đánh giá các kiến thức tổng quan với bài kiểm tra phút Chương 2: Vectơ và hệ trục tọa độ trong không gian Toán 12 sách Kết nối tri thức các em nhé!
Tìm tọa độ vecto
Trong không gian
, cho
và
. Vectơ
có tọa độ là
Ta có:
và
khi đó:
Tính giá trị của biểu thức
Trong không gian
, cho
, điểm
và
điểm
sao cho
là trọng tâm tam giác
. Khi đó
bằng
Ta có:
Tính góc giữa hai đường thẳng
Cho hình hộp
có các cạnh đều bằng
và các góc
. Tính góc giữa các cặp đường thẳng
với
;
với
.
Hình vẽ minh họa

Đặt
Ta có nên
.
Để ý rằng ,
.
Từ đó
Ta có , từ đó tính được:
.
Tìm tích vô hướng hai vectơ
Cho hình lập phương
có cạnh bằng
. Tích vô hướng của hai vectơ
và
có giá trị bằng:
Ta có:
Xác định tính đúng sai của từng phương án
Cho tứ diện đều
cạnh
.
là điểm trên đoạn
sao cho
. Xét tính đúng sai của các khẳng định sau:
a) Có 6 vectơ (khác vectơ
) có điểm đầu và điểm cuối được tạo thành từ các đỉnh của tứ diện. Sai||Đúng
b) Góc giữa hai vectơ
và
bằng
. Sai||Đúng
c) Nếu
thì
. Sai||Đúng
d) Tích vô hướng
. Đúng||Sai
Cho tứ diện đều
cạnh
.
là điểm trên đoạn
sao cho
. Xét tính đúng sai của các khẳng định sau:
a) Có 6 vectơ (khác vectơ
) có điểm đầu và điểm cuối được tạo thành từ các đỉnh của tứ diện. Sai||Đúng
b) Góc giữa hai vectơ
và
bằng
. Sai||Đúng
c) Nếu
thì
. Sai||Đúng
d) Tích vô hướng
. Đúng||Sai
Hình vẽ minh họa
a) Sai: Các vectơ (khác vectơ ) có điểm đầu và điểm cuối được tạo thành từ các đỉnh của tứ diện là:
.
Do đó có 12 vectơ thỏa mãn yêu cầu.
b) Sai:
c) Sai: .
Do đó suy ra
.
d) Đúng: Ta có:
Suy ra
Tìm tọa độ điểm A’
Trong không gian hệ trục tọa độ
, cho lăng trụ tam giác
có tọa độ các điểm
. Xác định tọa độ điểm
?
Hình vẽ minh họa
Gọi tọa độ điểm
Vì là hình lăng trụ nên
Vậy tọa độ
Chọn mệnh đề đúng
Cho tứ diện
. Gọi
là trọng tâm tam giác
. Điểm
xác định bởi công thức
. Mệnh đề nào sau đây đúng?
Do G là trọng tâm tam giác BCD nên
Vậy mệnh đề đúng là “ thuộc tia
và
”.
Xác định tọa độ điểm C’
Trong không gian hệ trục tọa độ
, cho hình hộp
có tọa độ các điểm
. Tìm tọa độ điểm
?
Theo quy tắc hình hộp ta có:
Lại có
mà
Suy ra
Xác định tọa độ hiệu hai vectơ
Trong không gian
, cho hai vectơ
. Vectơ
có tọa độ là:
Ta có:
Vậy đáp án cần tìm là .
Ghi đáp án vào chỗ trống
Khi chuyển động trong không gian, máy bay luôn chịu tác động của 4 lực chính: lực đẩy của động cơ, lực cản của không khí, trọng lực và lực nâng khí động học.

Lực cản của không khí ngược hướng với lực đẩy của động cơ và có độ lớn tỉ lệ thuận với bình phương vận tốc máy bay. Một chiếc máy bay tăng vận tốc từ
lên
, trong quá trình tăng tốc máy bay giữ nguyên hướng bay. Lực cản của không khí khi máy bay đạt vận tốc
và
lần lượt biểu diễn bởi hai vectơ
và
với
. Tính giá trị của
(Làm tròn kết quả đến chữ số thập phân thứ hai).
Khi chuyển động trong không gian, máy bay luôn chịu tác động của 4 lực chính: lực đẩy của động cơ, lực cản của không khí, trọng lực và lực nâng khí động học.

Lực cản của không khí ngược hướng với lực đẩy của động cơ và có độ lớn tỉ lệ thuận với bình phương vận tốc máy bay. Một chiếc máy bay tăng vận tốc từ
lên
, trong quá trình tăng tốc máy bay giữ nguyên hướng bay. Lực cản của không khí khi máy bay đạt vận tốc
và
lần lượt biểu diễn bởi hai vectơ
và
với
. Tính giá trị của
(Làm tròn kết quả đến chữ số thập phân thứ hai).
Chọn đáp án đúng
Trong không gian hệ trục tọa độ
, điểm nào dưới đây thuộc trục
?
Điểm . Suy ra trong bốn điểm đã cho điểm
.
Tính tích vô hướng
Cho hai véc tơ
,
. Khi đó, tích vô hướng
bằng
Ta có:
.
Chọn khẳng định đúng
Cho tứ diện
. Gọi
là các điểm thỏa nãm
còn
là các điểm xác định bởi
. Chứng minh ba điểm
thẳng hàng. Khẳng định nào sau đây là đúng?
Hình vẽ minh họa

Ta có
Từ ta có
Lấy theo vế ta có
Tương tự
Mặt khác nên
Vậy thẳng hàng.
Chọn kết quả chính xác
Cho hai vectơ
đều khác
. Khi đó
bằng
Ta có .
Tìm tọa độ vecto
Trong không gian
, cho điểm
thỏa
và
. Tọa độ của véctơ
là
Ta có:
Tìm tọa độ vectơ
Trong không gian
, cho hai điểm
và
. Vectơ
có tọa độ là:
Ta có:
Vậy đáp án đúng là: .
Tính giá trị biểu thức
Trong không gian
, cho điểm
thỏa mãn
. Khi điểm
thì giá trị
bằng?
Ta có:
Vậy
Xác định tọa độ điểm M
Trong không gian
điểm
thuộc trục
và cách đều hai điểm
và
là
Ta có:
cách đều hai điểm
khi
Chọn đáp án đúng
Cho hình lập phương
. Tính
.
Hình vẽ minh họa
Ta có:
Ghi đáp án vào ô trống
Trong không gian với hệ trục tọa độ
, cho các điểm
. Có tất cả bao nhiêu điểm
trong không gian thỏa mãn
và
?
Trong không gian với hệ trục tọa độ
, cho các điểm
. Có tất cả bao nhiêu điểm
trong không gian thỏa mãn
và
?
Tìm tọa độ điểm C’
Trong không gian hệ trục tọa độ
, cho hình hộp
có tọa độ các điểm
. Giả sử điểm
. Tính giá trị biểu thức
?
Gọi điểm
Ta có:
Mà
Suy ra suy ra
Vậy
Tìm tọa độ hình chiếu của M trên Ox
Trong không gian
, cho điểm
. Tìm tọa độ hình chiếu M lên trục
.
Tọa độ hình chiếu của điểm M trên trục Ox là
Tính giá trị biểu thức
Trong không gian với hệ trục tọa độ
, cho hai điểm
. Biết
là tâm đường tròn nội tiếp tam giác
. Tính giá trị biểu thức
?
Hình vẽ minh họa
Ta có:
Gọi D là chân đường phân giác kẻ từ O ta có:
. Do đó
Ta có:
Chọn khẳng định đúng
Cho tứ diện
. Gọi
là trung điểm của
và
. Chọn khẳng định đúng?
Ta có : và
nên .
Vậy
Xác định tọa độ điểm Q
Trong không gian tọa độ
cho ba điểm
. Tìm tọa độ điểm
để tứ giác
là hình bình hành
Minh họa bằng hình vẽ sau:
Ta có .
là hình bình hành
.
Vậy .
Tìm tọa độ vectơ
Trong không gian với hệ trục tọa độ
cho vectơ
. Khi đó tọa độ của
là.
Do .
Chọn kết luận đúng
Trong không gian cho hình hộp
. Khi đó
bằng:
Theo quy tắc hình hộp ta có .
Tìm tọa độ điểm M thỏa mãn yêu cầu
Trong không gian hệ trục tọa độ
, cho ba điểm
. Tìm điểm
sao cho
đạt giá trị nhỏ nhất?
Vì suy ra
. Ta có:
Theo bài ra:
Vậy nhỏ nhất bằng
khi
. Hay
Phân tích vectơ
Cho hình lập phương
. Hãy phân tích vectơ
theo các vectơ
?
Hình vẽ minh họa
Theo quy tắc hình bình hành ta có:
Tính góc giữa hai đường thẳng
Cho tứ diện đều
. Số đo giữa hai đường thẳng
và
bằng:
Hình vẽ minh họa
Gọi M là trung điểm của CD
Ta có:
Suu ra nên số đo góc giữa hai đường thẳng
bằng
.
Chọn phương án thíchhợp
Trong không gian với hệ tọa độ
, cho
,
,
. Tìm tọa độ điểm
, biết
vuông góc với
, mặt cầu ngoại tiếp tứ diện
có bán kính bằng
và
có cao độ âm.
Hình vẽ minh họa
Ta có ,
Do vuông góc với nên một VTCP của đường thẳng
được chọn là
Đường thẳng qua
và có VTCP
nên có phương trình tham số là:
.
Do vuông tại
.
Gọi là trung điểm
khi đó
là tâm đường tròn ngoại tiếp tam giác
. Gọi
là đường thẳng qua
và song song với
nên
, suy ra
là trục đường tròn ngoại tiếp
.
Trong mặt phẳng vẽ đường trung trực của
cắt
tại
và cắt
tại
.
Mặt phẳng qua
và có một VTPT
nên có phương trình tổng quát là:
.
Ta có .
Do nên
, mà
, mà cao độ của
âm nên
thỏa mãn.
Chọn đáp án đúng
Trong không gian
, cho tọa độ ba điểm
. Tính cosin góc
?
Ta có: .
Tính tích vô hướng hai vectơ
Cho hình lập phương
có cạnh bằng
. Tính tích vô hướng
?
Hình vẽ minh họa
Ta có: nên
Suy ra
Xác định mệnh đề không chính xác
Cho tứ diện đều
. Mệnh đề nào sau đây sai?
Vì tứ diện là tứ diện đều nên có các cặp cạnh đối vuông góc
Suy ra
Vậy mệnh đề chưa chính xác là: .
Tìm tọa độ vectơ
Trong không gian với hệ trục tọa độ
, cho ba vectơ
. Tọa độ vectơ
là:
Ta có:
Vậy
Ghi đáp án vào ô trống
Trong không gian với hệ trục tọa độ
, cho ba điểm
,
và
. Điểm
sao cho tứ giác
là hình bình hành. Tính
?
Đáp án: 3
Trong không gian với hệ trục tọa độ
, cho ba điểm
,
và
. Điểm
sao cho tứ giác
là hình bình hành. Tính
?
Đáp án: 3
Gọi
Ta có:
là hình bình hành nên
.
Vậy .
Xác định tọa độ điểm M
Trong không gian với hệ tọa độ
, cho hai điểm
và
. Điểm
thỏa mãn
có tọa độ là:
Từ giả thiết nên ba điểm
thẳng hàng và
nằm cùng phía so với điểm
do
dương.
Lại có
.
Vậy B là trung điểm của MA.
Khi đó ta đươc tọa độ điểm .
Tìm ba điểm thẳng hàng trong 4 điểm đã cho
Trong không gian
, cho bốn điểm
,
,
và
. Trong đó có ba điểm thẳng hàng là
Ta có: ,
Mà , nên hai vecto
,
cùng phương, hay ba điểm
thẳng hàng.
Nhận xét: Có thể vẽ phát họa lên hệ tọa độ để nhìn nhận dễ dàng hơn.
Định các giá trị của x và y
Trong không gian với hệ trục tọa độ
, cho điểm
. Với giá trị nào của
thì ba điểm đã cho thẳng hàng?
Ta có:
Vì ba điểm A; B; M thẳng hàng nên cùng phương
Vậy đáp án cần tìm là .
Ghi đáp án vào ô trống
Trong không gian với hệ trục tọa độ
, cho tam giác
có tọa độ các đỉnh
. Gọi
là chân đường phân giác trong của góc
trong tam giác
. Tính giá trị biểu thức
?
Trong không gian với hệ trục tọa độ
, cho tam giác
có tọa độ các đỉnh
. Gọi
là chân đường phân giác trong của góc
trong tam giác
. Tính giá trị biểu thức
?
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: