Tìm tọa độ vecto
Trong không gian
, cho điểm
thỏa
và
. Tọa độ của véctơ
là
Ta có:
Hãy cùng thử sức kiểm tra đánh giá các kiến thức tổng quan với bài kiểm tra phút Chương 2: Vectơ và hệ trục tọa độ trong không gian Toán 12 sách Kết nối tri thức các em nhé!
Tìm tọa độ vecto
Trong không gian
, cho điểm
thỏa
và
. Tọa độ của véctơ
là
Ta có:
Tìm tọa độ điểm P
Trong không gian
, cho hai điểm
,
, tọa độ điểm
thuộc trục
sao cho
thẳng hàng là
Vì điểm thuộc trục
nên
có tọa độ
.
Ta có ;
thẳng hàng
cùng phương
Vậy điểm .
Phân tích vectơ
Cho hình lập phương
. Hãy phân tích vectơ
theo các vectơ
?
Hình vẽ minh họa
Ta có: (Theo quy tắc hình bình hành).
Ghi đáp án vào ô trống
Trong không gian chọn hệ trục tọa độ cho trước, đơn vị đo lấy kilômét, ra đa phát hiện một máy bay chiến đấu của Mỹ di chuyển với vận tốc và hướng không đổi từ điểm
đến điểm
trong 30 phút. Nếu máy bay tiếp tục giữ nguyên vận tốc và hướng bay thì tọa độ của máy bay sau 10 phút tiếp theo bằng
. Xác định tọa độ vị trí điểm
. (Kết quả ghi dưới dạng số thập phân nếu có)

Đáp án: N(1300; 750; 15,5)
Trong không gian chọn hệ trục tọa độ cho trước, đơn vị đo lấy kilômét, ra đa phát hiện một máy bay chiến đấu của Mỹ di chuyển với vận tốc và hướng không đổi từ điểm
đến điểm
trong 30 phút. Nếu máy bay tiếp tục giữ nguyên vận tốc và hướng bay thì tọa độ của máy bay sau 10 phút tiếp theo bằng
. Xác định tọa độ vị trí điểm
. (Kết quả ghi dưới dạng số thập phân nếu có)

Đáp án: N(1300; 750; 15,5)
Gọi là tọa độ của máy bay sau 10 phút tiếp theo.
.
.
Vì máy bay giữ nguyên hướng bay nên và
cùng hướng.
Do máy bay tiếp tục giữ nguyên vận tốc và thời gian bay từ đến
gấp 4 lần thời gian bay từ
đến
nên
.
Suy ra:
Tính góc giữa hai vectơ
Cho hình lập phương
. Hãy xác định góc giữa cặp vectơ
và
?
Hình vẽ minh họa
Vì (
là hình vuông) nên
Ghi đáp án đúng vào ô trống
Một kiến trúc sư muốn xây dựng 1 tòa nhà biểu tượng độc lạ cho thành phố. Trên bản thiết kế tòa nhà có hình dạng là một khối lăng trụ tam giác đều
, có cạnh bên bằng cạnh đáy và dài
mét. Kiến trúc sư muốn xây dựng một cây cầu
bắc xuyên tòa nhà (điểm đầu thuộc cạnh
, điểm cuối thuộc cạnh
) và cây cầu này sẽ được dát vàng với đơn giá 5 tỷ đồng trên 1 mét dài. Vì vậy để đáp ứng bài toán kinh tế, kiến trúc sư phải chọn vị trí cây cầu sao cho
ngắn nhất (như hình vẽ).

Khi đó giá xây cây cầu này hết bao nhiêu tỷ đồng? (Kết quả làm tròn đến hàng đơn vị).
Đáp án: 72
Một kiến trúc sư muốn xây dựng 1 tòa nhà biểu tượng độc lạ cho thành phố. Trên bản thiết kế tòa nhà có hình dạng là một khối lăng trụ tam giác đều
, có cạnh bên bằng cạnh đáy và dài
mét. Kiến trúc sư muốn xây dựng một cây cầu
bắc xuyên tòa nhà (điểm đầu thuộc cạnh
, điểm cuối thuộc cạnh
) và cây cầu này sẽ được dát vàng với đơn giá 5 tỷ đồng trên 1 mét dài. Vì vậy để đáp ứng bài toán kinh tế, kiến trúc sư phải chọn vị trí cây cầu sao cho
ngắn nhất (như hình vẽ).

Khi đó giá xây cây cầu này hết bao nhiêu tỷ đồng? (Kết quả làm tròn đến hàng đơn vị).
Đáp án: 72
Để độ dài cây cầu ngắn nhất thì
là đoạn vuông góc chung của hai đường thẳng
và
.
Đặt hệ trục Oxyz như hình vẽ:
Khi đó ,
Do đó
Số tiền cần làm cây cầu ngắn nhất là (tỷ đồng)
Tìm tọa độ điểm A’
Trong không gian
, cho điểm
. Tìm tọa độ điểm
đối xứng với
qua trục
?
Gọi H là hình chiếu vuông góc của lên
suy ra
Khi đó là trung điểm của
nên
Chọn đáp án đúng
Trong không gian với hệ trục tọa độ
, cho ba vectơ
. Khi đó giá trị của
bằng bao nhiêu?
Ta có: .
Khi đó
Vậy đáp án cần tìm là:
Chọn mệnh đề đúng
Trong không gian
, cho
. Tọa độ vectơ
là:
Ta có:
Suy ra
Chọn khẳng định đúng
Cho tứ diện
. Đặt
. Gọi
là trọng tâm tam giác
. Trong các đẳng thức sau, đẳng thức nào đúng?
Hình vẽ minh họa
Gọi M là trung điểm của CD suy ra
Ta có:
Tìm cosin góc giữa hai đường thẳng
Cho tứ diện đều
với
lần lượt là trung điểm của
. Tính cosin của góc giữa hai đường thẳng
?
Hình vẽ minh họa
Giả sử cạnh tứ diện đều bằng a. Khi đó:
Ta có:
Do đó:
Ta lại có suy ra
Vậy đáp án cần tìm là .
Xác định giá trị tham sốk
Trong không gian với hệ tọa độ
, biết
;
và góc giữa hai vectơ
và
bằng
. Tìm
để vectơ
vuông góc với vectơ
.
Ta có: .
Vectơ vuông góc với vectơ
khi và chỉ khi:
.
Tìm tọa độ điểm D theo yêu cầu
Trong không gian với hệ trục tọa độ
, cho ba điểm
. Tìm tọa độ điểm
sao cho tứ giác
là hình bình hành.
Hình vẽ minh họa
Ta có ;
nên
không cùng phương hay
không thẳng hàng.
Gọi
.
Lúc đó, là hình bình hành khi và chỉ khi
Vậy tọa độ điểm cần tìm là:
Tìm tọa độ điểm B’
Trong không gian hệ trục tọa độ
, cho hình hộp
biết
. Xác định tọa độ B’?
Hình vẽ minh họa
Giả sử điểm
Gọi
Suy ra . Vì
là hình hộp nên
Xác định giá trị tham số m thỏa mãn yêu cầu
Tìm
để góc giữa hai vectơ
là góc nhọn.
Để
.
Kết hợp điều kiện
Xét tính đúng sai của các nhận định
Trong không gian
, cho hình lập phương
có cạnh bằng 4, đỉnh
trùng với gốc
, các điểm
lần lượt nằm trên các tia
.
a. Tọa độ của điểm
là:
Sai||Đúng
b. Tọa độ của vec tơ
là:
Sai||Đúng
c. Tọa độ của vec tơ
là:
Đúng||Sai
d. Tọa độ của vec tơ
là:
Đúng||Sai
Trong không gian
, cho hình lập phương
có cạnh bằng 4, đỉnh
trùng với gốc
, các điểm
lần lượt nằm trên các tia
.
a. Tọa độ của điểm
là:
Sai||Đúng
b. Tọa độ của vec tơ
là:
Sai||Đúng
c. Tọa độ của vec tơ
là:
Đúng||Sai
d. Tọa độ của vec tơ
là:
Đúng||Sai
Hình vẽ minh họa

(a) Tọa độ của điểm là:
Do cùng hướng với
và
nên
hay
.
Suy ra: .
» Chọn SAI.
(b) Tọa độ của vec tơ là:
Do cùng hướng với
và
nên
hay
.
Theo quy tắc hình bình hành, ta có: .
Suy ra: .
» Chọn SAI.
(c) Tọa độ của vec tơ là:
Do cùng hướng với
và
nên
hay
.
Suy ra: .
» Chọn ĐÚNG.
(d) Tọa độ của vec tơ là:
.
Theo quy tắc hình hộp, ta có: .
Suy ra:
» Chọn ĐÚNG.
Chọn đáp án đúng
Theo định luật
Newton: Gia tốc của một vật có cùng hướng với lực tác dụng lên vật. Độ lớn của gia tốc tỉ lệ thuận với độ lớn của lực và tỉ lệ nghịch với khối lượng của vật:
, trong đó
là vectơ gia tốc
,
là vectơ lực
tác dụng lên vật,
là khối lượng của vật. Muốn truyền cho quả bóng có khối lượng
một gia tốc
thì cần một lực đá có độ lớn là bao nhiêu?

Ta có .
Vậy muốn truyền cho quả bóng có khối lượng một gia tốc
thì cần một lực đá có độ lớn là
.
Chọn khẳng định đúng
Biết
khác
và vuông góc với cả hai vectơ
. Khẳng định nào sau đây đúng?
Theo đề bài ta có: khác
và vuông góc với cả hai vectơ
nên
Vậy khẳng định đúng là
Tìm tọa độ điểm M thỏa mãn điều kiện
Trong không gian
, cho
,
. Tìm tọa độ điểm
thuộc trục tung sao cho
nhỏ nhất.
Khi đó:
.
Do đó đạt giá trị nhỏ nhất khi và chỉ khi
có độ dài ngắn nhất, điều này xảy ra khi và chỉ khi
là hình chiếu vuông góc của
trên trục tung.
Phương trình mặt phẳng đi qua
và vuông góc với trục tung là
hay
.
Phương trình tham số của trục tung là .
Tọa độ điểm cần tìm là nghiệm
của hệ phương trình:
.
Vậy .
Xác định góc giữa hai vecto
Cho hai vectơ
và
khác
. Xác định góc giữa hai vectơ
và
khi
?
Mà theo giả thiết , suy ra
Chọn kết quả đúng
Cho hình hộp đứng
, trong đó mặt đáy là hình bình hành với
. Biết độ dài các cạnh
và
. Tính
.

Theo quy tắc hình hộp, ta có ,
Vậy
Với
Trong đó:
Do tổng hai góc kề của một hình bình hành là nên ta có góc
Áp dụng định lý cosin trong tam giác , ta có:
.
Vậy .
Tính giá trị lớn nhất của biểu thức
Cho tứ diện
có
. Gọi
là diện tích toàn phần (tổng diện tích tất cả các mặt). Tính giá trị lớn nhất của
.
Do tứ diện có
nên
.
Gọi là diện tích và
là bán kính đường tròn ngoại tiếp mỗi mặt đó thì
, nên bất đẳng thức cần chứng minh:
.
Theo công thức Leibbnitz:
Với điểm bất kì và
là trọng tâm của tam giác
thì
Cho trùng với tâm đường tròn ngoại tiếp tam giác
ta được:
.
Chọn đáp án đúng
Một phòng học có thiết kế dạng hình hộp chữ nhật với chiều dài là
m, chiều rộng là
m và chiều cao là
m. Một chiếc đèn được treo tại chính giữa trần nhà của phòng học. Xét hệ trục toạ độ
có gốc
trùng với một góc phòng và mặt phẳng
trùng với mặt sàn, đơn vị đo được lấy theo mét. Hãy tìm toạ độ của điểm treo đèn

Gọi toạ độ các điểm như hình vẽ dưới đây:

Gọi là trung điểm của
,
là hình chiếu của
lên mặt phẳng trần nhà suy ra
là điểm treo đèn.
Khi đó
Vậy toạ độ của điểm treo đèn là
Chọn mệnh đề đúng
Cho tứ diện
. Gọi
là trọng tâm tam giác
. Điểm
xác định bởi công thức
. Mệnh đề nào sau đây đúng?
Do G là trọng tâm tam giác BCD nên
Vậy mệnh đề đúng là “ thuộc tia
và
”.
Tìm tọa độ điểm B’
Trong không gian hệ trục tọa độ
, cho hình hộp
. Biết
. Tọa độ điểm
là:
Hình vẽ minh họa
Ta có:
Tìm ba điểm thẳng hàng trong 4 điểm đã cho
Trong không gian
, cho bốn điểm
,
,
và
. Trong đó có ba điểm thẳng hàng là
Ta có: ,
Mà , nên hai vecto
,
cùng phương, hay ba điểm
thẳng hàng.
Nhận xét: Có thể vẽ phát họa lên hệ tọa độ để nhìn nhận dễ dàng hơn.
Tìm tọa độ hình chiếu điểm M
Trong không gian
, tọa độ hình chiếu của
lên
là
Tọa độ hình chiếu của lên
là
.
Chọn kết luận đúng
Cho
và
có
vuông góc với vectơ
và
. Khi đó:
+Vì vuông góc với vectơ
nên:
Ta có . Suy ra
.
Chọn đẳng thức đúng
Cho điểm
chia đoạn thẳng
theo tỉ số
thì ta có:
. Khi đó với một điểm
tùy ý ta có:
Ta có:
Tìm tọa độ vectơ
Cho
. Tọa độ của
là:
Ta có:
Tìm tọa độ điểm C’
Trong không gian tọa độ Oxyz, cho hình hộp
với các điểm
,
,
và
. Tìm tọa độ đỉnh
.
Hình vẽ minh họa
.
Theo quy tắc hình hộp ta có: .
Chọn mệnh đề đúng
Cho tứ diện
trọng tâm
. Mệnh đề nào sau đây sai?
Hình vẽ minh họa
Vì G là trọng tâm tứ diện ABCD nên suy ra:
Suy ra mệnh đề sai là .
Tính độ dài AB
Trong không gian
có điểm
. Tính độ dài
?
Ta có:
Suy ra
Vậy đáp án cần tìm là .
Xác định tọa độ vectơ
Trong không gian
, cho vectơ
. Khi đó tọa độ vectơ
là:
Ta có:
Tìm tọa độ điểm D thỏa mãn yêu cầu
Trong không gian hệ trục tọa độ
, cho các điểm
. Biết rằng tứ giác
là hình bình hành, khi đó tọa độ điểm
là:
Giả sử điểm ta có
là hình bình hành nên
. Vậy tọa độ điểm
.
Xác định toạ độ của vectơ biểu diễn độ dịch chuyển
Để theo dõi hành trình của một chiếc máy bay, ta có thể lập hệ toạ độ
có gốc
trùng với vị trí của trung tâm kiểm soát không lưu, mặt phẳng
trùng với mặt đất với trục
hướng về phía tây, trục
hướng về phía nam và trục
hướng thẳng đứng lên trời. Sau khi cất cánh và đạt độ cao nhất định, chiếc máy bay duy trì hướng bay về phía nam với tốc độ không đổi là
trong nửa giờ. Xác định toạ độ của vectơ biểu diễn độ dịch chuyển của chiếc máy bay trong nửa giờ đó đối với hệ toạ độ đã chọn, biết rằng đơn vị đo trong không gian
được lấy theo kilômét.

Quãng đường máy bay bay được với vận tốc trong nửa giờ là:
Vì máy bay duy trì hướng bay về phía nam nên tọa độ của vectơ biểu diễn độ dịch chuyển của chiếc máy bay trong nửa giờ đó với hệ tọa độ đã chọn là
Ghi đáp án vào ô trống
Trong không gian với hệ trục tọa độ
, cho ba điểm
,
và
. Điểm
sao cho tứ giác
là hình bình hành. Tính
?
Đáp án: 3
Trong không gian với hệ trục tọa độ
, cho ba điểm
,
và
. Điểm
sao cho tứ giác
là hình bình hành. Tính
?
Đáp án: 3
Gọi
Ta có:
là hình bình hành nên
.
Vậy .
Tìm các vectơ đồng phẳng
Trong không gian cho hình hộp
. Hỏi bốn vectơ nào có giá cùng thuộc một mặt phẳng?
Hình vẽ minh họa
Từ hình vẽ ta thấy các vectơ có giá cùng thuộc một mặt phẳng
.
Chọn khẳng định đúng
Trong không gian với hệ trục tọa độ
, cho điểm
. Khẳng định nào sau đây đúng?
Vì tọa độ điểm có
nên
.
Chọn câu đúng
Cho hình chóp
có đáy
là hình bình hành. Đặt
;
;
;
.
Hình vẽ minh họa
Gọi là tâm của hình bình hành
. Ta phân tích như sau:
(do tính chất của đường trung tuyến)
.
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: