Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề kiểm tra 45 phút Chương 2 Vectơ và hệ trục tọa độ trong không gian

Mô tả thêm:

Hãy cùng thử sức kiểm tra đánh giá các kiến thức tổng quan với bài kiểm tra phút Chương 2: Vectơ và hệ trục tọa độ trong không gian Toán 12 sách Kết nối tri thức các em nhé!

  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Thông hiểu

    Tìm tọa độ vecto

    Trong không gian Oxyz, cho điểm A thỏa \overrightarrow{AO} = 4\overrightarrow{k} -
2\overrightarrow{j}B(1;2; -
1). Tọa độ của véctơ \overrightarrow{AB}

    Ta có: \overrightarrow{AO} =
4\overrightarrow{k} - 2\overrightarrow{j} \Rightarrow A(0;2; -
4)

    \Rightarrow \overrightarrow{AB} =
(1;0;3)

  • Câu 2: Thông hiểu

    Tìm tọa độ điểm P

    Trong không gian Oxyz, cho hai điểm M(2;1;2), N(4; 2; 1), tọa độ điểm P thuộc trục Oz sao cho M;N; Pthẳng hàng là

    Vì điểm Pthuộc trục Oz nên P có tọa độ P(0;0;z).

    Ta có \overrightarrow{MN}(2;1; -
1); \overrightarrow{NP}( - 4; - 2;z
- 1)

    M;\ N;\ P thẳng hàng\Leftrightarrow\overrightarrow{MN};\overrightarrow{NP} cùng phương

    \Leftrightarrow \frac{- 4}{2} = \frac{-
2}{1} = \frac{z - 1}{- 1} \Leftrightarrow z - 1 = 2 \Leftrightarrow z =
3

    Vậy điểm P(0;0;3).

  • Câu 3: Nhận biết

    Phân tích vectơ

    Cho hình lập phương ABCD.A_{1}B_{1}C_{1}D_{1}. Hãy phân tích vectơ \overrightarrow{AC_{1}} theo các vectơ \overrightarrow{AB};\overrightarrow{AD};\overrightarrow{AA_{1}}?

    Hình vẽ minh họa

    Ta có: \overrightarrow{AC_{1}} =
\overrightarrow{AC} + \overrightarrow{AA_{1}} = \overrightarrow{AB} +
\overrightarrow{AD} + \overrightarrow{AA_{1}} (Theo quy tắc hình bình hành).

  • Câu 4: Vận dụng

    Ghi đáp án vào ô trống

    Trong không gian chọn hệ trục tọa độ cho trước, đơn vị đo lấy kilômét, ra đa phát hiện một máy bay chiến đấu của Mỹ di chuyển với vận tốc và hướng không đổi từ điểm M(1000;600;14) đến điểm N trong 30 phút. Nếu máy bay tiếp tục giữ nguyên vận tốc và hướng bay thì tọa độ của máy bay sau 10 phút tiếp theo bằng Q(1400;800;16). Xác định tọa độ vị trí điểm N. (Kết quả ghi dưới dạng số thập phân nếu có)

    Đáp án: N(1300; 750; 15,5)

    Đáp án là:

    Trong không gian chọn hệ trục tọa độ cho trước, đơn vị đo lấy kilômét, ra đa phát hiện một máy bay chiến đấu của Mỹ di chuyển với vận tốc và hướng không đổi từ điểm M(1000;600;14) đến điểm N trong 30 phút. Nếu máy bay tiếp tục giữ nguyên vận tốc và hướng bay thì tọa độ của máy bay sau 10 phút tiếp theo bằng Q(1400;800;16). Xác định tọa độ vị trí điểm N. (Kết quả ghi dưới dạng số thập phân nếu có)

    Đáp án: N(1300; 750; 15,5)

    Gọi N(x;y;z) là tọa độ của máy bay sau 10 phút tiếp theo.

    \overrightarrow{MQ} =
(400;200;2).

    \overrightarrow{NQ} = (1400 - x;800 -
y;16 - z).

    Vì máy bay giữ nguyên hướng bay nên \overrightarrow{MQ}\overrightarrow{NQ} cùng hướng.

    Do máy bay tiếp tục giữ nguyên vận tốc và thời gian bay từ M đến Q gấp 4 lần thời gian bay từ N đến Q nên MQ =
4NQ.

    Suy ra: \overrightarrow{MQ} =
4\overrightarrow{NQ}

    \Leftrightarrow \left\{ \begin{matrix}
400 = 4(1400 - x) \\
200 = 4(800 - y) \\
2 = 4(16 - z) \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 1300 \\
y = 750 \\
z = 15,5 \\
\end{matrix} ight.

    \Rightarrow N(1300;750;15,5)

  • Câu 5: Nhận biết

    Tính góc giữa hai vectơ

    Cho hình lập phương ABCD.EFGH. Hãy xác định góc giữa cặp vectơ \overrightarrow{AB}\overrightarrow{DH}?

    Hình vẽ minh họa

    \overrightarrow{DH} =
\overrightarrow{AE} (ADHE là hình vuông) nên \left(
\overrightarrow{AB};\overrightarrow{DH} ight) = \left(
\overrightarrow{AB};\overrightarrow{AE} ight) = \widehat{BAE} =
90^{0}

  • Câu 6: Vận dụng

    Ghi đáp án đúng vào ô trống

    Một kiến trúc sư muốn xây dựng 1 tòa nhà biểu tượng độc lạ cho thành phố. Trên bản thiết kế tòa nhà có hình dạng là một khối lăng trụ tam giác đều ABC.A'B'C', có cạnh bên bằng cạnh đáy và dài 30 mét. Kiến trúc sư muốn xây dựng một cây cầu MN bắc xuyên tòa nhà (điểm đầu thuộc cạnh A'C, điểm cuối thuộc cạnh BC') và cây cầu này sẽ được dát vàng với đơn giá 5 tỷ đồng trên 1 mét dài. Vì vậy để đáp ứng bài toán kinh tế, kiến trúc sư phải chọn vị trí cây cầu sao cho MN ngắn nhất (như hình vẽ).

    Khi đó giá xây cây cầu này hết bao nhiêu tỷ đồng? (Kết quả làm tròn đến hàng đơn vị).

    Đáp án: 72

    Đáp án là:

    Một kiến trúc sư muốn xây dựng 1 tòa nhà biểu tượng độc lạ cho thành phố. Trên bản thiết kế tòa nhà có hình dạng là một khối lăng trụ tam giác đều ABC.A'B'C', có cạnh bên bằng cạnh đáy và dài 30 mét. Kiến trúc sư muốn xây dựng một cây cầu MN bắc xuyên tòa nhà (điểm đầu thuộc cạnh A'C, điểm cuối thuộc cạnh BC') và cây cầu này sẽ được dát vàng với đơn giá 5 tỷ đồng trên 1 mét dài. Vì vậy để đáp ứng bài toán kinh tế, kiến trúc sư phải chọn vị trí cây cầu sao cho MN ngắn nhất (như hình vẽ).

    Khi đó giá xây cây cầu này hết bao nhiêu tỷ đồng? (Kết quả làm tròn đến hàng đơn vị).

    Đáp án: 72

    Để độ dài cây cầu MN ngắn nhất thì MN là đoạn vuông góc chung của hai đường thẳng A^{'}CBC^{'}.

    Đặt hệ trục Oxyz như hình vẽ:

    Khi đó C( - 15;0;0),B(15;0;0),\ C'( - 15;0;0),\
A'(0;15\sqrt{3};30)

    Do đó MN = d(A'C;BC') =
\frac{30\sqrt{39}}{13}

    Số tiền cần làm cây cầu ngắn nhất là 5.\frac{30\sqrt{39}}{13} \approx 72(tỷ đồng)

  • Câu 7: Thông hiểu

    Tìm tọa độ điểm A’

    Trong không gian Oxyz, cho điểm A(2; - 3;5). Tìm tọa độ điểm A' đối xứng với A qua trục Oy?

    Gọi H là hình chiếu vuông góc của A(2; -
3;5) lên Oy suy ra H(0; - 3;0)

    Khi đó H là trung điểm của AA' nên

    \left\{ \begin{matrix}
x_{A'} = 2x_{H} - x_{A} \\
y_{A'} = 2y_{H} - y_{A} \\
z_{A'} = 2z_{H} - z_{A} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x_{A'} = 2 \\
y_{A'} = - 3 \\
z_{A'} = - 5 \\
\end{matrix} ight.\  \Rightarrow A'( - 2; - 3; - 5)

  • Câu 8: Nhận biết

    Chọn đáp án đúng

    Trong không gian với hệ trục tọa độ Oxyz, cho ba vectơ \overrightarrow{a} = ( - 2;2;0);\overrightarrow{b}
= (2;2;0);\overrightarrow{c} = (2;2;2). Khi đó giá trị của \left| \overrightarrow{a} +
\overrightarrow{b} + \overrightarrow{c} ight| bằng bao nhiêu?

    Ta có: \overrightarrow{a} +
\overrightarrow{b} + \overrightarrow{c} = ( - 2 + 2 + 2;2 + 2 + 2;0 + 0
+ 2) = (2;6;2).

    Khi đó \left| \overrightarrow{a} +
\overrightarrow{b} + \overrightarrow{c} ight| = \sqrt{2^{2} + 6^{2} +
2^{2}} = 2\sqrt{11}

    Vậy đáp án cần tìm là: 2\sqrt{11}

  • Câu 9: Nhận biết

    Chọn mệnh đề đúng

    Trong không gian Oxyz, cho \overrightarrow{u} = (1;2;0). Tọa độ vectơ \overrightarrow{u} là:

    Ta có: \overrightarrow{i} =(1;0;0);\overrightarrow{j} = (0;1;0);\overrightarrow{k} =(0;0;1)

    \overrightarrow{u} = x\overrightarrow{i}+ y\overrightarrow{j} + z\overrightarrow{k} \Leftrightarrow\overrightarrow{u} = (x;y;z)

    Suy ra \overrightarrow{u} = (1;2;0)\Leftrightarrow \overrightarrow{u} = \overrightarrow{i} +2\overrightarrow{j}

  • Câu 10: Thông hiểu

    Chọn khẳng định đúng

    Cho tứ diện ABCD. Đặt \overrightarrow{AB} =
\overrightarrow{a};\overrightarrow{AD} =
\overrightarrow{b};\overrightarrow{AC} = \overrightarrow{c}. Gọi G là trọng tâm tam giác BCD. Trong các đẳng thức sau, đẳng thức nào đúng?

    Hình vẽ minh họa

    Gọi M là trung điểm của CD suy ra \overrightarrow{BG} =
\frac{2}{3}\overrightarrow{BM}

    Ta có: \overrightarrow{AG} =
\overrightarrow{AB} + \overrightarrow{BG} = \overrightarrow{AB} +
\frac{2}{3}\overrightarrow{BM}

    = \overrightarrow{AB} +
\frac{2}{3}.\frac{1}{2}\left( \overrightarrow{BC} + \overrightarrow{BD}
ight) = \overrightarrow{AB} + \frac{1}{3}\left( \overrightarrow{BC} +
\overrightarrow{BD} ight)

    = \overrightarrow{AB} +
\frac{1}{3}\left( \overrightarrow{AC} - \overrightarrow{AB} +
\overrightarrow{AD} - \overrightarrow{AB} ight)

    = \frac{1}{3}\left( \overrightarrow{AB}
+ \overrightarrow{AB} + \overrightarrow{AD} ight) = \frac{1}{3}\left(
\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}
ight)

  • Câu 11: Thông hiểu

    Tìm cosin góc giữa hai đường thẳng

    Cho tứ diện đều ABCD với I;J lần lượt là trung điểm của AB;CD. Tính cosin của góc giữa hai đường thẳng CI;AJ?

    Hình vẽ minh họa

    Giả sử cạnh tứ diện đều bằng a. Khi đó:

    \overrightarrow{AB}.\overrightarrow{AC}
= \overrightarrow{AC}.\overrightarrow{AD} =
\overrightarrow{AD}.\overrightarrow{AB} = \frac{a^{2}}{2}

    Ta có: \overrightarrow{AJ} =
\frac{1}{2}\overrightarrow{AD} +
\frac{1}{2}\overrightarrow{AC}

    \overrightarrow{CI} =
\overrightarrow{AI} - \overrightarrow{AC} =
\frac{1}{2}\overrightarrow{AB} - \overrightarrow{AC}

    Do đó: \overrightarrow{CI}.\overrightarrow{AJ} =
\frac{1}{4}\left( \overrightarrow{AB} - 2\overrightarrow{AC}
ight)\left( \overrightarrow{AC} + \overrightarrow{AD} ight) = -
\frac{1}{2}a^{2}

    Ta lại có AJ = CI =
\frac{a\sqrt{3}}{2} suy ra \cos\left( \overrightarrow{CI};\overrightarrow{AJ}
ight) = - \frac{2}{3}

    Vậy đáp án cần tìm là \frac{2}{3}.

  • Câu 12: Thông hiểu

    Xác định giá trị tham sốk

    Trong không gian với hệ tọa độ Oxyz, biết \left| \overrightarrow{u} \right| = 2; \left| \overrightarrow{v} \right| =
1 và góc giữa hai vectơ \overrightarrow{u}\overrightarrow{v} bằng \frac{2\pi}{3}. Tìm k để vectơ \overrightarrow{p} = k\overrightarrow{u} +
\overrightarrow{v} vuông góc với vectơ \overrightarrow{q} = \overrightarrow{u} -
\overrightarrow{v}.

    Ta có: \overrightarrow{u}.\overrightarrow{v} =
2.1.cos\left( \overrightarrow{u},\ \overrightarrow{v} ight) =
2.cos\frac{2\pi}{3} = - 1.

    Vectơ \overrightarrow{p} =
k\overrightarrow{u} + \overrightarrow{v} vuông góc với vectơ \overrightarrow{q} = \overrightarrow{u} -
\overrightarrow{v} khi và chỉ khi:

    \overrightarrow{p}.\overrightarrow{q} =
\left( k\overrightarrow{u} + \overrightarrow{v} ight)\left(
\overrightarrow{u} - \overrightarrow{v} ight) = 0

    \Leftrightarrow k{\overrightarrow{u\
}}^{2} + (1 - k)\overrightarrow{u\ }.\overrightarrow{v\ } -
{\overrightarrow{v\ }}^{2} = 0

    \Leftrightarrow 4k - (1 - k) - 1 = 0
\Leftrightarrow k = \frac{2}{5}.

  • Câu 13: Thông hiểu

    Tìm tọa độ điểm D theo yêu cầu

    Trong không gian với hệ trục tọa độ Oxyz, cho ba điểmA(1;2 ; - 1);B(2; - 1 ;3);C( - 3 ;5 ;1). Tìm tọa độ điểm D sao cho tứ giác ABCD là hình bình hành.

    Hình vẽ minh họa

    Ta có \overrightarrow{AB}(\ 1;\ \  - 3;\
\ 4); \overrightarrow{AC}(\  - 4;\
\ 3;\ \ 2)nên \overrightarrow{AB};\overrightarrow{AC} không cùng phương hay A,B,C không thẳng hàng.

    Gọi D(\ x;\ \ y;\ \ z) \Rightarrow \overrightarrow{DC}(\  - 3 - x;\ \ 5 - y;\ \ 1 -
z).

    Lúc đó, ABCD là hình bình hành khi và chỉ khi \overrightarrow{AB} =
\overrightarrow{DC}

    \Leftrightarrow \left\{ \begin{matrix}
1 = - 3 - x \\
- 3 = 5 - y \Leftrightarrow \\
4 = 1 - z \\
\end{matrix} ight.\ \left\{ \begin{matrix}
x = - 4 \\
y = 8 \\
z = - 3 \\
\end{matrix} ight.

    Vậy tọa độ điểm cần tìm là: D( - 4\ ;\ \
8\ ;\  - 3)

  • Câu 14: Vận dụng

    Tìm tọa độ điểm B’

    Trong không gian hệ trục tọa độ Oxyz, cho hình hộp ABCD.A'B'C'D' biết A(2;4;0),B(4;0;0),C( -
1;4;7),D'(6;8;10). Xác định tọa độ B’?

    Hình vẽ minh họa

    Giả sử điểm D(a;b;c),B'(a';b';c')

    Gọi O = AC \cap BD \Rightarrow O\left(
\frac{1}{2};4; - \frac{7}{2} ight) \Rightarrow \left\{ \begin{matrix}
a = - 3 \\
b = 8 \\
c = - 7 \\
\end{matrix} ight.

    Suy ra \left\{ \begin{matrix}
\overrightarrow{DD'} = (9;0;17) \\
\overrightarrow{BB'} = (a' - 4;b';c') \\
\end{matrix} ight.. Vì ABCD.A'B'C'D' là hình hộp nên \overrightarrow{DD'} =
\overrightarrow{BB'}

    \Leftrightarrow \left\{ \begin{matrix}
a' = 13 \\
b' = 0 \\
c' = 17 \\
\end{matrix} ight.\  \Rightarrow B'(13;0;17)

  • Câu 15: Thông hiểu

    Xác định giá trị tham số m thỏa mãn yêu cầu

    Tìm m để góc giữa hai vectơ \overrightarrow{u} = \left(1;\log_{3}5;\log_{m}2 ight),\overrightarrow{v} = \left( 3;\log_{5}3;4ight) là góc nhọn.

    Để \left( {\widehat {\vec u,\vec v}} ight) < {90^0} \Rightarrow \cos \left( {\widehat {\vec u,\vec v}} ight) > 0

    \Rightarrow\overrightarrow{u}.\overrightarrow{v} > 0 \Leftrightarrow 3 +\log_{3}5.\log_{5}3 + 4\log_{m}2 > 0

    \Leftrightarrow 4 + 4log_{m}2 > 0
\Leftrightarrow log_{m}2 > - 1 \Leftrightarrow \left\lbrack
\begin{matrix}
m > 1 \\
m < \frac{1}{2} \\
\end{matrix} ight..

    Kết hợp điều kiện m > 0 \Rightarrow \left[ {\begin{array}{*{20}{l}}
  {m > 1} \\ 
  {0 < m < \frac{1}{2}} 
\end{array}} ight.

  • Câu 16: Vận dụng

    Xét tính đúng sai của các nhận định

    Trong không gian Oxyz, cho hình lập phương ABCD.A'B'C'D' có cạnh bằng 4, đỉnh A trùng với gốc O, các điểm B,D,A' lần lượt nằm trên các tia Ox,Oy,Oz.

    a. Tọa độ của điểm D là: (4;0;0) Sai||Đúng

    b. Tọa độ của vec tơ C là: (0;4;0) Sai||Đúng

    c. Tọa độ của vec tơ A' là: (0;0;4) Đúng||Sai

    d. Tọa độ của vec tơ C' là: (4;4;4) Đúng||Sai

    Đáp án là:

    Trong không gian Oxyz, cho hình lập phương ABCD.A'B'C'D' có cạnh bằng 4, đỉnh A trùng với gốc O, các điểm B,D,A' lần lượt nằm trên các tia Ox,Oy,Oz.

    a. Tọa độ của điểm D là: (4;0;0) Sai||Đúng

    b. Tọa độ của vec tơ C là: (0;4;0) Sai||Đúng

    c. Tọa độ của vec tơ A' là: (0;0;4) Đúng||Sai

    d. Tọa độ của vec tơ C' là: (4;4;4) Đúng||Sai

    Hình vẽ minh họa

    (a) Tọa độ của điểm D là: (4;0;0)

    Do \overrightarrow{OD} cùng hướng với \overrightarrow{j}\left| \overrightarrow{OD} \right| = OD = 4
= 4\left| \overrightarrow{j} \right| nên \overrightarrow{OD} = 4\overrightarrow{j} hay \overrightarrow{OD} =
0\overrightarrow{i} + 4\overrightarrow{j} +
0\overrightarrow{k}.

    Suy ra: D(0;4;0).

    » Chọn SAI.

    (b) Tọa độ của vec tơ C là: (0;4;0)

    Do \overrightarrow{OB} cùng hướng với \overrightarrow{i}\left| \overrightarrow{OB} \right| = OB = 4
= 4\left| \overrightarrow{i} \right| nên \overrightarrow{AB} = 4\overrightarrow{i} hay \overrightarrow{OB} =
4\overrightarrow{i} + 0\overrightarrow{j} +
0\overrightarrow{k}.

    Theo quy tắc hình bình hành, ta có: \overrightarrow{OC} = \overrightarrow{OB} +
\overrightarrow{OD} = 4\overrightarrow{i} + 4\overrightarrow{j} +
0\overrightarrow{k}.

    Suy ra: C(4;4;0).

    » Chọn SAI.

    (c) Tọa độ của vec tơ A' là: (0;0;4)

    Do \overrightarrow{OA'} cùng hướng với \overrightarrow{k}\left| \overrightarrow{OA'} \right| =
OA' = 4 = 4\left| \overrightarrow{k} \right| nên \overrightarrow{OA'} =
4\overrightarrow{k} hay \overrightarrow{OA'} = 0\overrightarrow{i} +
0\overrightarrow{j} + 4\overrightarrow{k}.

    Suy ra: A'(0;0;4).

    » Chọn ĐÚNG.

    (d) Tọa độ của vec tơ C' là: (4;4;4).

    Theo quy tắc hình hộp, ta có: \overrightarrow{OC'} = \overrightarrow{OB} +
\overrightarrow{OD} + \overrightarrow{OA'} = 4\overrightarrow{i} +
4\overrightarrow{j} + 4\overrightarrow{k}.

    Suy ra: C'(4;4;4)

    » Chọn ĐÚNG.

  • Câu 17: Vận dụng

    Chọn đáp án đúng

    Theo định luật II Newton: Gia tốc của một vật có cùng hướng với lực tác dụng lên vật. Độ lớn của gia tốc tỉ lệ thuận với độ lớn của lực và tỉ lệ nghịch với khối lượng của vật: \overrightarrow{F} =
m\overrightarrow{a}, trong đó \overrightarrow{a} là vectơ gia tốc \left( m/s^{2} \right), \overrightarrow{F} là vectơ lực (N)tác dụng lên vật, m(kg) là khối lượng của vật. Muốn truyền cho quả bóng có khối lượng 0,5\ kg một gia tốc 20\ \ m/s^{2} thì cần một lực đá có độ lớn là bao nhiêu?

    A football ball on a fieldDescription automatically generated

    Ta có \overrightarrow{F} =
m\overrightarrow{a} \Rightarrow \left| \overrightarrow{F} \right| =
m\left| \overrightarrow{a} \right| = 0,5.20 = 10(N).

    Vậy muốn truyền cho quả bóng có khối lượng 0,5\ kg một gia tốc 20\ \ m/s^{2} thì cần một lực đá có độ lớn là 10(N).

  • Câu 18: Thông hiểu

    Chọn khẳng định đúng

    Biết \overrightarrow{c} =
(x;y;z) khác \overrightarrow{0} và vuông góc với cả hai vectơ \overrightarrow{a} =
(1;3;4);\overrightarrow{b} = ( - 1;2;3). Khẳng định nào sau đây đúng?

    Theo đề bài ta có: \overrightarrow{c} =
(x;y;z) khác \overrightarrow{0} và vuông góc với cả hai vectơ \overrightarrow{a} =
(1;3;4);\overrightarrow{b} = ( - 1;2;3) nên

    \left\{ \begin{matrix}
\overrightarrow{a}.\overrightarrow{c} = 0 \\
\overrightarrow{b}.\overrightarrow{c} = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x + 3y + 4z = 0 \\
- x + 2y + 3z = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}x + 3y + 4z = 0 \\5y + 7z = 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x + 3y + 4.\dfrac{- 5}{7}y = 0 \\z = - \dfrac{5}{7}y \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
7x + y = 0 \\
5y + 7z = 0 \\
\end{matrix} ight.

    Vậy khẳng định đúng là 7x + y =
0

  • Câu 19: Vận dụng cao

    Tìm tọa độ điểm M thỏa mãn điều kiện

    Trong không gian Oxyz, cho \overrightarrow{OA} = \overrightarrow{i} +
\overrightarrow{j} - 3\overrightarrow{k}, B(2;2;1). Tìm tọa độ điểm M thuộc trục tung sao cho MA^{2} + MB^{2} nhỏ nhất.

    Khi đó:

    MA^{2} + MB^{2} =
{\overrightarrow{MA}}^{2} + {\overrightarrow{MB}}^{2}

    = \left( \overrightarrow{MI} +
\overrightarrow{IA} ight)^{2} + \left( \overrightarrow{MI} +
\overrightarrow{IB} ight)^{2}

    = 2{\overrightarrow{MI}}^{2} +
{\overrightarrow{IA}}^{2} + {\overrightarrow{IB}}^{2} +
2\overrightarrow{MI}.\left( \overrightarrow{IA} + \overrightarrow{IB}
ight)

    = 2MI^{2} + IA^{2} + IB^{2} = 2MI^{2} +
9.

    Do đó MA^{2} + MB^{2} đạt giá trị nhỏ nhất khi và chỉ khi MI có độ dài ngắn nhất, điều này xảy ra khi và chỉ khi M là hình chiếu vuông góc của I trên trục tung.

    Phương trình mặt phẳng (P) đi qua I và vuông góc với trục tung là

    0.\left( x - \frac{3}{2} ight) +
1.\left( y - \frac{3}{2} ight) + 0.(z + 1) = 0 hay (P):y - \frac{3}{2} = 0.

    Phương trình tham số của trục tung là \left\{ \begin{matrix}
x = 0 \\
y = t \\
z = 0 \\
\end{matrix} ight..

    Tọa độ điểm M cần tìm là nghiệm (x\ ;y\ ;z) của hệ phương trình:

    \left\{ \begin{matrix}
x = 0 \\
y = t \\
z = 0 \\
y - \frac{3}{2} = 0 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
x = 0 \\
y = \frac{3}{2} \\
z = 0 \\
\end{matrix} ight..

    Vậy M\left( 0\ ;\frac{3}{2}\ ;0
ight).

  • Câu 20: Nhận biết

    Xác định góc giữa hai vecto

    Cho hai vectơ \overrightarrow{a}\overrightarrow{b} khác \overrightarrow{0}. Xác định góc giữa hai vectơ \overrightarrow{a}\overrightarrow{b} khi \overrightarrow{a}.\overrightarrow{b} = - \left|
\overrightarrow{a} \right|.\left| \overrightarrow{b}
\right|?

    Mà theo giả thiết \overrightarrow{a}.\overrightarrow{b} = - \left|
\overrightarrow{a} ight|.\left| \overrightarrow{b} ight|, suy ra \cos\left(
\overrightarrow{a},\overrightarrow{b} ight) = - 1 \Rightarrow \left(
\overrightarrow{a},\overrightarrow{b} ight) = 180^{0}

  • Câu 21: Vận dụng

    Chọn kết quả đúng

    Cho hình hộp đứng ABCD.A'B'C'D', trong đó mặt đáy là hình bình hành với \widehat{DAB}
= 120{^\circ}. Biết độ dài các cạnh AB = 25cm,AD = 12cmAA' = 12cm. Tính \left| \overrightarrow{AB} + \overrightarrow{AD} +
\overrightarrow{AA'} \right|.

    Theo quy tắc hình hộp, ta có \overrightarrow{AB} + \overrightarrow{AD} +
\overrightarrow{AA'} = \overrightarrow{AC'},

    Vậy \left| \overrightarrow{AB} +
\overrightarrow{AD} + \overrightarrow{AA'} \right| = \left|
\overrightarrow{AC'} \right| = AC'

    Với AC' = \sqrt{AC^{2} +
A{A'}^{2}}

    Trong đó: AA' = 12(cm)

    Do tổng hai góc kề của một hình bình hành là 180{^\circ} nên ta có góc \widehat{ABC} = 60{^\circ}

    Áp dụng định lý cosin trong tam giác ABC, ta có:

    AC^{2} = AB^{2} + BC^{2} - 2AB.BC.cos\widehat{ABC}

    = 25^{2} + 12^{2} - 2.25.12.cos60{^0} = 469.

    Vậy AC' = \sqrt{AC^{2} +
A{A'}^{2}} = \sqrt{469 + 144} = \sqrt{613}(cm).

  • Câu 22: Vận dụng cao

    Tính giá trị lớn nhất của biểu thức

    Cho tứ diện ABCDBC = DA = a,CA = DB = b,AB = DC = c. Gọi S là diện tích toàn phần (tổng diện tích tất cả các mặt). Tính giá trị lớn nhất của \frac{1}{a^{2}b^{2}} + \frac{1}{b^{2}c^{2}} +
\frac{1}{c^{2}a^{2}}.

    Do tứ diện ABCDBC = DA = a,CA = DB = b,AB = DC = c nên \Delta BCD = \Delta ADC = \Delta DAB =
\Delta CBA.

    Gọi S' là diện tích và R là bán kính đường tròn ngoại tiếp mỗi mặt đó thì S = 4S' =
\frac{abc}{R}, nên bất đẳng thức cần chứng minh:

    \frac{1}{a^{2}b^{2}} + \frac{1}{b^{2}c^{2}} +
\frac{1}{c^{2}a^{2}} \leq \frac{9}{S^{2}} \Leftrightarrow a^{2} + b^{2}
+ c^{2} \leq 9R^{2}.

    Theo công thức Leibbnitz:

    Với điểm M bất kì và G là trọng tâm của tam giác ABC thì

    MA^{2} + MB^{2} + MC^{2}

    = GA^{2} + GB^{2} +BC^{2} + 3MG^{2}

    = \frac{1}{3}\left( a^{2} + b^{2} + c^{2} + 9MG^{2}\right)

    Cho M trùng với tâm đường tròn ngoại tiếp tam giác ABC ta được:

    9R^{2} = aa^{2} + b^{2} + c^{2} + 9OG^{2}
\geq a^{2} + b^{2} + c^{2}.

  • Câu 23: Vận dụng

    Chọn đáp án đúng

    Một phòng học có thiết kế dạng hình hộp chữ nhật với chiều dài là 8m, chiều rộng là 6m và chiều cao là 3m. Một chiếc đèn được treo tại chính giữa trần nhà của phòng học. Xét hệ trục toạ độ Oxyz có gốc O trùng với một góc phòng và mặt phẳng (Oxy) trùng với mặt sàn, đơn vị đo được lấy theo mét. Hãy tìm toạ độ của điểm treo đèn

    A rectangular box with a straight line and a straight lineDescription automatically generated with medium confidence

    Gọi toạ độ các điểm B(6\ ;\ 0\ ;\ 0)\ ;\
C(6\ ;\ 8\ ;\ 0)\ ;\ D(0\ ;\ 8\ ;\ 0) như hình vẽ dưới đây:

    A diagram of a rectangular box with letters and numbersDescription automatically generated

    Gọi N là trung điểm của OC, N' là hình chiếu của N lên mặt phẳng trần nhà suy ra N' là điểm treo đèn.

    Khi đó N(3;\ 4\ ;\ 0) \Rightarrow
N'(3;\ 4\ ;\ 3)

    Vậy toạ độ của điểm treo đèn là (3;\ 4\
;\ 3)

  • Câu 24: Nhận biết

    Chọn mệnh đề đúng

    Cho tứ diện ABCD. Gọi G là trọng tâm tam giác BCD. Điểm M xác định bởi công thức \overrightarrow{AM} = \overrightarrow{AB} +
\overrightarrow{AC} + \overrightarrow{AD}. Mệnh đề nào sau đây đúng?

    Do G là trọng tâm tam giác BCD nên \overrightarrow{AB} + \overrightarrow{AC} +
\overrightarrow{AD} = 3\overrightarrow{AG}

    \Rightarrow \overrightarrow{AM} =
3\overrightarrow{AG}

    Vậy mệnh đề đúng là “M thuộc tia AGAM = 3AG”.

  • Câu 25: Thông hiểu

    Tìm tọa độ điểm B’

    Trong không gian hệ trục tọa độ Oxyz, cho hình hộp ABCCD.A'B'C'D'. Biết A(2;4;0),B(4;0;0),C( -
1;4;7),D'(6;8;10). Tọa độ điểm B' là:

    Hình vẽ minh họa

    Ta có: \overrightarrow{AD} =
\overrightarrow{BC} = ( - 5;4;7) \Rightarrow D( - 3;8; - 7)

    \overrightarrow{BD} =
\overrightarrow{B'D'} = ( - 7;8; - 7) \Rightarrow
B'(13;0;17)

  • Câu 26: Nhận biết

    Tìm ba điểm thẳng hàng trong 4 điểm đã cho

    Trong không gian Oxyz, cho bốn điểm A( - 1;\ 2;\ 0), B(3;\ 1;\ 0), C(0;\ 2;\ 1)D(1;\ 2;\ 2). Trong đó có ba điểm thẳng hàng là

    Ta có: \overrightarrow{AC} = (1;\ 0;\
1), \overrightarrow{AD} = (2;\ 0;\
2)

    \overrightarrow{AC} \land
\overrightarrow{AD} = \overrightarrow{0}, nên hai vecto \overrightarrow{AC}, \overrightarrow{AD} cùng phương, hay ba điểm \mathbf{A}\mathbf{,}\mathbf{C}\mathbf{,}\mathbf{D} thẳng hàng.

    Nhận xét: Có thể vẽ phát họa lên hệ tọa độ Oxyz để nhìn nhận dễ dàng hơn.

  • Câu 27: Nhận biết

    Tìm tọa độ hình chiếu điểm M

    Trong không gian Oxyz, tọa độ hình chiếu của M( - 2;1;4) lên Oyz

    Tọa độ hình chiếu của M( -
2;1;4) lên Oyz(0;1;4).

  • Câu 28: Thông hiểu

    Chọn kết luận đúng

    Cho \overrightarrow{a}\overrightarrow{b}\overrightarrow{a} + 2\overrightarrow{b} vuông góc với vectơ 5\overrightarrow{a} -
4\overrightarrow{b}\left|
\overrightarrow{a} \right| = \left| \overrightarrow{b} \right|. Khi đó:

    +Vì \overrightarrow{a} +
2\overrightarrow{b} vuông góc với vectơ 5\overrightarrow{a} - 4\overrightarrow{b} nên:

    \left( \overrightarrow{a} +
2\overrightarrow{b} ight).\left( 5\overrightarrow{a} -
4\overrightarrow{b} ight) = 0

    \Leftrightarrow
5{\overrightarrow{a}}^{2} - 8{\overrightarrow{b}}^{2} +
6\overrightarrow{a}\overrightarrow{b} = 0

    \Leftrightarrow
\overrightarrow{a}\overrightarrow{b} = \frac{- 5{\overrightarrow{a}}^{2}
+ 8{\overrightarrow{b}}^{2}}{6}

    Ta có \left| \overrightarrow{a} ight| =
\left| \overrightarrow{b} ight| \Leftrightarrow \left|
\overrightarrow{a} ight|^{2} = \left| \overrightarrow{b}
ight|^{2}. Suy ra \overrightarrow{a}\overrightarrow{b} =
\frac{3{\overrightarrow{a}}^{2}}{6}

    \cos\left(
\overrightarrow{a},\overrightarrow{b} ight) =
\frac{\overrightarrow{a}.\overrightarrow{b}}{\left| \overrightarrow{a}
ight|.\left| \overrightarrow{b} ight|} =
\dfrac{\dfrac{3{\overrightarrow{a}}^{2}}{6}}{{\overrightarrow{a}}^{2}} =
\dfrac{1}{2}.

  • Câu 29: Thông hiểu

    Chọn đẳng thức đúng

    Cho điểm M chia đoạn thẳng AB theo tỉ số k;(k eq 1) thì ta có: \overrightarrow{MA} =
k.\overrightarrow{MB}. Khi đó với một điểm O tùy ý ta có:

    Ta có:

    \overrightarrow{MA} =
k.\overrightarrow{MB} \Rightarrow \overrightarrow{MO} +
\overrightarrow{OA} = k.\left( \overrightarrow{MO} + \overrightarrow{OB}
ight)

    \Rightarrow (1 - k)\overrightarrow{MO} =
k.\overrightarrow{OB} - \overrightarrow{OA}

    \Rightarrow \overrightarrow{MO} =
\frac{k.\overrightarrow{OB} - \overrightarrow{OA}}{1 - k} \Rightarrow
\overrightarrow{OM} = \frac{\overrightarrow{OA} -
k.\overrightarrow{OB}}{1 - k}

  • Câu 30: Nhận biết

    Tìm tọa độ vectơ

    Cho\overrightarrow{AB} =
(1;3;2). Tọa độ của \overrightarrow{a} = 2\overrightarrow{AB} là:

    Ta có:

    \overrightarrow{a} = 2 \cdot
\overrightarrow{AB} = (2.1;2.3;2.2) = (2;6;4)

  • Câu 31: Thông hiểu

    Tìm tọa độ điểm C’

    Trong không gian tọa độ Oxyz, cho hình hộp ABCD.A^{'}B^{'}C^{'}D^{'} với các điểm A( - 1;1;2), B( - 3;2;1), D(0; - 1;2)A^{'}(2;1;2). Tìm tọa độ đỉnh C^{'}.

    Hình vẽ minh họa

    .

    Theo quy tắc hình hộp ta có: \overrightarrow{AB} + \overrightarrow{AD} +
\overrightarrow{AA'} = \overrightarrow{AC'}.

    \Rightarrow \left\{ \begin{matrix}
x_{C^{'}} + 1 = 2 \\
y_{C^{'}} - 1 = - 1 \\
z_{C^{'}} - 2 = - 1 \\
\end{matrix} \Leftrightarrow \left\{ \begin{matrix}
x_{C^{'}} = 1 \\
y_{C^{'}} = 0 \\
z_{C^{'}} = 1 \\
\end{matrix} \Rightarrow C'(1;0;1) ight.\  ight.

  • Câu 32: Thông hiểu

    Chọn mệnh đề đúng

    Cho tứ diện ABCD trọng tâm G. Mệnh đề nào sau đây sai?

    Hình vẽ minh họa

    Vì G là trọng tâm tứ diện ABCD nên suy ra:

    \overrightarrow{GA} +
\overrightarrow{GB} + \overrightarrow{GC} + \overrightarrow{GD} =
\overrightarrow{0}

    \Leftrightarrow \overrightarrow{AG} =
\overrightarrow{GB} + \overrightarrow{GC} +
\overrightarrow{GD}

    \Leftrightarrow \overrightarrow{AG} =
\left( \overrightarrow{GA} + \overrightarrow{AB} ight) + \left(
\overrightarrow{GA} + \overrightarrow{AC} ight) + \left(
\overrightarrow{GA} + \overrightarrow{AD} ight)

    \Leftrightarrow 4\overrightarrow{AG} =
\overrightarrow{AB} + \overrightarrow{AC} +
\overrightarrow{AD}

    \Leftrightarrow \overrightarrow{AG} =
\frac{1}{4}\left( \overrightarrow{AB} + \overrightarrow{AC} +
\overrightarrow{AD} ight)

    Suy ra mệnh đề sai là \overrightarrow{AG}
= \frac{2}{3}\left( \overrightarrow{AB} + \overrightarrow{AC} +
\overrightarrow{AD} ight).

  • Câu 33: Nhận biết

    Tính độ dài AB

    Trong không gian Oxyz có điểm A(1; - 3;1),B(3;0; - 2). Tính độ dài AB?

    Ta có: \overrightarrow{AB} = (3 - 1;0 +
3; - 2 - 1) = (2;3; - 3)

    Suy ra AB = \sqrt{2^{2} + 3^{2} + ( -
3)^{2}} = \sqrt{22}

    Vậy đáp án cần tìm là AB =
\sqrt{22}.

  • Câu 34: Nhận biết

    Xác định tọa độ vectơ

    Trong không gian Oxyz, cho vectơ \overrightarrow{a} =
(2;3;2);\overrightarrow{b} = (1;1; - 1). Khi đó tọa độ vectơ \overrightarrow{a} -
\overrightarrow{b} là:

    Ta có:

    \overrightarrow{a} - \overrightarrow{b}
= (2 - 1;3 - 1;2 + 1) = (1;2;3)

  • Câu 35: Thông hiểu

    Tìm tọa độ điểm D thỏa mãn yêu cầu

    Trong không gian hệ trục tọa độ Oxyz, cho các điểm A( - 2;3;1),B(3;0; - 1),C(6;5;0). Biết rằng tứ giác ABCD là hình bình hành, khi đó tọa độ điểm D là:

    Giả sử điểm D(x;y;z) ta có ABCD là hình bình hành nên \overrightarrow{AB} =
\overrightarrow{DC}

    \Leftrightarrow \left\{ \begin{matrix}
6 - x = 3 + 2 \\
5 - y = 0 - 3 \\
- z = - 1 - 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 1 \\
y = 8 \\
z = 2 \\
\end{matrix} ight.. Vậy tọa độ điểm D(1;8;2).

  • Câu 36: Vận dụng

    Xác định toạ độ của vectơ biểu diễn độ dịch chuyển

    Để theo dõi hành trình của một chiếc máy bay, ta có thể lập hệ toạ độ Oxyz có gốc O trùng với vị trí của trung tâm kiểm soát không lưu, mặt phẳng (Oxy) trùng với mặt đất với trục Ox hướng về phía tây, trục Oy hướng về phía nam và trục Oz hướng thẳng đứng lên trời. Sau khi cất cánh và đạt độ cao nhất định, chiếc máy bay duy trì hướng bay về phía nam với tốc độ không đổi là 890\ km/h trong nửa giờ. Xác định toạ độ của vectơ biểu diễn độ dịch chuyển của chiếc máy bay trong nửa giờ đó đối với hệ toạ độ đã chọn, biết rằng đơn vị đo trong không gian Oxyzđược lấy theo kilômét.

    A sunset over a cityDescription automatically generated with medium confidence

    Quãng đường máy bay bay được với vận tốc 890km/h trong nửa giờ là:

    890.\frac{1}{2} = 445(km)

    Vì máy bay duy trì hướng bay về phía nam nên tọa độ của vectơ biểu diễn độ dịch chuyển của chiếc máy bay trong nửa giờ đó với hệ tọa độ đã chọn là (0;445;0).

  • Câu 37: Thông hiểu

    Ghi đáp án vào ô trống

    Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A( - 1; - 1;3), B(0;2;0) C(5; - 2;1). Điểm D(a;b;c) sao cho tứ giác ABCD là hình bình hành. Tính S = a + b + c?

    Đáp án: 3

    Đáp án là:

    Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A( - 1; - 1;3), B(0;2;0) C(5; - 2;1). Điểm D(a;b;c) sao cho tứ giác ABCD là hình bình hành. Tính S = a + b + c?

    Đáp án: 3

    Gọi D = (x;y;z) \Rightarrow \overrightarrow{DC} = (5 - x; - 2 -
y;1 - z)

    Ta có: \overrightarrow{AB} = (1;3; -
3)

    ABCD là hình bình hành nên \overrightarrow{AB} =
\overrightarrow{DC}

    \Rightarrow \left\{ \begin{matrix}
5 - x = 1 \\
- 2 - y = 3 \\
1 - z = - 3 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 4 \\
y = - 5 \\
z = 4 \\
\end{matrix} ight.\  \Rightarrow D(4; - 5;4).

    Vậy S = a + b + c = 3.

  • Câu 38: Nhận biết

    Tìm các vectơ đồng phẳng

    Trong không gian cho hình hộp ABCD.A'B'C'D'. Hỏi bốn vectơ nào có giá cùng thuộc một mặt phẳng?

    Hình vẽ minh họa

    Từ hình vẽ ta thấy các vectơ \overrightarrow{A'D};\overrightarrow{AA'};\overrightarrow{A'D'};\overrightarrow{DD'} có giá cùng thuộc một mặt phẳng (AA'D'D).

  • Câu 39: Nhận biết

    Chọn khẳng định đúng

    Trong không gian với hệ trục tọa độ Oxyz, cho điểm A(3;0;1). Khẳng định nào sau đây đúng?

    Vì tọa độ điểm A(3;0;1)x = 3;y = 0;z = 1 nên A \in (Oxz).

  • Câu 40: Thông hiểu

    Chọn câu đúng

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Đặt \overrightarrow{SA} = \overrightarrow{a}; \overrightarrow{SB} =
\overrightarrow{b}; \overrightarrow{SC} = \overrightarrow{c}; \overrightarrow{SD} =
\overrightarrow{d}.

    Hình vẽ minh họa

    Gọi O là tâm của hình bình hành ABCD. Ta phân tích như sau:

    \left\{ \begin{matrix}
\overrightarrow{SA} + \overrightarrow{SC} = 2\overrightarrow{SO} \\
\overrightarrow{SB} + \overrightarrow{SD} = 2\overrightarrow{SO} \\
\end{matrix} ight. (do tính chất của đường trung tuyến)

    \Rightarrow \overrightarrow{SA} +
\overrightarrow{SC} = \overrightarrow{SB} + \overrightarrow{SD}
\Leftrightarrow \overrightarrow{a} + \overrightarrow{c} =
\overrightarrow{d} + \overrightarrow{b}.

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 2 Vectơ và hệ trục tọa độ trong không gian Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo