Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề kiểm tra 45 phút Chương 2 Vectơ và hệ trục tọa độ trong không gian

Mô tả thêm:

Hãy cùng thử sức kiểm tra đánh giá các kiến thức tổng quan với bài kiểm tra phút Chương 2: Vectơ và hệ trục tọa độ trong không gian Toán 12 sách Kết nối tri thức các em nhé!

  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Nhận biết

    Tìm tọa độ vecto

    Trong không gian O xyz, cho A(2; - 1;0)B(1;1; - 3). Vectơ \overrightarrow{AB} có tọa độ là

    Ta có:

    A(2; - 1;0)B(1;1; - 3) khi đó:

    \overrightarrow{AB} = (1 - 2;1 + 1; - 3
- 0) = ( - 1;2; - 3)

  • Câu 2: Thông hiểu

    Tính giá trị của biểu thức

    Trong không gian Oxyz, cho \overrightarrow{AO} = \overrightarrow{i} -
2\overrightarrow{j} + 3\overrightarrow{k}, điểm B(3\ ;\  - 4\ ;\ 1) C(2\ ;\ 0\ ;\  - 1)

    điểm D(a\ ;\ b\ ;\ c) sao cho B là trọng tâm tam giác ACD. Khi đó P
= a + b + c bằng

    Ta có: P = a + b + c = 1

  • Câu 3: Vận dụng

    Tính góc giữa hai đường thẳng

    Cho hình hộp ABCD.A'B'C'D' có các cạnh đều bằng a và các góc \widehat{B'A'D'} =
60^{0},\widehat{B'A'A} = \widehat{D'A'A} =
120^{0}. Tính góc giữa các cặp đường thẳng AB với A'D; AC' với B'D.

    Hình vẽ minh họa

    Đặt \overrightarrow{AA'} =
\overrightarrow{a},\overrightarrow{A'B'} =
\overrightarrow{b},\overrightarrow{A'D'} =
\overrightarrow{c}

    Ta có \overrightarrow{A'D} =
\overrightarrow{a} + \overrightarrow{c} nên

    \cos\left( \widehat{AB,A'D} \right)
= \left| \cos\left( \overrightarrow{AB},\overrightarrow{A'D} \right)
\right|

    = \frac{\left|
\overrightarrow{AB}.\overrightarrow{A'D} \right|}{\left|
\overrightarrow{AB} \right|\left| \overrightarrow{A'D} \right|} =
\frac{\left| \overrightarrow{a}\left( \overrightarrow{a} +
\overrightarrow{c} \right) \right|}{\left| \overrightarrow{a}
\right|\left| \overrightarrow{a} + \overrightarrow{c}
\right|}.

    Để ý rằng \left| \overrightarrow{a} +
\overrightarrow{c} \right| = a, \overrightarrow{a}\left( \overrightarrow{a} +
\overrightarrow{c} \right) = \frac{a^{2}}{2}.

    Từ đó \cos\left( \widehat{AB,A'D}
\right) = \frac{1}{2} \Rightarrow \widehat{(AB,A'D)} =
60^{0}

    Ta có \overrightarrow{AC'} =
\overline{b} + \overrightarrow{c} -
\overrightarrow{a},\overrightarrow{B'D} = \overrightarrow{a} -
\overrightarrow{b} + \overrightarrow{c}, từ đó tính được:

    \overrightarrow{AC'}\overrightarrow{B'D} =\left( \overrightarrow{b} + \overrightarrow{c} - \overrightarrow{a}\right)\left( \overrightarrow{a} - \overrightarrow{b} +\overrightarrow{c} \right) = 0\Rightarrow \widehat{(AC',B'D)} =90^{0}.

  • Câu 4: Thông hiểu

    Tìm tích vô hướng hai vectơ

    Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Tích vô hướng của hai vectơ \overrightarrow{AB}\overrightarrow{A'C'} có giá trị bằng:

    Ta có:

    \left(
\overrightarrow{A'C'};\overrightarrow{AB} ight) = \left(
\overrightarrow{AC};\overrightarrow{AB} ight) = \widehat{BAC} =
45^{0}

    \Rightarrow
\overrightarrow{A'C'}.\overrightarrow{AB} = \left|
\overrightarrow{A'C'} ight|.\left| \overrightarrow{AB}
ight|.cos\left( \overrightarrow{A'C'};\overrightarrow{AB}
ight) = a.a.1 = a^{2}

  • Câu 5: Thông hiểu

    Xác định tính đúng sai của từng phương án

    Cho tứ diện đều ABCD cạnh a. E là điểm trên đoạn CD sao cho ED = 2CE. Xét tính đúng sai của các khẳng định sau:

    a) Có 6 vectơ (khác vectơ \overrightarrow{0}) có điểm đầu và điểm cuối được tạo thành từ các đỉnh của tứ diện. Sai||Đúng

    b) Góc giữa hai vectơ \overrightarrow{AB}\overrightarrow{BC} bằng 60^{\circ}. Sai||Đúng

    c) Nếu \overrightarrow{BE} =
m\overrightarrow{BA} + n\overrightarrow{BC} +
p\overrightarrow{BD} thì m + n + p
= \frac{2}{3}. Sai||Đúng

    d) Tích vô hướng \overrightarrow{AD}.\overrightarrow{BE} =
\frac{a^{2}}{6}. Đúng||Sai

    Đáp án là:

    Cho tứ diện đều ABCD cạnh a. E là điểm trên đoạn CD sao cho ED = 2CE. Xét tính đúng sai của các khẳng định sau:

    a) Có 6 vectơ (khác vectơ \overrightarrow{0}) có điểm đầu và điểm cuối được tạo thành từ các đỉnh của tứ diện. Sai||Đúng

    b) Góc giữa hai vectơ \overrightarrow{AB}\overrightarrow{BC} bằng 60^{\circ}. Sai||Đúng

    c) Nếu \overrightarrow{BE} =
m\overrightarrow{BA} + n\overrightarrow{BC} +
p\overrightarrow{BD} thì m + n + p
= \frac{2}{3}. Sai||Đúng

    d) Tích vô hướng \overrightarrow{AD}.\overrightarrow{BE} =
\frac{a^{2}}{6}. Đúng||Sai

    Hình vẽ minh họa

    a) Sai: Các vectơ (khác vectơ \overrightarrow{0}) có điểm đầu và điểm cuối được tạo thành từ các đỉnh của tứ diện là: \overrightarrow{AB},\overrightarrow{AC},\overrightarrow{AD},\overrightarrow{BA},\overrightarrow{BC},\overrightarrow{BD},\overrightarrow{CA},\overrightarrow{CB},\overrightarrow{CD},\overrightarrow{DA},\overrightarrow{DB},\overrightarrow{DC}.

    Do đó có 12 vectơ thỏa mãn yêu cầu.

    b) Sai:  (\overrightarrow{AB},\overrightarrow{BC})
= 180^{\circ} - (\overrightarrow{BA},\overrightarrow{BC}) = 180^{\circ}
- ABC = 120^{\circ} 

    c) Sai: \overrightarrow{BE} =\overrightarrow{BC} + \overrightarrow{CE} = \overrightarrow{BC} +\frac{1}{3}\overrightarrow{CD}= \overrightarrow{BC} +\frac{1}{3}(\overrightarrow{BD} - \overrightarrow{BC}) =\frac{2}{3}\overrightarrow{BC} +\frac{1}{3}\overrightarrow{BD}.

    Do đó m = 0,n = \frac{2}{3},p =
\frac{1}{3} suy ra m + n + p =
1.

    d) Đúng: Ta có:

    \overrightarrow{BE} =
\overrightarrow{AE} - \overrightarrow{AB} = (\overrightarrow{AC} +
\overrightarrow{CE}) - \overrightarrow{AB} = \overrightarrow{AC} +
\frac{1}{3}\overrightarrow{CD} - \overrightarrow{AB}

    = \overrightarrow{AC} +
\frac{1}{3}(\overrightarrow{AD} - \overrightarrow{AC}) -
\overrightarrow{AB} = \frac{2}{3}\overrightarrow{AC} +
\frac{1}{3}\overrightarrow{AD} - \overrightarrow{AB}

    Suy ra

    \overrightarrow{AD}.\overrightarrow{BE} =\overrightarrow{AD}.\left( \frac{2}{3}\overrightarrow{AC} +\frac{1}{3}\overrightarrow{AD} - \overrightarrow{AB} ight)=\frac{2}{3}.\overrightarrow{AD}.\overrightarrow{AC} +\frac{1}{3}.{\overrightarrow{AD}}^{2} -\overrightarrow{AD}.\overrightarrow{AB}

    = \frac{2}{3}.a.a.\cos 60^{\circ} +\frac{1}{3}a^{2} - a.a.\cos60^{\circ} = \frac{a^{2}}{6}.

  • Câu 6: Thông hiểu

    Tìm tọa độ điểm A’

    Trong không gian hệ trục tọa độ Oxyz, cho lăng trụ tam giác ABC.A'B'C' có tọa độ các điểm A(0;1;3),B( - 1;2;1),B'( -
2;1;0). Xác định tọa độ điểm A'?

    Hình vẽ minh họa

    Gọi tọa độ điểm A'(x;y;z)

    ABC.A'B'C' là hình lăng trụ nên

    \overrightarrow{AA'} =
\overrightarrow{BB'} \Leftrightarrow \left\{ \begin{matrix}
x - 0 = - 2 - ( - 1) \\
y - 1 = 1 - 2 \\
z - 3 = 0 - 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = - 1 \\
y = 0 \\
z = 2 \\
\end{matrix} ight.

    Vậy tọa độ A'( - 1;0;2)

  • Câu 7: Nhận biết

    Chọn mệnh đề đúng

    Cho tứ diện ABCD. Gọi G là trọng tâm tam giác BCD. Điểm M xác định bởi công thức \overrightarrow{AM} = \overrightarrow{AB} +
\overrightarrow{AC} + \overrightarrow{AD}. Mệnh đề nào sau đây đúng?

    Do G là trọng tâm tam giác BCD nên \overrightarrow{AB} + \overrightarrow{AC} +
\overrightarrow{AD} = 3\overrightarrow{AG}

    \Rightarrow \overrightarrow{AM} =
3\overrightarrow{AG}

    Vậy mệnh đề đúng là “M thuộc tia AGAM = 3AG”.

  • Câu 8: Vận dụng

    Xác định tọa độ điểm C’

    Trong không gian hệ trục tọa độ Oxyz, cho hình hộp ABCD.A'B'C'D' có tọa độ các điểm A( -
3;0;0),B(0;2;0),D(0;0;1),A'(1;2;3). Tìm tọa độ điểm C'?

    Theo quy tắc hình hộp ta có:

    \overrightarrow{AB} +
\overrightarrow{AD} + \overrightarrow{AA'} =
\overrightarrow{AC'}

    Lại có \left\{ \begin{matrix}
\overrightarrow{AB} = (3;2;0) = 3\overrightarrow{i} +
2\overrightarrow{j} + 0.\overrightarrow{k} \\
\overrightarrow{AD} = (3;0;1) = 3.\overrightarrow{i} +
0.\overrightarrow{j} + 1.\overrightarrow{k} \\
\overrightarrow{AA'} = (4;2;3) = 4.\overrightarrow{i} +
2\overrightarrow{j} + 3\overrightarrow{k} \\
\end{matrix} ight.

    \Rightarrow \overrightarrow{AC'} =
10.\overrightarrow{i} + 4.\overrightarrow{j} +
4.\overrightarrow{k}A( -
3;0;0)

    \Rightarrow C'(7;4;4)

    Suy ra C'(7;4;4)

  • Câu 9: Nhận biết

    Xác định tọa độ hiệu hai vectơ

    Trong không gian Oxyz, cho hai vectơ \overrightarrow{u} = (1;3; -
2);\overrightarrow{v} = (2;1; - 1). Vectơ \overrightarrow{u} - \overrightarrow{v} có tọa độ là:

    Ta có: \overrightarrow{u} -
\overrightarrow{v} = (1 - 2;3 - 1; - 2 + 1) = ( - 1;2; - 1)

    Vậy đáp án cần tìm là ( - 1;2 -
1).

  • Câu 10: Vận dụng

    Ghi đáp án vào chỗ trống

    Khi chuyển động trong không gian, máy bay luôn chịu tác động của 4 lực chính: lực đẩy của động cơ, lực cản của không khí, trọng lực và lực nâng khí động học.

    Lực cản của không khí ngược hướng với lực đẩy của động cơ và có độ lớn tỉ lệ thuận với bình phương vận tốc máy bay. Một chiếc máy bay tăng vận tốc từ 900(km/h) lên 920(km/h), trong quá trình tăng tốc máy bay giữ nguyên hướng bay. Lực cản của không khí khi máy bay đạt vận tốc 900(km/h)920(km/h) lần lượt biểu diễn bởi hai vectơ \overrightarrow{F_{1}}\overrightarrow{F_{2}} với \overrightarrow{F_{1}} =k.\overrightarrow{F_{2}};\left( k\mathbb{\in R};k > 0ight). Tính giá trị của k (Làm tròn kết quả đến chữ số thập phân thứ hai).

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Khi chuyển động trong không gian, máy bay luôn chịu tác động của 4 lực chính: lực đẩy của động cơ, lực cản của không khí, trọng lực và lực nâng khí động học.

    Lực cản của không khí ngược hướng với lực đẩy của động cơ và có độ lớn tỉ lệ thuận với bình phương vận tốc máy bay. Một chiếc máy bay tăng vận tốc từ 900(km/h) lên 920(km/h), trong quá trình tăng tốc máy bay giữ nguyên hướng bay. Lực cản của không khí khi máy bay đạt vận tốc 900(km/h)920(km/h) lần lượt biểu diễn bởi hai vectơ \overrightarrow{F_{1}}\overrightarrow{F_{2}} với \overrightarrow{F_{1}} =k.\overrightarrow{F_{2}};\left( k\mathbb{\in R};k > 0ight). Tính giá trị của k (Làm tròn kết quả đến chữ số thập phân thứ hai).

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 11: Nhận biết

    Chọn đáp án đúng

    Trong không gian hệ trục tọa độ Oxyz, điểm nào dưới đây thuộc trục Oy?

    Điểm A(x;y;z) \in Oy \Leftrightarrow
\left\{ \begin{matrix}
x = 0 \\
z = 0 \\
\end{matrix} ight.. Suy ra trong bốn điểm đã cho điểm T(0; - 3;0) \in Oy.

  • Câu 12: Nhận biết

    Tính tích vô hướng

    Cho hai véc tơ \overrightarrow{a} = (1; -
2;3), \overrightarrow{b} = ( -
2;1;2). Khi đó, tích vô hướng \left( \overrightarrow{a} + \overrightarrow{b}
\right).\overrightarrow{b} bằng

    Ta có:

    \overrightarrow{a} + \overrightarrow{b} =
( - 1; - 1;5)

    \Rightarrow \left(
\overrightarrow{a} + \overrightarrow{b} ight).\overrightarrow{b} = -
1.( - 2) + ( - 1).1 + 5.2 = 11.

  • Câu 13: Vận dụng cao

    Chọn khẳng định đúng

    Cho tứ diện ABCD. Gọi E,F là các điểm thỏa nãm \overrightarrow{EA} =
k\overrightarrow{EB},\overrightarrow{FD} = k\overrightarrow{FC} còn P,Q,R là các điểm xác định bởi \overrightarrow{PA} =
l\overrightarrow{PD},\overrightarrow{QE} =
l\overrightarrow{QF},\overrightarrow{RB} =
l\overrightarrow{RC}. Chứng minh ba điểm P,Q,R thẳng hàng. Khẳng định nào sau đây là đúng?

    Hình vẽ minh họa

    Ta có \overrightarrow{PQ} =
\overrightarrow{PA} + \overrightarrow{AE} + \overrightarrow{EQ}\ \
(1)

    \overrightarrow{PQ} =
\overrightarrow{PD} + \overrightarrow{DF} + \overrightarrow{FQ}\ \
(2)

    Từ (2) ta có l\overrightarrow{PQ} = l\overrightarrow{PD} +
l\overrightarrow{DF} + l\overrightarrow{FQ}\ \ \ \ (3)

    Lấy (1) - (3) theo vế ta có

    (1 - l)\overrightarrow{PQ} =
\overrightarrow{AE} - l\overrightarrow{DF}

    \Rightarrow \overrightarrow{PQ} =
\frac{1}{1 - l}\overrightarrow{AE} - \frac{l}{1 -
l}\overrightarrow{DF}

    Tương tự \overrightarrow{QR} = \frac{1}{1
- l}\overrightarrow{EB} - \frac{l}{1 -
l}\overrightarrow{FC}

    Mặt khác \overrightarrow{EA} =
k\overrightarrow{EB},\overrightarrow{FD} = k\overrightarrow{FC} nên

    \overrightarrow{PQ} = \frac{1}{1 -l}\overrightarrow{AE} - \frac{l}{1 - l}\overrightarrow{DF}= \frac{-k}{1 - l}\overrightarrow{EB} - \frac{kl}{1 - l}\overrightarrow{FC} = -k\overrightarrow{QR}

    Vậy P,Q,R thẳng hàng.

  • Câu 14: Nhận biết

    Chọn kết quả chính xác

    Cho hai vectơ \overrightarrow{u},\overrightarrow{v} đều khác \overrightarrow{0}. Khi đó \left| \overrightarrow{u} +
2\overrightarrow{v} \right|^{2} bằng

    Ta có \left| \overrightarrow{u} +
2\overrightarrow{v} ight|^{2} = \left( \overrightarrow{u} +
2\overrightarrow{v} ight)^{2} = {\overrightarrow{u}}^{2} +
4{\overrightarrow{v}}^{2} +
4\overrightarrow{u}\overrightarrow{v}.

  • Câu 15: Thông hiểu

    Tìm tọa độ vecto

    Trong không gian Oxyz, cho điểm A thỏa \overrightarrow{AO} = 4\overrightarrow{k} -
2\overrightarrow{j}B(1;2; -
1). Tọa độ của véctơ \overrightarrow{AB}

    Ta có: \overrightarrow{AO} =
4\overrightarrow{k} - 2\overrightarrow{j} \Rightarrow A(0;2; -
4)

    \Rightarrow \overrightarrow{AB} =
(1;0;3)

  • Câu 16: Nhận biết

    Tìm tọa độ vectơ

    Trong không gian Oxyz, cho hai điểm A( - 1;2; - 3)B(2; - 1;0). Vectơ \overrightarrow{AB} có tọa độ là:

    Ta có:

    \overrightarrow{AB} = (2 + 1; - 1 - 2;0
+ 3) = (3; - 3;3)

    Vậy đáp án đúng là: \overrightarrow{AB} =
(3; - 3;3).

  • Câu 17: Thông hiểu

    Tính giá trị biểu thức

    Trong không gian Oxyz, cho điểm M thỏa mãn \overrightarrow{OM} = (2x - 4)\overrightarrow{i} -4\overrightarrow{j} + (y - 1) \overrightarrow{k}. Khi điểm M \in Oy thì giá trị x + 2y bằng?

    Ta có:

    \left\{ \begin{matrix}
\overrightarrow{OM} = (2x - 4)\overrightarrow{i} - 4\overrightarrow{j} +
(y - 1)\overrightarrow{k} \\
M \in Oy \\
\end{matrix} ight.

    \Rightarrow \left\{ \begin{matrix}
2x - 4 = 0 \\
y - 1 = 0 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
x = 2 \\
y = 1 \\
\end{matrix} ight.

    Vậy x + 2y = 4 

  • Câu 18: Thông hiểu

    Xác định tọa độ điểm M

    Trong không gian Oxyz, điểm M thuộc trục Ox và cách đều hai điểm A(4;2; - 1)B(2;1;0)

    M \in Ox \Rightarrow
M(x;0;0).

    Ta có: \overrightarrow{MA} = (4 - x;2; -
1),\ \ \overrightarrow{MB} = (2 - x;1;0)

    M cách đều hai điểm A,\ \ B khi MA = MB

    \Leftrightarrow \sqrt{(4 - x)^{2} +
2^{2} + ( - 1)^{2}} = \sqrt{(2 - x)^{2} + 1^{2} + 0^{2}}

    \Leftrightarrow x = 4

  • Câu 19: Thông hiểu

    Chọn đáp án đúng

    Cho hình lập phương ABCD.A_{1}B_{1}C_{1}D_{1}. Tính \overrightarrow{AC_{1}}.\overrightarrow{BD}.

    Hình vẽ minh họa

    Ta có: \overrightarrow{AC_{1}}.\overrightarrow{BD} =
\left( \overrightarrow{AA_{1}} + \overrightarrow{AC} ight)\left(
\overrightarrow{AD} - \overrightarrow{AB} ight)

    =
\overrightarrow{AC}.\overrightarrow{AD} -
\overrightarrow{AC}.\overrightarrow{AB} =
\overrightarrow{AC}.\overrightarrow{BD} = 0

    \Rightarrow
\overrightarrow{AC_{1}}.\overrightarrow{BD} = 0

  • Câu 20: Vận dụng

    Ghi đáp án vào ô trống

    Trong không gian với hệ trục tọa độ Oxyz, cho các điểm A(2;0;0),B(0;2;0),C(0;0;2). Có tất cả bao nhiêu điểm Mtrong không gian thỏa mãn M eq A,M eq B,M eq C\widehat{AMB} = \widehat{BMC} =\widehat{CMA} = 90^{0}?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Trong không gian với hệ trục tọa độ Oxyz, cho các điểm A(2;0;0),B(0;2;0),C(0;0;2). Có tất cả bao nhiêu điểm Mtrong không gian thỏa mãn M eq A,M eq B,M eq C\widehat{AMB} = \widehat{BMC} =\widehat{CMA} = 90^{0}?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 21: Vận dụng

    Tìm tọa độ điểm C’

    Trong không gian hệ trục tọa độ Oxyz, cho hình hộp ABCD.A'B'C'D' có tọa độ các điểm A( -3;0;0),B(0;2;0),D(0;0;1),A'(1;2;3). Giả sử điểm C'(a;b;c). Tính giá trị biểu thức T=a+b+2c?

    Gọi điểm C'(x;y;z)

    Ta có: \left\{ \begin{matrix}\overrightarrow{AB} = (3;2;0) = 3\overrightarrow{i} +2\overrightarrow{j} + 0.\overrightarrow{k} \\\overrightarrow{AD} = (3;0;1) = 3.\overrightarrow{i} +0.\overrightarrow{j} + 1.\overrightarrow{k} \\\overrightarrow{AA'} = (4;2;3) = 4.\overrightarrow{i} +2\overrightarrow{j} + 3\overrightarrow{k} \\\end{matrix} ight.

    \overrightarrow{AB} +\overrightarrow{AD} + \overrightarrow{AA'} =\overrightarrow{AC'} \Rightarrow \overrightarrow{AC'} =10\overrightarrow{i} + 4\overrightarrow{j} +4\overrightarrow{k}

    Suy ra \left\{ \begin{matrix}x = 10 + 3 \\y = 4 - 0 \\z = 4 - 0 \\\end{matrix} ight.\  \Rightarrow C'(13;4;4) suy ra a=13;b=4;c=4

    Vậy  T=25

  • Câu 22: Nhận biết

    Tìm tọa độ hình chiếu của M trên Ox

    Trong không gian Oxyz, cho điểm M(1;2;3). Tìm tọa độ hình chiếu M lên trục Ox.

    Tọa độ hình chiếu của điểm M trên trục Ox là (1;0;0)

  • Câu 23: Vận dụng cao

    Tính giá trị biểu thức

    Trong không gian với hệ trục tọa độ Oxyz, cho hai điểm A(1;2; - 2),B\left(
\frac{8}{3};\frac{4}{3};\frac{8}{3} ight). Biết I(a;b;c) là tâm đường tròn nội tiếp tam giác OAB. Tính giá trị biểu thức U = a - b + c?

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}\overrightarrow{OA} = (1;2; - 2) \Rightarrow OA = 3 \\\overrightarrow{OB} = \left( \dfrac{8}{3};\dfrac{4}{3};\dfrac{8}{3} ight)\Rightarrow OB = 4 \\\end{matrix} ight.

    Gọi D là chân đường phân giác kẻ từ O ta có:

    \overrightarrow{DA} = -
\frac{DA}{DB}.\overrightarrow{DB} = -
\frac{OA}{OB}.\overrightarrow{DB}

    \Rightarrow \overrightarrow{DA} = -
\frac{3}{4}.\overrightarrow{DB} \Rightarrow \overrightarrow{OD} =
\frac{4\overrightarrow{OA} + 3\overrightarrow{OB}}{7}. Do đó D\left( \frac{12}{7};\frac{12}{7};0
ight)

    Ta có: \overrightarrow{AD} = \left(
\frac{5}{7}; - \frac{2}{7};2 ight) \Rightarrow AD =
\frac{15}{7}

    \overrightarrow{ID} = -
\frac{AD}{AO}.\overrightarrow{IO} = - \frac{5}{7}\overrightarrow{IO}
\Rightarrow \overrightarrow{OI} = \frac{7}{12}\overrightarrow{OD}
\Rightarrow D(1;1;0)

    \Rightarrow \left\{ \begin{matrix}
a = 1 \\
b = 1 \\
c = 0 \\
\end{matrix} ight.\  \Rightarrow U = 0

  • Câu 24: Thông hiểu

    Chọn khẳng định đúng

    Cho tứ diệnABCD. Gọi P,\ Q là trung điểm của ABCD. Chọn khẳng định đúng?

    Ta có : \overrightarrow{PQ} =
\overrightarrow{PB} + \overrightarrow{BC} + \overrightarrow{CQ}\overrightarrow{PQ} = \overrightarrow{PA}
+ \overrightarrow{AD} + \overrightarrow{DQ}

    nên 2\overrightarrow{PQ} = \left(
\overrightarrow{PA} + \overrightarrow{PB} ight) + \overrightarrow{BC}
+ \overrightarrow{AD} + \left( \overrightarrow{CQ} + \overrightarrow{DQ}
ight) = \overrightarrow{BC} + \overrightarrow{AD}.

    Vậy \overrightarrow{PQ} = \frac{1}{2}\left(
\overrightarrow{BC} + \overrightarrow{AD} ight)

  • Câu 25: Thông hiểu

    Xác định tọa độ điểm Q

    Trong không gian tọa độ Oxyzcho ba điểm M(1;1;1),\ N(2;3;4),\
P(7;7;5). Tìm tọa độ điểm Q để tứ giác MNPQ là hình bình hành

    Minh họa bằng hình vẽ sau:

    Ta có \overrightarrow{MN} = (1;2;3),\
\overrightarrow{QP} = \left( 7 - x_{Q};7 - y_{Q};5 - z_{Q}
ight).

    MNPQ là hình bình hành \Leftrightarrow \overrightarrow{MN} =
\overrightarrow{QP}

    \Leftrightarrow \left\{ \begin{matrix}
1 = 7 - x_{Q} \\
2 = 7 - y_{Q} \\
3 = 5 - z_{Q} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x_{Q} = 6 \\
y_{Q} = 5 \\
z_{Q} = 2 \\
\end{matrix} ight..

    Vậy Q(6;5;2).

  • Câu 26: Thông hiểu

    Tìm tọa độ vectơ

    Trong không gian với hệ trục tọa độ Oxyz cho vectơ \overrightarrow{a} = 6.\overrightarrow{i} +
8.\overrightarrow{k} + 7.\overrightarrow{j}. Khi đó tọa độ của \overrightarrow{a} là.

    Do \overrightarrow{a} =
6\overrightarrow{i} + 8\overrightarrow{k} + 7\overrightarrow{j} =
6\overrightarrow{i} + 7\overrightarrow{j} + 8\overrightarrow{k}
\Rightarrow \overrightarrow{a} = (6;\ 7;\ 8).

  • Câu 27: Nhận biết

    Chọn kết luận đúng

    Trong không gian cho hình hộp ABCD.A'B'C'D'. Khi đó \overrightarrow{CD} + \overrightarrow{CB} +
\overrightarrow{CC'} bằng:

    Theo quy tắc hình hộp ta có \overrightarrow{CD} + \overrightarrow{CB} +\overrightarrow{CC'} = \overrightarrow{CA'}.

  • Câu 28: Thông hiểu

    Tìm tọa độ điểm M thỏa mãn yêu cầu

    Trong không gian hệ trục tọa độ Oxyz, cho ba điểm A(3;1; - 4),B(2;1; - 2),C(1;1; - 3). Tìm điểm M \in Ox sao cho \left| \overrightarrow{MA} + \overrightarrow{MB} +
\overrightarrow{MC} ight| đạt giá trị nhỏ nhất?

    M \in Ox suy ra M(m;0;0). Ta có: \left\{ \begin{matrix}
\overrightarrow{MA} = (3 - m;1; - 4) \\
\overrightarrow{MB} = (2 - m;1; - 2) \\
\overrightarrow{MC} = (1 - m;1; - 3) \\
\end{matrix} ight.

    Theo bài ra:

    \left| \overrightarrow{MA} +
\overrightarrow{MB} + \overrightarrow{MC} ight| = \sqrt{(6 - 3m)^{2} +
3^{2} + ( - 9)^{2}}

    = \sqrt{9m^{2} - 36m + 126} = \sqrt{9(m
- 2)^{2} + 90} \geq 3\sqrt{10};\forall m\mathbb{\in R}

    Vậy \left| \overrightarrow{MA} +
\overrightarrow{MB} + \overrightarrow{MC} ight| nhỏ nhất bằng 3\sqrt{10} khi m - 2 = 0 \Leftrightarrow m = 2. Hay M(2;0;0)

  • Câu 29: Nhận biết

    Phân tích vectơ

    Cho hình lập phương ABCD.A_{1}B_{1}C_{1}D_{1}. Hãy phân tích vectơ \overrightarrow{BD} theo các vectơ \overrightarrow{AB};\overrightarrow{AD};\overrightarrow{AA_{1}}?

    Hình vẽ minh họa

    Theo quy tắc hình bình hành ta có:

    \overrightarrow{BD} =
\overrightarrow{AD} - \overrightarrow{AB} \Rightarrow
\overrightarrow{BD} = - \overrightarrow{AB} + \overrightarrow{AD} +
0.\overrightarrow{AA_{1}}

  • Câu 30: Thông hiểu

    Tính góc giữa hai đường thẳng

    Cho tứ diện đều ABCD. Số đo giữa hai đường thẳng ABCD bằng:

    Hình vẽ minh họa

    Gọi M là trung điểm của CD

    Ta có: \left\{ \begin{matrix}
\overrightarrow{CD}.\overrightarrow{AM} = \overrightarrow{0} \\
\overrightarrow{CD}.\overrightarrow{MB} = \overrightarrow{0} \\
\end{matrix} ight.

    \Rightarrow
\overrightarrow{CD}.\overrightarrow{AB} = \overrightarrow{CD}.\left(
\overrightarrow{AM} + \overrightarrow{MB} ight) =
\overrightarrow{CD}.\overrightarrow{AM} +
\overrightarrow{CD}.\overrightarrow{MB} =
\overrightarrow{0}

    Suu ra \overrightarrow{AB}\bot\overrightarrow{CD} nên số đo góc giữa hai đường thẳng AB;CD bằng 90^{0}.

  • Câu 31: Vận dụng

    Chọn phương án thíchhợp

    Trong không gian với hệ tọa độ Oxyz, cho A(1;0;2), B(3;1;4), C(3; - 2;1). Tìm tọa độ điểm S, biết SA vuông góc với (ABC), mặt cầu ngoại tiếp tứ diện S.ABC có bán kính bằng \frac{3\sqrt{11}}{2}S có cao độ âm.

    Hình vẽ minh họa

    Ta có \overrightarrow{AB} =
(2;1;2), \overrightarrow{AC} = (2;
- 2; - 1) \Rightarrow \left\lbrack
\overrightarrow{AB},\overrightarrow{AC} ightbrack = (3;6; -
6).

    Do SA vuông góc với nên một VTCP của đường thẳng SA được chọn là \overrightarrow{u} = \left\lbrack
\overrightarrow{AB};\overrightarrow{AC} ightbrack = (3;6; -
6).

    Đường thẳng SA qua A(1;0;2) và có VTCP \overrightarrow{u} = (3;6; - 6) nên có phương trình tham số là:

    \left\{ \begin{matrix}
x = 1 + 3t \\
y = 6t \\
z = 2 - 6t \\
\end{matrix} ight.\ \left( t\mathbb{\in R} ight).

    Do \overrightarrow{AB}.\overrightarrow{AC} = 4 - 2 -
2 = 0 \Rightarrow AB\bot AC \Rightarrow \Delta ABC vuông tại A.

    Gọi M là trung điểm BC, khi đó M là tâm đường tròn ngoại tiếp tam giác ABC. Gọi d là đường thẳng qua M và song song với SA nên d\bot(ABC), suy ra d là trục đường tròn ngoại tiếp \Delta ABC.

    Trong mặt phẳng (SAM) vẽ đường trung trực của SA cắt d tại I và cắt SA tại N.

    Mặt phẳng (ABC) qua A và có một VTPT \overrightarrow{n} = \left\lbrack
\overrightarrow{AB};\overrightarrow{AC} ightbrack = (3;6; -
6) nên có phương trình tổng quát là:

    3(x - 1) + 6y - 6(z - 2) = 0
\Leftrightarrow x + 2y - 2z + 3 = 0

    \overrightarrow{BC} = (0; - 3; - 3)
\Rightarrow BC = \sqrt{18} \Rightarrow BC^{2} = 18.

    Ta có R^{2} = IA^{2} + AM^{2}
\Leftrightarrow \frac{99}{4} = IM^{2} + \frac{1}{4}BC^{2} \Rightarrow IM
= \frac{9}{2}.

    Do S \in SA nên S(1 + 3t;6t;2 - 6t), mà SA = 2IM \Rightarrow SA = 9

    \Leftrightarrow d\left( S,(ABC) ight)
= 9

    \Leftrightarrow \frac{\left| 1 + 3t +
12t - 2(2 - 6t) + 3 ight|}{\sqrt{1^{2} + ( - 2)^{2} + 2^{2}}} =
9

    \Leftrightarrow |27t| = 27
\Leftrightarrow \left\lbrack \begin{matrix}
t = 1 \Rightarrow S(4;6; - 4) \\
t = - 1 \Rightarrow S( - 2; - 6;8) \\
\end{matrix} ight., mà cao độ của S âm nên S(4;6; - 4) thỏa mãn.

  • Câu 32: Thông hiểu

    Chọn đáp án đúng

    Trong không gian Oxyz, cho tọa độ ba điểm A( - 1; -
2;3),B(0;3;1),C(4;2;2). Tính cosin góc \widehat{BAC}?

    Ta có: \left\{ \begin{matrix}
\overrightarrow{AB} = (1;5; - 2) \\
\overrightarrow{AC} = (5;4; - 1) \\
\end{matrix} ight..

    \cos\widehat{BAC} = \cos\left(
\overrightarrow{AB};\overrightarrow{AC} ight) =
\frac{\overrightarrow{AB}.\overrightarrow{AC}}{\left|
\overrightarrow{AB} ight|.\left| \overrightarrow{AC} ight|} =
\frac{5 + 20 + 2}{\sqrt{30}.\sqrt{42}} =
\frac{9}{2\sqrt{35}}

  • Câu 33: Thông hiểu

    Tính tích vô hướng hai vectơ

    Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Tính tích vô hướng \overrightarrow{AC}.\overrightarrow{B'C'}?

    Hình vẽ minh họa

    Ta có: \overrightarrow{AC} =
\overrightarrow{B'C'} nên \left(
\overrightarrow{AC};\overrightarrow{B'C'} ight) = \left(
\overrightarrow{AC};\overrightarrow{AD} ight) = \widehat{CAD} =
45^{0}

    Suy ra \overrightarrow{AC}.\overrightarrow{B'C'}= \left| \overrightarrow{AC} ight|.\left|\overrightarrow{B'C'} ight|.\cos\left(\overrightarrow{AC};\overrightarrow{B'C'} ight)

    =a\sqrt{2}.a.\cos45^{0} =a^{2}

  • Câu 34: Nhận biết

    Xác định mệnh đề không chính xác

    Cho tứ diện đều ABCD. Mệnh đề nào sau đây sai?

    Vì tứ diện ABCD là tứ diện đều nên có các cặp cạnh đối vuông góc

    Suy ra \overrightarrow{AC}.\overrightarrow{BD} =
\overrightarrow{AD}.\overrightarrow{BC} =
\overrightarrow{AB}.\overrightarrow{CD} =
\overrightarrow{0}

    Vậy mệnh đề chưa chính xác là: \overrightarrow{AD}.\overrightarrow{CD} =
\overrightarrow{AC}.\overrightarrow{DC} =
\overrightarrow{0}.

  • Câu 35: Nhận biết

    Tìm tọa độ vectơ

    Trong không gian với hệ trục tọa độ Oxyz, cho ba vectơ \overrightarrow{a} = (1;2;3);\overrightarrow{b} =
(2;2; - 1);\overrightarrow{c} = (4;0; - 4). Tọa độ vectơ \overrightarrow{d} = \overrightarrow{a} -
\overrightarrow{b} + 2\overrightarrow{c} là:

    Ta có:

    \overrightarrow{d} = \overrightarrow{a}
- \overrightarrow{b} + 2\overrightarrow{c} = \left( 1 - 2 + 2.4;2 - 2 +
2.0;3 + 1 + 2.( - 4) ight) = (7;0; - 4)

    Vậy \overrightarrow{d}(7;0; -
4)

  • Câu 36: Thông hiểu

    Ghi đáp án vào ô trống

    Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A( - 1; - 1;3), B(0;2;0) C(5; - 2;1). Điểm D(a;b;c) sao cho tứ giác ABCD là hình bình hành. Tính S = a + b + c?

    Đáp án: 3

    Đáp án là:

    Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A( - 1; - 1;3), B(0;2;0) C(5; - 2;1). Điểm D(a;b;c) sao cho tứ giác ABCD là hình bình hành. Tính S = a + b + c?

    Đáp án: 3

    Gọi D = (x;y;z) \Rightarrow \overrightarrow{DC} = (5 - x; - 2 -
y;1 - z)

    Ta có: \overrightarrow{AB} = (1;3; -
3)

    ABCD là hình bình hành nên \overrightarrow{AB} =
\overrightarrow{DC}

    \Rightarrow \left\{ \begin{matrix}
5 - x = 1 \\
- 2 - y = 3 \\
1 - z = - 3 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 4 \\
y = - 5 \\
z = 4 \\
\end{matrix} ight.\  \Rightarrow D(4; - 5;4).

    Vậy S = a + b + c = 3.

  • Câu 37: Vận dụng

    Xác định tọa độ điểm M

    Trong không gian với hệ tọa độ Oxyz, cho hai điểm A( - 1;2;3)B(3; - 1;2). Điểm M thỏa mãn MA.\overrightarrow{MA} =
4MB.\overrightarrow{MB} có tọa độ là:

    Từ giả thiết MA.\overrightarrow{MA} =
4MB.\overrightarrow{MB} \Rightarrow \overrightarrow{MA} =
4\frac{MB}{MA}.\overrightarrow{MB} nên ba điểm M;A;B thẳng hàng và A;B nằm cùng phía so với điểm M do \frac{4MB}{MA} dương.

    Lại có MA.\overrightarrow{MA} =
4MB.\overrightarrow{MB}

    \Rightarrow \left(
MA.\overrightarrow{MA} \right)^{2} = \left( 4MB.\overrightarrow{MB}
\right)^{2}

    \Rightarrow MA^{4} = 16MB^{4} \Rightarrow
MA = 2MB.

    Vậy B là trung điểm của MA.

    Khi đó ta đươc tọa độ điểm M(7; -
4;1).

  • Câu 38: Nhận biết

    Tìm ba điểm thẳng hàng trong 4 điểm đã cho

    Trong không gian Oxyz, cho bốn điểm A( - 1;\ 2;\ 0), B(3;\ 1;\ 0), C(0;\ 2;\ 1)D(1;\ 2;\ 2). Trong đó có ba điểm thẳng hàng là

    Ta có: \overrightarrow{AC} = (1;\ 0;\
1), \overrightarrow{AD} = (2;\ 0;\
2)

    \overrightarrow{AC} \land
\overrightarrow{AD} = \overrightarrow{0}, nên hai vecto \overrightarrow{AC}, \overrightarrow{AD} cùng phương, hay ba điểm \mathbf{A}\mathbf{,}\mathbf{C}\mathbf{,}\mathbf{D} thẳng hàng.

    Nhận xét: Có thể vẽ phát họa lên hệ tọa độ Oxyz để nhìn nhận dễ dàng hơn.

  • Câu 39: Thông hiểu

    Định các giá trị của x và y

    Trong không gian với hệ trục tọa độ Oxyz, cho điểm A(2; - 1;5),B(5; - 5;7),M(x;y;1). Với giá trị nào của x;y thì ba điểm đã cho thẳng hàng?

    Ta có: \left\{ \begin{matrix}
\overrightarrow{AB} = (3; - 4;2) \\
\overrightarrow{AM} = (x - 2;y + 1; - 4) \\
\end{matrix} ight.

    Vì ba điểm A; B; M thẳng hàng nên \overrightarrow{AB};\overrightarrow{AM} cùng phương

    \Leftrightarrow \frac{x - 2}{3} =
\frac{y + 1}{- 4} = \frac{- 4}{2} \Leftrightarrow \left\{ \begin{matrix}
x = - 4 \\
y = 7 \\
\end{matrix} ight.

    Vậy đáp án cần tìm là x = - 4;y =
7.

  • Câu 40: Vận dụng

    Ghi đáp án vào ô trống

    Trong không gian với hệ trục tọa độ Oxyz, cho tam giác ABC có tọa độ các đỉnh A(1;2; - 1),B(2; - 1;3),C( - 4;7;5). Gọi D(a;b;c) là chân đường phân giác trong của góc B trong tam giác ABC. Tính giá trị biểu thức W = a + b + 2c?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Trong không gian với hệ trục tọa độ Oxyz, cho tam giác ABC có tọa độ các đỉnh A(1;2; - 1),B(2; - 1;3),C( - 4;7;5). Gọi D(a;b;c) là chân đường phân giác trong của góc B trong tam giác ABC. Tính giá trị biểu thức W = a + b + 2c?

    Chỗ nhập nội dung câu trả lời tự luận
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 2 Vectơ và hệ trục tọa độ trong không gian Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo