Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề kiểm tra 45 phút Chương 2 Vectơ và hệ trục tọa độ trong không gian

Mô tả thêm:

Hãy cùng thử sức kiểm tra đánh giá các kiến thức tổng quan với bài kiểm tra phút Chương 2: Vectơ và hệ trục tọa độ trong không gian Toán 12 sách Kết nối tri thức các em nhé!

  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Nhận biết

    Chọn mệnh đề đúng

    Trong không gian Oxyz, cho \overrightarrow{u} = (1;2;0). Tọa độ vectơ \overrightarrow{u} là:

    Ta có: \overrightarrow{i} =(1;0;0);\overrightarrow{j} = (0;1;0);\overrightarrow{k} =(0;0;1)

    \overrightarrow{u} = x\overrightarrow{i}+ y\overrightarrow{j} + z\overrightarrow{k} \Leftrightarrow\overrightarrow{u} = (x;y;z)

    Suy ra \overrightarrow{u} = (1;2;0)\Leftrightarrow \overrightarrow{u} = \overrightarrow{i} +2\overrightarrow{j}

  • Câu 2: Vận dụng

    Xác định mối liên hệ giữa các hệ số

    Cho hình chóp S.ABC Lấy các điểm A',B',C' lần lượt thuộc các tia SA,SB,SC sao cho SA = a.SA',\ SB = b.SB',\ SC =
c.SC', trong đó a,b,c là các số thay đổi. Tìm mối liên hệ giữa a,b,cđể mặt phẳng (A'B'C') đi qua trọng tâm của tam giác ABC.

    Nếu a = b = c = 1 thì SA = SA',SB = SB',SC = SC' nên (ABC) \equiv
(A'B'C').

    Suy ra (A'B'C') đi qua trọng tâm của tam giác ABC

    =>a + b + c = 3 là đáp án đúng.

  • Câu 3: Thông hiểu

    Xác định tính đúng sai của từng phương án

    Cho tứ diện ABCD. Gọi M, N theo thứ tự là trung điểm ABCD. Khẳng định nào sau đây đúng?

    Xác định tính đúng sai của các khẳng định sau:

    a) \overrightarrow{MC} +
\overrightarrow{MD} + \overrightarrow{NA} + \overrightarrow{NB} =
4\overrightarrow{MN} Sai||Đúng

    b) \overrightarrow{AC} +
\overrightarrow{BD} = 2\overrightarrow{MN} Đúng||Sai

    c) \overrightarrow{AD} +
\overrightarrow{BC} = \overrightarrow{MN} Sai||Đúng

    d) \overrightarrow{AC} +
\overrightarrow{AD} = 2\overrightarrow{AN} Đúng||Sai

    Đáp án là:

    Cho tứ diện ABCD. Gọi M, N theo thứ tự là trung điểm ABCD. Khẳng định nào sau đây đúng?

    Xác định tính đúng sai của các khẳng định sau:

    a) \overrightarrow{MC} +
\overrightarrow{MD} + \overrightarrow{NA} + \overrightarrow{NB} =
4\overrightarrow{MN} Sai||Đúng

    b) \overrightarrow{AC} +
\overrightarrow{BD} = 2\overrightarrow{MN} Đúng||Sai

    c) \overrightarrow{AD} +
\overrightarrow{BC} = \overrightarrow{MN} Sai||Đúng

    d) \overrightarrow{AC} +
\overrightarrow{AD} = 2\overrightarrow{AN} Đúng||Sai

    a) Vì M, N là trung điểm của ABCD nên \overrightarrow{MC} + \overrightarrow{MD} =
2\overrightarrow{MN}\overrightarrow{NA} + \overrightarrow{NB} =
2\overrightarrow{NM}

    Nên \overrightarrow{MC} +
\overrightarrow{MD} + \overrightarrow{NA} + \overrightarrow{NB} =
\overrightarrow{0}.

    b) Ta có:

    \overrightarrow{AC} +
\overrightarrow{BD} = \overrightarrow{AM} + \overrightarrow{MC} +
\overrightarrow{BM} + \overrightarrow{MD}

    = \left( \overrightarrow{AM} +
\overrightarrow{BM} ight) + \left( \overrightarrow{MC} +
\overrightarrow{MD} ight)

    = \overrightarrow{0} +
2\overrightarrow{MN} = 2\overrightarrow{MN}

    c) Ta có:

    \overrightarrow{AD} +
\overrightarrow{BC} = \overrightarrow{AC} + \overrightarrow{CD} +
\overrightarrow{BD} + \overrightarrow{DC}

    = \left( \overrightarrow{AC} +
\overrightarrow{BD} ight) + \left( \overrightarrow{CD} +
\overrightarrow{DC} ight) = \overrightarrow{AC} + \overrightarrow{BD}
= 2\overrightarrow{MN}

    d) Do N là trung điểm của CD nên \overrightarrow{AC} + \overrightarrow{AD} =
2\overrightarrow{AN}

  • Câu 4: Thông hiểu

    Tìm tọa độ điểm D

    Trong không gian Oxyz, cho các điểm A(1;2; - 3),B(2;5;7),C( - 3;1;4). Xác định tọa độ điểm D sao cho tứ giác ABCD là hình bình hành?

    Giả sử điểm D(x;y;z) ta có ABCD là hình bình hành nên \overrightarrow{AB} =
\overrightarrow{DC}

    \Leftrightarrow \left\{ \begin{matrix}
1 = - 3 - x \\
3 = 1 - y \\
20 = 4 - z \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = - 4 \\
y = - 2 \\
z = - 6 \\
\end{matrix} ight.. Vậy tọa độ điểm D( - 4; - 2; - 6).

  • Câu 5: Vận dụng

    Xác định tính đúng sai của từng phương án

    Trong không gian với hệ trục tọa độ Oxyz, cho \overrightarrow{OA} = 3\overrightarrow{i} -
\overrightarrow{k}, với \overrightarrow{i},\overrightarrow{k} là hai vectơ đơn vị trên hai trục tọa độ Ox,Oz, hai điểm B( - 1;2;3),C(1;4;1).

    a) A(3;0; - 1). Đúng||Sai

    b) Ba điểm A,B,C thẳng hàng. Sai||Đúng

    c) Điểm D(a;b;c) là điểm đối xứng của với A qua B. Khi đó a +
b + c = 6. Đúng||Sai

    d) Điểm M(m;n;p) trên mặt phẳng (Oxy) sao cho MA^{2} + MB^{2} + MC^{2} đạt giá trị nhỏ nhất. Khi đó 2m - n + 2024p = 0. Đúng||Sai

    Đáp án là:

    Trong không gian với hệ trục tọa độ Oxyz, cho \overrightarrow{OA} = 3\overrightarrow{i} -
\overrightarrow{k}, với \overrightarrow{i},\overrightarrow{k} là hai vectơ đơn vị trên hai trục tọa độ Ox,Oz, hai điểm B( - 1;2;3),C(1;4;1).

    a) A(3;0; - 1). Đúng||Sai

    b) Ba điểm A,B,C thẳng hàng. Sai||Đúng

    c) Điểm D(a;b;c) là điểm đối xứng của với A qua B. Khi đó a +
b + c = 6. Đúng||Sai

    d) Điểm M(m;n;p) trên mặt phẳng (Oxy) sao cho MA^{2} + MB^{2} + MC^{2} đạt giá trị nhỏ nhất. Khi đó 2m - n + 2024p = 0. Đúng||Sai

    a) Đúng: Vì \overrightarrow{OA} =
3\overrightarrow{i} - \overrightarrow{k} nên A(3;0; - 1).

    b) Sai: Ta có \overrightarrow{AB} =
(4;2;4),\overrightarrow{AC} = ( - 2;4;2).

    4:2:4 eq - 2:4:2 nên \overrightarrow{AB},\overrightarrow{AC} không cùng phương suy ra A,B,C không thẳng hàng.

    c) Đúng

    D là điểm đối xứng với A qua B nên B là trung điểm của AD.

    Ta có \left\{ \begin{matrix}
x_{D} = 2x_{B} - x_{A} = - 5 \\
y_{D} = 2y_{B} - y_{A} = 4 \\
z_{D} = 2z_{B} - z_{A} = 7. \\
\end{matrix} ight. suy ra D( -
5;4;7).

    Do đó a = - 5,b = 4,c = 7. Vậy a + b + c = 6.

    d) Đúng. Gọi I(x;y;z) là điểm thỏa mãn \overrightarrow{IA} +
\overrightarrow{IB} + \overrightarrow{IC} =
\overrightarrow{0}.

    Ta có:

    \left\{ \begin{matrix}
3 - x - 1 - x + 1 - x = 0 \\
0 - y + 2 - y + 4 - y = 0 \\
- 1 - z + 3 - z + 1 - z = 0 \\
\end{matrix} ight.\Leftrightarrow \left\{ \begin{matrix}
x = 1 \\
y = 2 \\
z = 1 \\
\end{matrix} \Rightarrow I(1;2;1) ight.

    MA^{2} + MB^{2} + MC^{2}

    =(\overrightarrow{MI} + \overrightarrow{IA})^{2} + (\overrightarrow{MI} +\overrightarrow{IB})^{2} + (\overrightarrow{MI} +\overrightarrow{IC})^{2}

    = 3MI^{2} + IA^{2} + IB^{2} + IC^{2} +2\overrightarrow{MI}(\overrightarrow{IA} + \overrightarrow{IB} +\overrightarrow{IC})

    = 3MI^{2} + IA^{2} + IB^{2} + IC^{2}

    Do IA^{2} + IB^{2} + IC^{2} không thay đổi nên MA^{2} + MB^{2} +
MC^{2} nhỏ nhất khi MI nhỏ nhất hay M là hình chiếu của điểm I trên mặt phẳng (Oxy).

    Do đó M(1;2;0) suy ra m=1,n=2,p=0.

    Vậy 2m - n + 2024p = 2 - 2 + 0 =
0.

  • Câu 6: Vận dụng

    Tính tổng a và b

    Trong không gian Oxyz, cho mặt phẳng (P): x - y + 2 = 0 và hai điểm A(1;\ 2;\ 3), B(1;0;1). Điểm C(a;\ b;\  - 2) \in (P) sao cho tam giác ABC có diện tích nhỏ nhất. Tính a + b

    C(a;\ b;\  - 2) \in (P) \Rightarrow a - b
+ 2 = 0 \Rightarrow b = a + 2 \Rightarrow C(a;\ a + 2;\  -
2).

    \overrightarrow{AB} = (0;\  - 2;\  -
2), \overrightarrow{AC} = (a - 1\
;\ a\ ;\  - 5) \Rightarrow \left\lbrack
\overrightarrow{AB},\overrightarrow{AC} ightbrack = (10 + 2a\ ;\  -
2a + 2\ ;\ 2a - 2).

    S_{\Delta ABC} = \frac{1}{2}\left|
\left\lbrack \overrightarrow{AB},\overrightarrow{AC} ightbrack
ight| = \frac{\sqrt{(2a + 10)^{2} + 2(2a - 2)^{2}}}{2}

    = \frac{\sqrt{12a^{2} + 24a + 108}}{2} =
\sqrt{3\left( a^{2} + 2a + 9 ight)}

    = \sqrt{3(a + 1)^{2} + 24} \geq
2\sqrt{6} với \forall
a.

    Do đó \min S_{\Delta ABC} =
2\sqrt{6} khi a = - 1.

    Khi đó ta có C( - 1;\ 1; - 2) \Rightarrow
a + b = 0.

  • Câu 7: Vận dụng

    Ghi đáp án vào chỗ trống

    Khi chuyển động trong không gian, máy bay luôn chịu tác động của 4 lực chính: lực đẩy của động cơ, lực cản của không khí, trọng lực và lực nâng khí động học.

    Lực cản của không khí ngược hướng với lực đẩy của động cơ và có độ lớn tỉ lệ thuận với bình phương vận tốc máy bay. Một chiếc máy bay tăng vận tốc từ 900(km/h) lên 920(km/h), trong quá trình tăng tốc máy bay giữ nguyên hướng bay. Lực cản của không khí khi máy bay đạt vận tốc 900(km/h)920(km/h) lần lượt biểu diễn bởi hai vectơ \overrightarrow{F_{1}}\overrightarrow{F_{2}} với \overrightarrow{F_{1}} =k.\overrightarrow{F_{2}};\left( k\mathbb{\in R};k > 0ight). Tính giá trị của k (Làm tròn kết quả đến chữ số thập phân thứ hai).

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Khi chuyển động trong không gian, máy bay luôn chịu tác động của 4 lực chính: lực đẩy của động cơ, lực cản của không khí, trọng lực và lực nâng khí động học.

    Lực cản của không khí ngược hướng với lực đẩy của động cơ và có độ lớn tỉ lệ thuận với bình phương vận tốc máy bay. Một chiếc máy bay tăng vận tốc từ 900(km/h) lên 920(km/h), trong quá trình tăng tốc máy bay giữ nguyên hướng bay. Lực cản của không khí khi máy bay đạt vận tốc 900(km/h)920(km/h) lần lượt biểu diễn bởi hai vectơ \overrightarrow{F_{1}}\overrightarrow{F_{2}} với \overrightarrow{F_{1}} =k.\overrightarrow{F_{2}};\left( k\mathbb{\in R};k > 0ight). Tính giá trị của k (Làm tròn kết quả đến chữ số thập phân thứ hai).

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 8: Vận dụng

    Ghi đáp án vào ô trống

    Phòng khách của một ngôi nhà được thiết kế có dạng hình hộp chữ nhật với chiều dài 10\ m, chiều rộng 6\ m và cao 4\ m. Người ta trang trí một chiếc đèn chùm I ngay tại chính giữa trần nhà. Để đảm bảo độ sáng cho căn phòng, chủ nhà còn thiết kế thêm một bóng đèn tròn J treo chính giữa bức tường 6\ m và cách trần nhà 1\ m. Hỏi hai chiếc bóng đèn I,Jcách nhau bao nhiêu m? (Làm tròn đến hàng phần mười).

    Đáp án: 5,1

    Đáp án là:

    Phòng khách của một ngôi nhà được thiết kế có dạng hình hộp chữ nhật với chiều dài 10\ m, chiều rộng 6\ m và cao 4\ m. Người ta trang trí một chiếc đèn chùm I ngay tại chính giữa trần nhà. Để đảm bảo độ sáng cho căn phòng, chủ nhà còn thiết kế thêm một bóng đèn tròn J treo chính giữa bức tường 6\ m và cách trần nhà 1\ m. Hỏi hai chiếc bóng đèn I,Jcách nhau bao nhiêu m? (Làm tròn đến hàng phần mười).

    Đáp án: 5,1

    Hình vẽ minh họa

    Chọn hệ trục tọa độ như hình vẽ. Khi đó ta có tọa độ các điểm A(6;0;0),B(0;10;0),C(0;0;4).

    Từ đó ta suy ra tọa độ các điểm D(6;10;0),F(6;10;4).

    Đèn chùm I được đặt tại vị trí chính giữa trần nhà có dạng hình chữ nhật nên vị trí đặt là trung điểm của hai đường chéo CFEG nên ta có I(3;5;4)

    Gọi J_{1} là hình chiếu của bóng đèn J lên nền nhà. Khi đó J_{1} là trung điểm của BD nên J_{1}(3;10;0), do đó J(3;10;3).

    Vậy ta tính được

    \overrightarrow{IJ} = (0;5; - 1)
\Rightarrow IJ = \left| \overrightarrow{IJ} ight| = \sqrt{5^{2} + ( -
1)^{2}} = \sqrt{26} \approx 5,1\ (m)

  • Câu 9: Nhận biết

    Tính góc giữa hai mặt phẳng

    Trong không gian Oxyz, góc giữa hai mặt phẳng (Oxy)(Oyz) bằng:

    Ta có: góc giữa hai mặt phẳng (Oxy)(Oyz) bằng: 90^{0}.

  • Câu 10: Thông hiểu

    Tìm tọa độ vectơ

    Trong không gian với hệ trục tọa độ Oxyz cho \overrightarrow{a} = (2; - 1;3),\overrightarrow{b}
= (1; - 3;2),\overrightarrow{c} = (3;2; - 4). Gọi \overrightarrow{x} là vectơ thỏa mãn \left\{ \begin{matrix}
\overrightarrow{x}.\overrightarrow{a} = 4 \\
\overrightarrow{x}.\overrightarrow{b} = - 5 \\
\overrightarrow{x}.\overrightarrow{c} = 8 \\
\end{matrix} ight.. Tìm tọa độ \overrightarrow{x}?

    Giả sử \overrightarrow{x} =
(x;y;z), khi đó:

    \left\{ \begin{matrix}
\overrightarrow{x}.\overrightarrow{a} = 4 \\
\overrightarrow{x}.\overrightarrow{b} = - 5 \\
\overrightarrow{x}.\overrightarrow{c} = 8 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
2x - y + 3z = 4 \\
x - 3y + 2z = - 5 \\
3x + 2y - 4z = 8 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 2 \\
y = 3 \\
z = 1 \\
\end{matrix} ight.\  \Rightarrow \overrightarrow{x} =
(2;3;1)

  • Câu 11: Thông hiểu

    Tìm tọa độ điểm N

    Trong không gian với hệ tọa độ Oxyz, cho vectơ \overrightarrow{a} = \left( 2;\frac{1}{3}; - 5
\right) và điểm M(2;3;4). Tọa độ điểm N thỏa mãn \overrightarrow{MN} = \overrightarrow{a} là:

    Gọi tọa độ điểm N\left( x_{N};y_{N};z_{N} \right), ta có: \overrightarrow{MN} = \left( x_{N} - 2;y_{N}
- 3;z_{N} - 4 \right).

    Ta có: \overrightarrow{MN} =
\overrightarrow{a} \Leftrightarrow \left\{ \begin{matrix}
x_{N} - 2 = 2 \\
y_{N} - 3 = \frac{1}{3} \\
z_{N} - 4 = - 5 \\
\end{matrix} \right. \Leftrightarrow \left\{ \begin{matrix}
x_{N} = 2 + 2 \\
y_{N} = \frac{1}{3} + 3 \\
z_{N} = - 5 + 4 \\
\end{matrix} \right.\  \Leftrightarrow \left\{ \begin{matrix}
x_{N} = 4 \\
y_{N} = \frac{10}{3} \\
z_{N} = - 1 \\
\end{matrix} \right..

    Vậy N\left( 4;\frac{10}{3}; - 1
\right).

  • Câu 12: Thông hiểu

    Tìm tọa độ vectơ

    Tìm tọa độ véctơ \overrightarrow{u} biết rằng \overrightarrow{u} + \overrightarrow{a} =
\overrightarrow{0}\overrightarrow{a} = (1\ ;\  - 2\ ;\
1).

    Ta có \overrightarrow{u} +
\overrightarrow{a} = \overrightarrow{0} \Leftrightarrow
\overrightarrow{u} = - \overrightarrow{a} = ( - 1 ; 2 ;  -1).

  • Câu 13: Thông hiểu

    Tìm tọa độ điểm A

    Trong không gian Oxyz, cho \overrightarrow{OA} = 3\overrightarrow{i} +
4\overrightarrow{j} - 5\overrightarrow{k}. Tọa độ điểm A là:

    Ta có: \left\{ \begin{matrix}
3\overrightarrow{i} = (3;0;0) \\
4\overrightarrow{j} = (0;4;0) \\
5\overrightarrow{k} = (0;0;5) \\
\end{matrix} ight.\  \Rightarrow \overrightarrow{OA} =
3\overrightarrow{i} + 4\overrightarrow{j} - 5\overrightarrow{k}
\Rightarrow A(3;4; - 5)

  • Câu 14: Thông hiểu

    Tìm đẳng thức chưa chính xác

    Cho hình hộp ABCD.A'B'C'D và tâm O. Hãy chỉ ra đẳng thức sai trong các đẳng thức sau?

    Hình vẽ minh họa

    Theo quy tắc hình bình hành suy ra \overrightarrow{AC'} = \overrightarrow{AB} +
\overrightarrow{AD} + \overrightarrow{AA'} đúng.

    Do \overrightarrow{AB};\overrightarrow{CD} đối nhau và \overrightarrow{BC'};\overrightarrow{D'A} đối nhau nên \overrightarrow{AB} +
\overrightarrow{BC'} + \overrightarrow{CD} +
\overrightarrow{D'A} = \overrightarrow{0} đúng.

    Do \overrightarrow{AB} +
\overrightarrow{AA'} = \overrightarrow{AB'};\overrightarrow{AD}
+ \overrightarrow{DD'} = \overrightarrow{AD'} suy ra \overrightarrow{AB} =
\overrightarrow{AD} nên \overrightarrow{AB} + \overrightarrow{AA'} =
\overrightarrow{AD} + \overrightarrow{DD'} sai.

    Do \overrightarrow{AB} +
\overrightarrow{BC} + \overrightarrow{CC'} =
\overrightarrow{AC'}\overrightarrow{AD'} +
\overrightarrow{D'O} + \overrightarrow{OC'} =
\overrightarrow{AC'} nên \overrightarrow{AB} + \overrightarrow{BC} +
\overrightarrow{CC'} = \overrightarrow{AD'} +
\overrightarrow{D'O} + \overrightarrow{OC'} đúng.

  • Câu 15: Nhận biết

    Chọn đáp án đúng

    Điều kiện cần và đủ để ba vectơ \overrightarrow{a};\overrightarrow{b};\overrightarrow{c} không đồng phẳng là:

    Ba vectơ \overrightarrow{a};\overrightarrow{b};\overrightarrow{c} đồng phẳng khi và chỉ khi giá của chúng cùng song song với một mặt phẳng.

  • Câu 16: Nhận biết

    Chọn khẳng định đúng

    Trong không gian cho hình hộp ABCD.A'B'C'D'. Khẳng định nào sau đây đúng?

    Hình vẽ minh họa

    Ta có: \overrightarrow{AD} =
\overrightarrow{A_{1}D_{1}} = \overrightarrow{A_{1}C} +
\overrightarrow{CD_{1}} suy ra \overrightarrow{CD_{1}};\overrightarrow{AD};\overrightarrow{A_{1}C} đồng phẳng.

  • Câu 17: Nhận biết

    Chọn phương án thích hợp

    Cho hình hộp ABCD.A'B'C'D'. Trong các vectơ sau, vectơ nào bằng vectơ \overrightarrow{BC}?

    Hình vẽ minh họa:

    Đáp án cần tìm:  \overrightarrow{A'D'} 

  • Câu 18: Vận dụng cao

    Tính giá trị biểu thức

    Trong không gian với hệ trục tọa độ Oxyz, cho hai điểm A(1;2; - 2),B\left(
\frac{8}{3};\frac{4}{3};\frac{8}{3} ight). Biết I(a;b;c) là tâm đường tròn nội tiếp tam giác OAB. Tính giá trị biểu thức U = a - b + c?

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}\overrightarrow{OA} = (1;2; - 2) \Rightarrow OA = 3 \\\overrightarrow{OB} = \left( \dfrac{8}{3};\dfrac{4}{3};\dfrac{8}{3} ight)\Rightarrow OB = 4 \\\end{matrix} ight.

    Gọi D là chân đường phân giác kẻ từ O ta có:

    \overrightarrow{DA} = -
\frac{DA}{DB}.\overrightarrow{DB} = -
\frac{OA}{OB}.\overrightarrow{DB}

    \Rightarrow \overrightarrow{DA} = -
\frac{3}{4}.\overrightarrow{DB} \Rightarrow \overrightarrow{OD} =
\frac{4\overrightarrow{OA} + 3\overrightarrow{OB}}{7}. Do đó D\left( \frac{12}{7};\frac{12}{7};0
ight)

    Ta có: \overrightarrow{AD} = \left(
\frac{5}{7}; - \frac{2}{7};2 ight) \Rightarrow AD =
\frac{15}{7}

    \overrightarrow{ID} = -
\frac{AD}{AO}.\overrightarrow{IO} = - \frac{5}{7}\overrightarrow{IO}
\Rightarrow \overrightarrow{OI} = \frac{7}{12}\overrightarrow{OD}
\Rightarrow D(1;1;0)

    \Rightarrow \left\{ \begin{matrix}
a = 1 \\
b = 1 \\
c = 0 \\
\end{matrix} ight.\  \Rightarrow U = 0

  • Câu 19: Vận dụng

    Xác định tính đúng sai của các nhận định

    Trong không gian Oxyz, cho hình bình hành OABC với A(1;\ 2;\ 3), B(5;\ 0;\  - 1), và C(a;b;c)

    a. Tọa độ điểm O(0;0;1).Sai||Đúng

    b. Tọa độ vectơ \overrightarrow{OA} =
(1;\ 2;\ 3). Đúng||Sai

    c. \overrightarrow{OB} =
5.\overrightarrow{i} - \overrightarrow{k}. Đúng||Sai

    d. Nếu OABC hình bình hành, thì a + b + c = 2. Đúng||Sai

    Đáp án là:

    Trong không gian Oxyz, cho hình bình hành OABC với A(1;\ 2;\ 3), B(5;\ 0;\  - 1), và C(a;b;c)

    a. Tọa độ điểm O(0;0;1).Sai||Đúng

    b. Tọa độ vectơ \overrightarrow{OA} =
(1;\ 2;\ 3). Đúng||Sai

    c. \overrightarrow{OB} =
5.\overrightarrow{i} - \overrightarrow{k}. Đúng||Sai

    d. Nếu OABC hình bình hành, thì a + b + c = 2. Đúng||Sai

    (a) Tọa độ điểm O(0;0;1).

    Trong không gian Oxyz, gốc tọa độ O(0;0;0).

    » Chọn SAI.

    (b) Tọa độ vectơ \overrightarrow{OA} = (1;\ 2;\ 3).

    Điểm A(1;\ 2;\ 3), suy ra \overrightarrow{OA} = 1.\overrightarrow{i} +
2.\overrightarrow{j} + 3.\overrightarrow{k} = (1;\ 2;\ 3) .

    » Chọn ĐÚNG.

    (c) \overrightarrow{OB}
= 5.\overrightarrow{i} - \overrightarrow{k}.

    Ta có B(5;\ 0;\  - 1). Suy ra vectơ \overrightarrow{OB} =
5.\overrightarrow{i} - 1.\overrightarrow{k}.

    » Chọn ĐÚNG.

    (d) Nếu OABC hình bình hành, thì a + b + c =
2.

    Ta có \overrightarrow{OA} =
1.\overrightarrow{i} + 2.\overrightarrow{j} + 3.\overrightarrow{k} =
(1;\ 2;\ 3), C(a;b;c)

    \Rightarrow \overrightarrow{OC} =
a\overrightarrow{i} + b\overrightarrow{j} +
c\overrightarrow{k}\overrightarrow{CB} = \overrightarrow{OB} -
\overrightarrow{OC}

    = \left( 5.\overrightarrow{i} -1.\overrightarrow{k} \right) - \left( a.\overrightarrow{i} +b.\overrightarrow{j} + c.\overrightarrow{k} \right)= (5 - a;b; - 1 -c).

    OABC hình bình hành, thì \left\{ \begin{matrix}
5 - a = 1 \\
b = 2 \\
- 1 - c = 3 \\
\end{matrix} \right.\  \Leftrightarrow \left\{ \begin{matrix}
a = 4 \\
b = 2 \\
c = - 4 \\
\end{matrix} \right.. Khi đó a +
b + c = 2.

    » Chọn ĐÚNG.

  • Câu 20: Nhận biết

    Tìm điều kiện tham số m thỏa mãn yêu cầu

    Trong không gian Oxyz, cho hai vectơ \overrightarrow{u} = (2; -
1;1)\overrightarrow{v} = (0; -
3; - m). Xác định giá trị tham số m để \overrightarrow{u}.\overrightarrow{v} =
1?

    Ta có: \overrightarrow{u}.\overrightarrow{v} = 1
\Leftrightarrow 3 - m = 1 \Leftrightarrow m = 2

    Vậy m = 2 là giá trị cần tìm.

  • Câu 21: Vận dụng

    Tính giá trị của biểuthức

    Trong không gian Oxyz cho các điểm A(5\ ;\ 1\ ;\ 5), B(4\ ;\ 3\ ;\ 2), C( - 3\ ;\  - 2\ ;\ 1). Điểm I(a\ ;\ b\ ;\ c) là tâm đường tròn ngoại tiếp tam giác ABC. Tính a + 2b + c?

    Ta có: \overrightarrow{AB} = ( - 1\ ;\ 2\
;\  - 3), \overrightarrow{AC} = ( -
8\ ;\  - 3\ ;\  - 4).

    Gọi M, N lần lượt là trung điểm AB, AC
\Rightarrow \left\{ \begin{matrix}
M\left( \frac{9}{2}\ ;\ 2\ ;\ \frac{7}{2} ight) \\
N\left( 1\ ;\  - \frac{1}{2}\ ;\ 3 ight) \\
\end{matrix} ight..

    Gọi \overrightarrow{n} là véc tơ pháp tuyến của mặt phẳng (ABC)

    \Rightarrow \overrightarrow{n} =
\left\lbrack \overrightarrow{AB},\overrightarrow{AC} ightbrack = ( -
17\ ;\ 20\ ;\ 19).

    (ABC): - 17x + 20y + 19z - 30 =
0.

    I là tâm đường tròn ngoại tiếp tam giác ABC

    \Leftrightarrow \left\{ \begin{matrix}
\overrightarrow{IM}\bot\overrightarrow{AB} \\
\overrightarrow{IN}\bot\overrightarrow{AC} \\
I \in (ABC) \\
\end{matrix} ight.\  \Leftrightarrow

    \Leftrightarrow \left\{ \begin{matrix}
\left( \frac{9}{2} - a ight).( - 1) + (2 - b).2 + \left( \frac{7}{2} -
c ight).( - 3) = 0 \\
(1 - a).( - 8) + \left( - \frac{1}{2} - b ight).( - 3) + (3 - c).( -
4) = 0 \\
- 17a + 20b + 19c - 30 = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
\left( \dfrac{9}{2} - a ight).( - 1) + (2 - b).2 + \left( \dfrac{7}{2} -
c ight).( - 3) = 0 \\
(1 - a).( - 8) + \left( - \dfrac{1}{2} - b ight).( - 3) + (3 - c).( -
4) = 0 \\
- 17a + 20b + 19c - 30 = 0 \\
\end{matrix} ight..

    Vậy a + 2b + c = 1 + 2.\left( -
\frac{1}{2} ight) + 3 = 3.

  • Câu 22: Thông hiểu

    Xác định tọa độ điểm D

    Trong không gian hệ trục tọa độ Oxyz, cho các điểm A(1;0;0),B(1;1;0),C(0;1;1). Tìm tọa độ điểm D để tứ giác ABCD là hình bình hành?

    Giả sử điểm D(x;y;z) ta có ABCD là hình bình hành nên \overrightarrow{AD} =
\overrightarrow{BC}

    \Leftrightarrow \left\{ \begin{matrix}
x - 1 = - 1 \\
y = 0 \\
z = 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 0 \\
y = 0 \\
z = 1 \\
\end{matrix} ight.. Vậy tọa độ điểm D(0;0;1).

  • Câu 23: Thông hiểu

    Chọn đáp án đúng

    Cho hai vectơ \overrightarrow{a}\overrightarrow{b} thỏa mãn \left| \overrightarrow{a} \right| = \left|
\overrightarrow{b} \right| = 1 và hai vectơ \overrightarrow{u} = \frac{2}{5}\overrightarrow{a}
- 3\overrightarrow{b}\overrightarrow{v} = \overrightarrow{a} +
\overrightarrow{b} vuông góc với nhau. Xác định góc \alpha giữa hai vectơ \overrightarrow{a}\overrightarrow{b}.

    Ta có \overrightarrow{u}\bot\overrightarrow{v}
\Rightarrow \overrightarrow{u}.\overrightarrow{v} = 0

    \Leftrightarrow \left(
\frac{2}{5}\overrightarrow{a} - 3\overrightarrow{b} ight)\left(
\overrightarrow{a} + \overrightarrow{b} ight) = 0

    \Leftrightarrow
\frac{2}{5}{\overrightarrow{a}}^{2} -
\frac{13}{5}\overrightarrow{a}\overrightarrow{b} -
3{\overrightarrow{b}}^{2} = 0

    \overset{\left| \overrightarrow{a}
ight| = \left| \overrightarrow{b} ight| =
1}{ightarrow}\overrightarrow{a}.\overrightarrow{b} = - 1

    Suy ra \cos\left(
\overrightarrow{a},\overrightarrow{b} ight) =
\frac{\overrightarrow{a}.\overrightarrow{b}}{\left| \overrightarrow{a}
ight|.\left| \overrightarrow{b} ight|} = - 1 \Rightarrow \left(
\overrightarrow{a},\overrightarrow{b} ight) = 180^{0}

  • Câu 24: Thông hiểu

    Tìm tọa độ điểm B

    Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A'B'C'D' với A( - 2\ ;\ 1\ ;\ 3),C(2\ ;\ 3;\ 5),B'(2\ ;\ 4\
;\  - 1),D'(0\ ;\ 2\ ;1). Tìm tọa độ điểm B.

    Gọi B(x\ ;\ y\ ;\ z) là điểm cần tìm.

    Gọi II' lần lượt là trung điểm ACB'D'

    \Rightarrow I(0\ ;\ 2\ ;\ 4)I'(1\ ;\ 3\ ;\ 0).

    \overrightarrow{I'I} = ( - 1\ ;\  -
1\ ;\ 4);\overrightarrow{B'B} = (x - 2\ ;\ y - 4\ ;\ z +
1)

    Ta có: \overrightarrow{B'B} =
\overrightarrow{I'I} \Leftrightarrow \left\{ \begin{matrix}
x - 2 = - 1 \\
y - 4 = - 1 \\
z + 1 = 4 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 1 \\
y = 3 \\
z = 3 \\
\end{matrix} ight..

    Vậy B(1\ ;\ 3\ ;\ 3).

  • Câu 25: Vận dụng

    Tìm tọa độ điểm C’

    Trong không gian hệ trục tọa độ Oxyz, cho hình hộp ABCD.A'B'C'D' có tọa độ các điểm A( -3;0;0),B(0;2;0),D(0;0;1),A'(1;2;3). Giả sử điểm C'(a;b;c). Tính giá trị biểu thức T=a+b+2c?

    Gọi điểm C'(x;y;z)

    Ta có: \left\{ \begin{matrix}\overrightarrow{AB} = (3;2;0) = 3\overrightarrow{i} +2\overrightarrow{j} + 0.\overrightarrow{k} \\\overrightarrow{AD} = (3;0;1) = 3.\overrightarrow{i} +0.\overrightarrow{j} + 1.\overrightarrow{k} \\\overrightarrow{AA'} = (4;2;3) = 4.\overrightarrow{i} +2\overrightarrow{j} + 3\overrightarrow{k} \\\end{matrix} ight.

    \overrightarrow{AB} +\overrightarrow{AD} + \overrightarrow{AA'} =\overrightarrow{AC'} \Rightarrow \overrightarrow{AC'} =10\overrightarrow{i} + 4\overrightarrow{j} +4\overrightarrow{k}

    Suy ra \left\{ \begin{matrix}x = 10 + 3 \\y = 4 - 0 \\z = 4 - 0 \\\end{matrix} ight.\  \Rightarrow C'(13;4;4) suy ra a=13;b=4;c=4

    Vậy  T=25

  • Câu 26: Thông hiểu

    Tìm cosin góc giữa hai đường thẳng

    Cho tứ diện đều ABCD, M là trung điểm cạnh BC. Khi đó \cos(AB;DM) bằng:

    Hình vẽ minh họa

    Giả sử cạnh tứ diện bằng a

    Tam giác BCD đều suy ra DM =
\frac{a\sqrt{3}}{2}

    Tam giác ABC đều suy ra AM =
\frac{a\sqrt{3}}{2}

    Ta có: \cos\left(\overrightarrow{AB};\overrightarrow{DM} ight) =\frac{\overrightarrow{AB}.\overrightarrow{DM}}{\left|\overrightarrow{AB} ight|.\left| \overrightarrow{DM} ight|} =\frac{\overrightarrow{AB}.\overrightarrow{DM}}{a.\dfrac{a\sqrt{3}}{2}}

    Mặt khác \overrightarrow{AB}.\overrightarrow{DM} =
\overrightarrow{AB}.\left( \overrightarrow{AM} - \overrightarrow{AD}
ight) = \overrightarrow{AB}.\overrightarrow{AM} -
\overrightarrow{AB}.\overrightarrow{AD}

    = \left| \overrightarrow{AB}
ight|.\left| \overrightarrow{AM} ight|.cos\left(
\overrightarrow{AB};\overrightarrow{AM} ight) - \left|
\overrightarrow{AB} ight|.\left| \overrightarrow{AD} ight|.cos\left(
\overrightarrow{AB};\overrightarrow{AD} ight)

    =
a.\frac{a\sqrt{3}}{2}.\frac{\sqrt{3}}{2} - a.a.\frac{1}{2} =
\frac{a^{2}}{4}

    \Rightarrow \cos\left(
\overrightarrow{AB};\overrightarrow{DM} ight) = \frac{\sqrt{3}}{6}
> 0

    \Rightarrow \left(
\overrightarrow{AB};\overrightarrow{DM} ight) = (AB;DM)

    \Rightarrow \cos(AB;DM) =
\frac{\sqrt{3}}{6}

  • Câu 27: Nhận biết

    Tìm tọa độ hình chiếu

    Hình chiếu vuông góc của điểm A(2; -
1;0) trên mặt phẳng (Oxz) là:

    Hình chiếu vuông góc của điểm A(2; -
1;0) trên mặt phẳng (Oxz) là điểm có tọa độ (2;0;0).

  • Câu 28: Nhận biết

    Tính tích vô hướng của hai vecto

    Trong không gian với hệ tọa độ Oxyz, cho vectơ \overrightarrow{u} = (3\ ;\ 0\ ;\ 1)\overrightarrow{v} = (2\ ;\ 1\ ;\
0). Tính tích vô hướng \overrightarrow{u}.\overrightarrow{v}.

    Ta có \overrightarrow{u}.\overrightarrow{v} = 3.2 + 0.1
+ 1.0 = 6.

  • Câu 29: Nhận biết

    Chọn phương án thích hợp

    Trong không gian, với mọi vectơ \overrightarrow{a},\ \overrightarrow{b} ta có

    Công thức tích vô hướng của hai vectơ \overrightarrow{a}.\overrightarrow{b} = \left|
\overrightarrow{a} ight|.\left| \overrightarrow{b}
ight|.cos(\overrightarrow{a}.\overrightarrow{b}).

  • Câu 30: Thông hiểu

    Xác định tính đúng sai của từng phương án

    Trong không gian Oxyz, cho ba điểm A( - 1; -
2;3),B(0;3;1),C(4;2;2). Các khẳng định sau là đúng hay sai?

    a) \overrightarrow{AB}.\overrightarrow{AC} = -
27. Sai||Đúng

    b) \cos(\overrightarrow{AB},\overrightarrow{AC}) =\frac{9}{2\sqrt{35}}. Sai||Đúng

    c) \overrightarrow{AC}.\overrightarrow{CB} =
15. Đúng||Sai

    d) \cos(\overrightarrow{AB},\overrightarrow{BC}) =\frac{5}{2\sqrt{21}}. Đúng||Sai

    Đáp án là:

    Trong không gian Oxyz, cho ba điểm A( - 1; -
2;3),B(0;3;1),C(4;2;2). Các khẳng định sau là đúng hay sai?

    a) \overrightarrow{AB}.\overrightarrow{AC} = -
27. Sai||Đúng

    b) \cos(\overrightarrow{AB},\overrightarrow{AC}) =\frac{9}{2\sqrt{35}}. Sai||Đúng

    c) \overrightarrow{AC}.\overrightarrow{CB} =
15. Đúng||Sai

    d) \cos(\overrightarrow{AB},\overrightarrow{BC}) =\frac{5}{2\sqrt{21}}. Đúng||Sai

    Ta có \overrightarrow{AB} = (1;5; -
2),\overrightarrow{AC} = (5;4; - 1),\overrightarrow{AC} = (4; -
1;1).

    Ta có:

    \overrightarrow{AB}.\overrightarrow{AC} = 5 + 20 +
2 = 27.

    Ta có:

    \overrightarrow{AC}.\overrightarrow{CB} = 5.( - 4)
+ 4.1 + ( - 1).( - 1) = - 15.

    Ta có:

    \cos(\overrightarrow{AB},\overrightarrow{AC}) =\frac{\overrightarrow{AB}.\overrightarrow{AC}}{\left|\overrightarrow{AB} ight|.|\overrightarrow{AC}|} =\frac{27}{\sqrt{30}.\sqrt{42}} = \frac{9}{2\sqrt{35}}.

    Ta có:

    \cos(\overrightarrow{AB},\overrightarrow{BC}) =\frac{\overrightarrow{AB}.\overrightarrow{BC}}{\left|\overrightarrow{AB} ight||\overrightarrow{BC}|} =\frac{15}{\sqrt{42}.\sqrt{18}} = \frac{5}{2\sqrt{21}}.

  • Câu 31: Thông hiểu

    Xác định các giá trị nguyên dương của tham số

    Trong không gian Oxyz, cho hai vectơ \overrightarrow{a} = (5;3; -
2);\overrightarrow{b} = (m; - 1;m + 3). Có tất cả bao nhiêu giá trị nguyên dương của tham số m để góc giữa hai vectơ \overrightarrow{a};\overrightarrow{b} là góc tù?

    Ta có: \cos\left(
\overrightarrow{a};\overrightarrow{b} ight) =
\frac{\overrightarrow{a}.\overrightarrow{b}}{\left| \overrightarrow{a}
ight|.\left| \overrightarrow{b} ight|} = \frac{3m -
9}{\sqrt{38}.\sqrt{2m^{2} + 6m + 10}}

    Góc giữa hai vectơ \overrightarrow{a};\overrightarrow{b} là góc tù khi và chỉ khi

    \cos\left(
\overrightarrow{a};\overrightarrow{b} ight) < 0 \Leftrightarrow
\frac{3m - 9}{\sqrt{38}.\sqrt{2m^{2} + 6m + 10}} < 0

    \Leftrightarrow 3m - 9 < 0
\Leftrightarrow m < 3

    m \in \mathbb{Z}^{+} \Rightarrow m =
\left\{ 1;2 ight\}

    Suy ra có 2 giá trị nguyên dương của tham số m thỏa mãn yêu cầu bài toán.

    Vậy đáp án cần tìm là 2.

  • Câu 32: Thông hiểu

    Tính độ dài đoạn thẳng

    Trong không gian hệ trục tọa độ Oxyz, cho các điểm M(3; - 2;1),N(1;0; - 3). Gọi M';N' lần lượt là hình chiếu của M;N lên mặt phẳng (Oxy). Khi đó độ dài đoạn thẳng M'N' bằng:

    M';N' lần lượt là hình chiếu của M;N lên mặt phẳng (Oxy) nên M'(3; - 2;0),N'(1;0;0) suy ra \overrightarrow{M'N'} = ( -
2;2;0)

    \Rightarrow M'N' =
2\sqrt{2}.

  • Câu 33: Nhận biết

    Chọn kết luận đúng

    Trong không gian cho hình hộp ABCD.A'B'C'D'. Khi đó \overrightarrow{CD} + \overrightarrow{CB} +
\overrightarrow{CC'} bằng:

    Theo quy tắc hình hộp ta có \overrightarrow{CD} + \overrightarrow{CB} +\overrightarrow{CC'} = \overrightarrow{CA'}.

  • Câu 34: Nhận biết

    Chọn đáp án đúng

    Trong không gian Oxyz, cho hai điểm A(2; - 4;3)B(2;2;7). Trung điểm của đoạn thẳng AB có tọa độ là:

    Gọi M\left( x_{M};y_{M};z_{M}
ight) là trung điểm của đoạn thẳng AB, ta có:

    \left\{ \begin{matrix}x_{M} = \dfrac{x_{A} + x_{B}}{2} = \dfrac{2 + 2}{2} = 2 \\y_{M} = \dfrac{y_{A} + y_{B}}{2} = \dfrac{- 4 + 2}{2} = - 1 \\z_{M} = \dfrac{z_{A} + z_{B}}{2} = \dfrac{3 + 7}{2} = 5 \\\end{matrix} ight.\  \Rightarrow M(2; - 1;5)

    Vậy tọa độ trung điểm của AB là: (2; -
1;5).

  • Câu 35: Nhận biết

    Tìm tọa độ điểm M

    Trong không gian Oxyz giả sử \overrightarrow{OM} = 2\overrightarrow{i} +
3\overrightarrow{j} - \overrightarrow{k}, khi đó tọa độ điểm M

    Ta có:

    \overrightarrow{OM} = 2\overrightarrow{i}
+ 3\overrightarrow{j} - \overrightarrow{k} = (2;3; - 1) hay M(2;3; - 1)

  • Câu 36: Thông hiểu

    Tính tích vô hướng hai vectơ

    Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Tính tích vô hướng \overrightarrow{AC}.\overrightarrow{B'C'}?

    Hình vẽ minh họa

    Ta có: \overrightarrow{AC} =
\overrightarrow{B'C'} nên \left(
\overrightarrow{AC};\overrightarrow{B'C'} ight) = \left(
\overrightarrow{AC};\overrightarrow{AD} ight) = \widehat{CAD} =
45^{0}

    Suy ra \overrightarrow{AC}.\overrightarrow{B'C'}= \left| \overrightarrow{AC} ight|.\left|\overrightarrow{B'C'} ight|.\cos\left(\overrightarrow{AC};\overrightarrow{B'C'} ight)

    =a\sqrt{2}.a.\cos45^{0} =a^{2}

  • Câu 37: Vận dụng cao

    Ghi đáp án vào ô trống

    Một chiếc cần cẩu, cẩu tấm kim loại có trọng lực 2000(N), được thiết kế với tấm kim loại được giữ bởi ba đoạn cáp AB,AC,AD sao cho AB = AC = ADBCD là tam giác đều, đồng thời các cạnh AB,AC,AD tạo với mặt phẳng (BCD) một góc có 30^{0}(như hình vẽ).

    Tìm độ lớn của lực căng của mỗi sợi dây cáp? (Kết quả làm tròn đến hàng đơn vị)

    Đáp án:  1333(N)

    Đáp án là:

    Một chiếc cần cẩu, cẩu tấm kim loại có trọng lực 2000(N), được thiết kế với tấm kim loại được giữ bởi ba đoạn cáp AB,AC,AD sao cho AB = AC = ADBCD là tam giác đều, đồng thời các cạnh AB,AC,AD tạo với mặt phẳng (BCD) một góc có 30^{0}(như hình vẽ).

    Tìm độ lớn của lực căng của mỗi sợi dây cáp? (Kết quả làm tròn đến hàng đơn vị)

    Đáp án:  1333(N)

    Đặt \overrightarrow{F} ={\overrightarrow{F}}_{1} + {\overrightarrow{F}}_{2} +{\overrightarrow{F}}_{3} thì \left|\overrightarrow{F} ight| = 2000(N).

    Chú ý thêm là: \left|{\overrightarrow{F}}_{1} ight| = \left| {\overrightarrow{F}}_{2}ight| = \left| {\overrightarrow{F}}_{3} ight|

    Ta có:

    \overrightarrow{AB} + \overrightarrow{AC}+ \overrightarrow{AD} = 3\overrightarrow{AG} với G là trọng tâm \Delta BCD.

    Vì hình chóp A.BCD đều nên AG\bot mp(BCD)

    Do đó \widehat{ABG} = 30^{0}, suy ra AG = AB.sin30^{0} = \frac{AB}{2}\Rightarrow AB = 2AG.

    Khi gắn các lực vào ta có:

    \overrightarrow{F} =\overrightarrow{F_{1}} + \overrightarrow{F_{2}} + \overrightarrow{F_{3}}= - \overrightarrow{F_{AB}} - \overrightarrow{F_{AC}} -\overrightarrow{F_{AD}} = - 3\overrightarrow{F_{AG}}

    \Rightarrow \left| {\overrightarrow F } ight| = 3\left| {\overrightarrow {{F_{AG}}} } ight| \Rightarrow \left| {\overrightarrow {{F_{AG}}} } ight| = \frac{{2000}}{3}\left( N ight)

    Từ đó: \left| \overrightarrow{F_{1}}ight| = \left| \overrightarrow{F_{AB}} ight| = 2\left|\overrightarrow{F_{AG}} ight| = \frac{4000}{3}(N).

    Vậy lực căng mỗi sợi dây là \frac{4000}{3}\ N \approx 1333\ N.

  • Câu 38: Nhận biết

    Tính tổng ba vectơ

    Cho hình hộp ABCD.EFFH. Tính tổng \overrightarrow{AB} +
\overrightarrow{AD} + \overrightarrow{AE}?

    Hình vẽ minh họa

    \overrightarrow{AB} +
\overrightarrow{AD} + \overrightarrow{AE} = \overrightarrow{AC} +
\overrightarrow{AE} = \overrightarrow{AG}

  • Câu 39: Thông hiểu

    Tính tọa độ điểm M

    Trong không gian Oxyz có điểm A(4;2;1),B( - 2; - 1;4). Tìm tọa độ điểm M thỏa mãn đẳng thức \overrightarrow{AM} =
2\overrightarrow{MB}?

    Ta có: M(x;y;z). Khi đó \overrightarrow{AM} =
2\overrightarrow{MB}

    \overrightarrow{AM} =
2\overrightarrow{MB} \Leftrightarrow \left\{ \begin{matrix}
x - 4 = 2( - 2 - x) \\
y - 2 = 2( - 1 - y) \\
z - 1 = 2(4 - z) \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 0 \\
y = 0 \\
z = 3 \\
\end{matrix} ight.\  \Rightarrow M(0;0;3)

    Vậy giá trị cần tìm là M(0;0;3).

  • Câu 40: Thông hiểu

    Chọn mệnh đề đúng

    Hãy chọn mệnh đề đúng trong các mệnh đề sau đây?

    Nếu \overrightarrow{SB} +
\overrightarrow{SD} = \overrightarrow{SA} + \overrightarrow{SC} thì

    \overrightarrow{SB} -
\overrightarrow{SA} = \overrightarrow{SC} - \overrightarrow{SD}
\Leftrightarrow \overrightarrow{AB} = \overrightarrow{DC}

    Suy ra tứ giác ABCD là hình bình hành

    Mệnh đề sai \overrightarrow{AB} +
\overrightarrow{AC} = \overrightarrow{AD} vì:

    \overrightarrow{AB} +
\overrightarrow{AC} = \overrightarrow{AD} \Leftrightarrow
\overrightarrow{AB} = \overrightarrow{AD} - \overrightarrow{AC}
\Leftrightarrow \overrightarrow{AB} = \overrightarrow{CD}

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 2 Vectơ và hệ trục tọa độ trong không gian Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo