Tính góc giữa hai vecto
Cho hình chóp
có
và
. Hãy xác định góc giữa cặp vectơ
và
?
Hình vẽ minh họa
Ta có
Hãy cùng thử sức kiểm tra đánh giá các kiến thức tổng quan với bài kiểm tra phút Chương 2: Vectơ và hệ trục tọa độ trong không gian Toán 12 sách Kết nối tri thức các em nhé!
Tính góc giữa hai vecto
Cho hình chóp
có
và
. Hãy xác định góc giữa cặp vectơ
và
?
Hình vẽ minh họa
Ta có
Xác định tọa độ tổng hai vectơ
Trong không gian
, cho hai vectơ
. Vectơ
có tọa độ là:
Ta có:
Vậy đáp án cần tìm là
Định tọa độ trọng tâm tam giác
Xác định tọa độ trọng tâm
của tam giác
, biết rằng
?
Tọa độ trọng tâm G của tam giác được xác định như sau:
Phân tích vectơ
Cho hình lập phương
. Hãy phân tích vectơ
theo các vectơ
?
Hình vẽ minh họa
Theo quy tắc hình bình hành ta có:
Chọn mệnh đề đúng
Trong không gian với hệ trục tọa độ
, cho ba vectơ
,
và
. Chọn mệnh đề đúng?
Ta có: là mệnh đề đúng.
Tìm tọa độ vecto
Trong không gian tọa độ Oxyz, cho ba vectơ
. Gọi
là vectơ thoả mãn:
. Tọa độ của vectơ
là:
Đặt .
Ta có:
Vậy .
Tìm tọa độ vectơ
Trong không gian
, cho hai điểm
và
. Vectơ
có tọa độ là:
Ta có:
Vậy đáp án đúng là: .
Chọn đáp án đúng
Trong không gian với hệ trục tọa độ
, cho ba vectơ
. Khi đó giá trị của
bằng bao nhiêu?
Ta có: .
Khi đó
Vậy đáp án cần tìm là:
Chọn khẳng định đúng
Trong không gian hệ trục tọa độ
, cho hình hộp
có tọa độ các điểm
. Tìm tọa độ điểm
?
Theo quy tắc hình hộp ta có:
Lại có do đó
hay
Suy ra
Chọn đáp án chính xác
Trong không gian, cho hai vectơ
và
. Vectơ
bằng
Theo quy tắc ba điểm: .
Tìm tọa độ vectơ
Trong không gian
, cho hai điểm
và
. Vectơ
có tọa độ là:
Ta có:
Vậy đáp án đúng là: .
Chọn phương án thích hợp
Cho hình hộp
. Trong các vectơ sau, vectơ nào bằng vectơ
?
Hình vẽ minh họa:
Đáp án cần tìm:
Chọn phát biểu đúng
Trong không gian tọa độ
, cho hai điểm
,
. Gọi
là tập hợp các điểm
trong không gian thỏa mãn
. Khẳng định nào sau đây là đúng?
Gọi là trung điểm
.
Ta có :
.
Suy ra tập hợp điểm trong không gian là mặt cầu tâm
, bán kính bằng 2.
Vậy là một mặt cầu có bán kính bằng
.
Tìm tổng x và y
Trong không gian
cho ba điểm
,
,
thẳng hàng. Tổng
bằng
Ta có ,
.
Ba điểm thẳng hàng
và
cùng phương
.
Xác định tính đúng sai của từng phương án
Trong không gian với hệ trục tọa độ
, cho
, với
là hai vectơ đơn vị trên hai trục tọa độ
, hai điểm
.
a)
. Đúng||Sai
b) Ba điểm
thẳng hàng. Sai||Đúng
c) Điểm
là điểm đối xứng của với
qua
. Khi đó
. Đúng||Sai
d) Điểm
trên mặt phẳng
sao cho
đạt giá trị nhỏ nhất. Khi đó
. Đúng||Sai
Trong không gian với hệ trục tọa độ
, cho
, với
là hai vectơ đơn vị trên hai trục tọa độ
, hai điểm
.
a)
. Đúng||Sai
b) Ba điểm
thẳng hàng. Sai||Đúng
c) Điểm
là điểm đối xứng của với
qua
. Khi đó
. Đúng||Sai
d) Điểm
trên mặt phẳng
sao cho
đạt giá trị nhỏ nhất. Khi đó
. Đúng||Sai
a) Đúng: Vì nên
.
b) Sai: Ta có .
Vì nên
không cùng phương suy ra
không thẳng hàng.
c) Đúng
Vì là điểm đối xứng với
qua
nên
là trung điểm của
.
Ta có suy ra
.
Do đó . Vậy
.
d) Đúng. Gọi là điểm thỏa mãn
.
Ta có:
Do không thay đổi nên
nhỏ nhất khi
nhỏ nhất hay
là hình chiếu của điểm
trên mặt phẳng
.
Do đó suy ra
.
Vậy .
Tìm tọa độ vecto
Trong không gian với hệ tọa độ
, cho điểm
thỏa
và
. Tọa độ của vectơ
là
Ta có:
Suy ra
Chọn đáp án đúng
Trong không gian với hệ tọa độ
, cho hình lập phương
có độ dài cạnh bằng 1 như hình vẽ.

Tọa độ của vectơ
là
Ta có:
Ghi đáp án đúng vào ô trống
Trong không gian
, cho ba điểm
,
,
và
là điểm thuộc mặt phẳng
. Tính giá trị nhỏ nhất của
.
Đáp án: 27
Trong không gian
, cho ba điểm
,
,
và
là điểm thuộc mặt phẳng
. Tính giá trị nhỏ nhất của
.
Đáp án: 27
Gọi sao cho
.
Ta có: .
Suy ra .
Xét
.
Từ ta có
.
khi
ngắn nhất hay
là hình chiếu vuông góc của
lên mặt phẳng
.
Khi đó: .
Tìm tọa độ điểm P
Trong không gian
, cho hai điểm
,
, tọa độ điểm
thuộc trục
sao cho
thẳng hàng là
Vì điểm thuộc trục
nên
có tọa độ
.
Ta có ;
thẳng hàng
cùng phương
Vậy điểm .
Xác định tính đúng sai của từng phương án
Trong không gian
cho hai điểm
. Xác định tính đúng sai của từng phương án dưới đây:
a) Hình chiếu của điểm M trên trục Oy có tọa độ là (−2;3;1). Sai||Đúng
b) Gọi E là điểm đối xứng của điểm M qua N. Tọa độ của điểm E là
. Đúng||Sai
c) Cho
, tam giác MNP vuông tại N khi và chỉ khi m = 1. Đúng||Sai
d) Điểm
nằm trên mặt phẳng (Oxy) thỏa mãn
đạt giá trị nhỏ nhất. Khi đó
. Sai||Đúng
Trong không gian
cho hai điểm
. Xác định tính đúng sai của từng phương án dưới đây:
a) Hình chiếu của điểm M trên trục Oy có tọa độ là (−2;3;1). Sai||Đúng
b) Gọi E là điểm đối xứng của điểm M qua N. Tọa độ của điểm E là
. Đúng||Sai
c) Cho
, tam giác MNP vuông tại N khi và chỉ khi m = 1. Đúng||Sai
d) Điểm
nằm trên mặt phẳng (Oxy) thỏa mãn
đạt giá trị nhỏ nhất. Khi đó
. Sai||Đúng
a) Sai: Hình chiếu của điểm trên trục
có tọa độ là
b) Đúng: Vì là trung điểm của
.
c) Đúng: Ta có .
vuông tại
.
d) Sai.
Gọi thỏa
Suy ra .
Khi đó .
đạt giá trị nhỏ nhất khi và chỉ khi
là hình chiếu của
trên
.
Vậy .
Suy ra
Xác định tọa độ vector
Để theo dõi hành trình của một chiếc một chiếc máy bay, ta có thể lập hệ toạ độ Oxyz có gốc O trùng với vị trí của trung tâm kiểm soát không lưu, mặt phẳng (Oxy) trùng với mặt đất với trục Ox hướng về phía tây, trục Oy hướng về phía nam và trục Oz hướng thẳng đứng lên trời. Sau khi cất cánh và đạt độ cao nhất định, chiếc máy bay duy trì hướng bay về phía nam với tốc độ không đổi là 890 km/h trong nửa giờ. Xác định toạ độ của vectơ biểu diễn độ dịch chuyển của chiếc máy bay trong nửa giờ đó đối với hệ toạ độ đã chọn, biết rằng đơn vị đo trong không gian Oxyz được lấy theo km.

Quãng đường máy bay bay được với vận tốc 890km/h trong nửa giờ là:
Vì máy bay duy trì hướng bay về phía nam nên toạ độ của vectơ biểu diễn độ dịch chuyển của chiếc máy bay trong nửa giờ đó với hệ toạ độ đã chọn là (0;445;0).
Tìm tọa độ vectơ
Trong không gian với hệ trục tọa độ
, cho hai vectơ
. Tìm tọa độ vectơ
?
Ta có: . Khi đó
.
Vậy
Tính góc giữa hai vecto
Cho tứ diện đều
có cạnh bằng
. Tính góc
.

Gọi là trung điểm
.
Khi đó,
Do tam giác đều nên
Và tam giác đều nên
Vậy .
Kết luận .
Chọn đáp án đúng
Điều kiện cần và đủ để ba vectơ
không đồng phẳng là:
Ba vectơ đồng phẳng khi và chỉ khi giá của chúng cùng song song với một mặt phẳng.
Tìm tọa độ điểm M
Trong không gian
giả sử
, khi đó tọa độ điểm
là
Ta có:
hay
Tính giá trị của k
Cho hình chóp
, mặt phẳng
cắt các tia
(
là trọng tâm tam giác
) lần lượt tại các điểm
.Ta có
. Hỏi k bằng bao nhiêu?
Hình vẽ minh họa

Do là trọng tâm của
nên
Mặt khác đồng phẳng nên
.
Ghi đáp án vào ô trống
Cho tứ diện
và các điểm
xác định bởi
. Tìm
để các đường thẳng
cùng song song với một mặt phẳng?
Cho tứ diện
và các điểm
xác định bởi
. Tìm
để các đường thẳng
cùng song song với một mặt phẳng?
Ghi đáp án vào ô trống
Trong không gian với hệ tọa độ Oxyz, cho
lần lượt là các vecto đơn vị nằm trên các trục tọa độ
và
là một vecto tùy ý khác
.
Tính ![]()
Đáp án: 1
Trong không gian với hệ tọa độ Oxyz, cho
lần lượt là các vecto đơn vị nằm trên các trục tọa độ
và
là một vecto tùy ý khác
.
Tính ![]()
Đáp án: 1
Giả sử .
Ta có
Vậy
Chọn phương án thích hợp
Cho hình lập phương
. Góc giữa đường thẳng
và mặt phẳng
bằng?

Góc giữa đường thẳng và mặt phẳng
bằng:
Ghi đáp án vào ô trống
Trong không gian, cho hai vectơ
và
có cùng độ dài bằng
. Biết độ dài của vectơ
bằng
. Biết số đo góc giữa hai vectơ
và
là
độ. Giá trị của
là bao nhiêu?
Trong không gian, cho hai vectơ
và
có cùng độ dài bằng
. Biết độ dài của vectơ
bằng
. Biết số đo góc giữa hai vectơ
và
là
độ. Giá trị của
là bao nhiêu?
Tìm tọa độ điểm N
Trong không gian với hệ tọa độ
, cho vectơ
và điểm
. Tọa độ điểm
thỏa mãn
là:
Gọi tọa độ điểm là
, ta có:
.
Ta có:
.
Vậy .
Xác định khẳng định sai
Cho hình hộp
có tất cả các cạnh đều bằng nhau.
Ta có:
Vì và
là hai hình thoi bằng nhau nên
+ suy ra
không vuông góc với
+ suy ra
Nên đáp án có thể sai vì chưa có điều kiện của góc
và
Tìm tọa độ điểm C’
Trong không gian hệ trục tọa độ
, cho hình hộp
có tọa độ các điểm
. Giả sử điểm
. Tính giá trị biểu thức
?
Gọi điểm
Ta có:
Mà
Suy ra suy ra
Vậy
Chọn đáp án đúng
Trong không gian hệ trục tọa độ
, cho các điểm
. Tìm tọa độ điểm
sao cho tứ giác
là hình bình hành?
Giả sử điểm ta có
là hình bình hành nên
. Vậy tọa độ điểm
.
Tìm tọa độ điểm M
Trong không gian
, cho hai điểm
,
. Điểm
thuộc đoạn
sao cho
, tọa độ điểm
là
Gọi .
Vì điểm thuộc đoạn
sao cho
Vậy .
Xác định giá trị của k
Cho hình hộp
CÓ
. Giá trị của
bằng:
Ta có:
Vậy .
Xác định mệnh đề đúng
Trong không gian với hệ tọa độ
, cho hình thang
có hai đáy
; có tọa độ ba đỉnh
. Biết hình thang có diện tích bằng
. Giả sử đỉnh
, tìm mệnh đề đúng?
Hình vẽ minh họa
Ta có:
Ta có
//
nên
và
cùng phương, cùng chiều
So với điều kiện suy ra:
Chọn đáp án đúng
Trong không gian cho hình hộp
có
. Gọi
là trung điểm của
,
là giao điểm của
và
. Mệnh đề nào sau đây đúng?
Hình vẽ minh họa
Vì I là trung điểm của B’C’ suy ra
Và K là giao điểm của nên theo định lí Talet
Ta có:
Khi đó
Vậy .
Chọn phương án thích hợp
Một chiếc ô tô được đặt trên mặt đáy dưới cùa một khung sắt có dạng hình hộp chữ nhật với đáy trên là hình chữ nhật
, mặt phẳng
song song với mặt phẳng nằm ngang. Khung sắt đó được buộc vào móc
của chiếc cần cẩu sao cho các đoạn dây cáp
có độ dài bằng nhau và cùng tạo với mặt phẳng
một góc bằng
. Chiếc cần cẩu kéo khung sắt lên theo phương thẳng đứng.

Tính trọng lượng của chiếc xe ô tô (làm tròn đến hàng đơn vị), biết rằng các lực căng
đều có cường độ là
và trọng lượng của khung sắt là
.
Hình vẽ minh họa

Gọi lần lượt là các điểm sao cho
.
Vì có độ dài bằng nhau và cùng tạo với mặt phẳng
một góc bằng
nên
có độ dài bằng nhau và cùng tạo với mặt phẳng
một góc bằng
.
Vì là hình chữ nhật nên
cũng là hình chữa nhật.
Gọi là tâm của hình chữ nhật
. Ta suy ra
.
Do đó góc giữa đường thẳng và mặt phẳng
bằng góc
suy ra
.
Ta có nên
.
Tam giác vuông tại
nên
.
Ta có:
.
Vì chiếc khung sắt chứa xe ô tô ở vị trí cân bằng nên , với
là trọng lực tác dụng lên khung sắt chứa xe ô tô.
Suy ra trọng lượng của khung sắt chứa chiếc xe ô tô là:
Vì trọng lượng của khung sắt là nên trọng lượng của chiếc xe ô tô là:
.
Tính giá trị biểu thức
Trong không gian hệ trục tọa độ
, cho
và
là điểm đối xứng cới điểm
qua
. Khi đó
bằng:
Gọi là hình chiếu của M trên
ta có
. Do
đối xứng với
qua
, khi đó
là trung điểm của
Suy ra từ đó
.
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: