Chọn đáp án đúng
Tính thể tích khối tròn xoay sinh ra khi quay hình phẳng giới hạn bởi các đường sau xung quanh trục
:
.
Thể tích khối tròn xoay
.
Hãy cùng thử sức kiểm tra đánh giá các kiến thức tổng quan với bài kiểm tra phút Chương 4: Nguyên hàm và tích phân Toán 12 sách Kết nối tri thức các em nhé!
Chọn đáp án đúng
Tính thể tích khối tròn xoay sinh ra khi quay hình phẳng giới hạn bởi các đường sau xung quanh trục
:
.
Thể tích khối tròn xoay
.
Xác định thể tích V
Tính thể tích
của vật thể sinh ra khi quay quanh trục
hình phẳng giới hạn bởi đồ thị hàm số
, đường thẳng
và trục hoành?
Thể tích V của vật thể là:
Tính nguyên hàm của I
Tìm nguyên hàm
.
Đặt
Khi đó
Tính giá trị của tích phân
Tích phân
có giá trị là:
Xét tích phân
Đặt .
Đáp án đúng là .
Tính giá trị biểu thức
Biết rằng
. Tính giá trị biểu thức
?
Ta có:
Khi đó
Suy ra
Xét tính đúng sai của các khẳng định
Vào năm 2014, dân số nước ta khoảng 90,7 triệu người. Giả sử, dân số nước ta sau
năm được xác định bởi hàm số
( đơn vị: triệu người), trong đó tốc độ gia tăng dân số được cho với
, với
là số năm kể từ năm 2014,
được tính bằng triệu người/năm.
a)
là một nguyên hàm của
. Đúng||Sai
b)
. Sai||Đúng
c) Theo công thức trên, tốc độ gia tăng dân số nước ta năm 2034 (làm tròn đến hàng phần mười của triệu người/năm) khoảng 1,7 triệu người/năm. Đúng||Sai
d) Theo công thức trên, dân số nước ta năm 2034 (làm tròn đến hàng đơn vị của triệu người) khoảng 120 triệu người. Đúng||Sai
Vào năm 2014, dân số nước ta khoảng 90,7 triệu người. Giả sử, dân số nước ta sau
năm được xác định bởi hàm số
( đơn vị: triệu người), trong đó tốc độ gia tăng dân số được cho với
, với
là số năm kể từ năm 2014,
được tính bằng triệu người/năm.
a)
là một nguyên hàm của
. Đúng||Sai
b)
. Sai||Đúng
c) Theo công thức trên, tốc độ gia tăng dân số nước ta năm 2034 (làm tròn đến hàng phần mười của triệu người/năm) khoảng 1,7 triệu người/năm. Đúng||Sai
d) Theo công thức trên, dân số nước ta năm 2034 (làm tròn đến hàng đơn vị của triệu người) khoảng 120 triệu người. Đúng||Sai
Ta có: là một nguyên hàm của
và
Do
Tốc độ tăng dân số của nước ta vào năm 2034 là
( triệu người/năm)
Dân số của nước ta vào năm 2034 là
( triệu người)
Tính diện tích các cánh hoa
Một viên gạch hoa hình vuông cạnh
. Người thiết kế đã sử dụng bốn đường parabol có chung đỉnh tại tâm viên gạch để tạo ra bốn cánh hoa (được tô đen như hình vẽ dưới).

Tính diện tích mỗi cánh hoa của viên gạch.

Chọn hệ tọa độ như hình vẽ (1 đơn vị trên trục bằng ), các cánh hoa tạo bởi các đường parabol có phương trình
,
,
,
.
Diện tích một cánh hoa (nằm trong góc phàn tư thứ nhất) bằng diện tích hình phẳng giới hạn bởi hai đồ thị hàm số,
và hai đường thẳng
.
Do đó diện tích một cánh hoa bằng
.
Tính diện tích hình phẳng
Tính diện tích
của hình phẳng giới hạn bởi đồ thị hàm số
trục hoành và hai đường thẳng
.
Diện tích hình phẳng được tính như sau:
.
Tính giới hạn của tích phân
Giá trị của
bằng
Giải toán bằng hai cách như sau:
Cách 1: Thử bằng máy tính
Lấy giá trị n càng lớn càng tốt. Giả sử .
Nhập biểu thức
Máy tính cho kết quả .
Cách 2: Giải chi tiết
Ta luôn có
Tính số tiền thu được
Bổ dọc một quả dưa hấu ta được thiết diện là hình elip có trục lớn
, trục nhỏ
. Biết cứ
dưa hấu sẽ làm được cốc sinh tố giá
đồng. Hỏi từ quả dưa hấu trên có thể thu được bao nhiêu tiền từ việc bán nước sinh tố? Biết rằng bề dày vỏ dưa không đáng kể.
Đường elip có trục lớn , trục nhỏ
có phương trình:
.
Do đó thể tích quả dưa là
.
Do đó tiền bán nước thu được là đồng.
Tìm khẳng định sai
Cho hàm số
liên tục trên
và
,
là một nguyên hàm của
trên
. Chọn khẳng định sai trong các khẳng định sau?
Theo định nghĩa tích phân ta có: .
Ghi đáp án đúng vào chỗ trống
Một khối cầu có bán kính là
, người ta cắt bỏ hai phần của khối cầu bằng hai mặt phẳng song song cùng vuông góc đường kính và cách tâm một khoảng
để làm một chiếc lu đựng nước (như hình vẽ). Thể tích mà chiếc lu chứa được là bao nhiêu
(làm tròn đến hàng đơn vị)

Đáp án: 622
Một khối cầu có bán kính là
, người ta cắt bỏ hai phần của khối cầu bằng hai mặt phẳng song song cùng vuông góc đường kính và cách tâm một khoảng
để làm một chiếc lu đựng nước (như hình vẽ). Thể tích mà chiếc lu chứa được là bao nhiêu
(làm tròn đến hàng đơn vị)

Đáp án: 622
Trên hệ trục tọa độ , xét đường tròn
:
Nếu cho nửa trên trục của
quay quanh trục
ta được mặt cầu có bán kính bằng 6.
Nếu cho hình phẳng giới hạn bởi nửa trên trục
của
, trục
, hai đường thẳng
quay xung quanh
ta sẽ được khối tròn xoay chính là 1 phần cắt đi của khối cầu trong đề bài.
Ta có
Suy ra nửa trên trục của
có phương trình
Thể tích vật thể tròn xoay khi cho quay quanh
là
.
Thể tích khối cầu là .
Thể tích cần tìm là .
Chọn kết luận đúng
Cho hai hàm số y = f(x) và y = g(x) không âm, có đạo hàm trên đoạn [1; 4] và thỏa mãn các hệ thức
. Kết luận nào sau đây đúng?
Ta có:
Tính vận tốc của vật
Một vật chuyển động với gia tốc
. Vận tốc ban đầu của vật là
. Hỏi vận tốc của vật là bao nhiêu sau khi chuyển động với gia tốc đó được
.
Ta có:
Do khi bắt đầu tăng tốc nên
Suy ra
Vận tốc của vật khi chuyển động với gia tốc đó được 2s là .
Chọn đáp án đúng
Tích phân
có giá trị bằng
Ta có:
Ta thử bằng máy tính để tìm ra kết quả.
Tính tích phân
Cho hàm số
. Tính tích phân
?
Ta có:
Tính diện tích S
Diện tích S của hình phẳng giới hạn bởi đường cong
, trục hoành và hai đường thẳng
là
Phương trình hoành độ giao điểm
Khi đó:
Gọi F(x) là một nguyên hàm của hàm số f(x) = cos5x.cosx
Gọi F(x) là một nguyên hàm của hàm số
thỏa mãn
. Tính
.
Tìm đáp án đúng
Cho hàm số
có đạo hàm dương và liên tục trên
thỏa mãn
và
. Tích phân
là:
Áp dụng BĐT Cauchy-Schwarz:
Dấu "=" xảy ra khi chỉ khi
Hàm số F(x) = 2sinx - 3cosx là một nguyên hàm của hàm số
Hàm số
là một nguyên hàm của hàm số nào sau đây?
Chọn đáp án thích hợp
Cho hàm số
liên tục trên
. Diện tích hình phẳng giới hạn bởi đồ thị hàm số
, trục hoành, đường thẳng
là
Công thức đúng là:
Xác định giá trị S
Cho hình
là hình phẳng giới hạn bởi parabol
, đường cong
và trục hoành (phần tô đậm trong hình vẽ).

Tính diện tích
của hình
?
Phương trình hoành độ giao điểm
Diện tích hình phẳng là:
Chọn công thức thích hợp
Viết công thức tính thể tích
của phần vật thể bị giới hạn bởi hai mặt phẳng vuông góc với trục
tại các điểm
, có diện tích thiết diện cắt bởi mặt phẳng vuông góc với trục
tại điểm có hoành độ
là
.
Thể tích của vật thể đã cho là: .
Chọn mệnh đề đúng
Cho tích phân
với
. Mệnh đề nào sau đây đúng?
Ta có:
Suy ra .
Chọn mệnh đề đúng
Biết rằng
nguyên hàm của hàm số
thỏa mãn
. Chọn mệnh đề đúng?
Sử dụng phương pháp đồng nhất thức, ta có:
Suy ra
Khi đó
Mà
Vậy
Chọn đáp án đúng
Cho
. Nếu đặt
thì
là
Ta có:
Tìm tích phân
Tính tích phân
?
Ta có:
Tính diện tích hình phẳng
Diện tích hình phẳng giới hạn bởi hai đường
và
bằng:
Xét phương trình hoành độ giao điểm
Diện tích hình phẳng là:
Tính gia tốc của chuyển động
Cho chuyển động thẳng xác định bởi phương trình
, trong đó t được tính bằng giây và S được tính bằng mét. Gia tốc của chuyển động khi
là:
Khi
Tìm giá trị biểu thức
Cho hàm số
có đạo hàm liên tục trên
,
và thỏa mãn hệ thức
với
. Giá trị của
là:
Ta có:
Mặt khác
Vậy
Vì .
Tìm nguyên hàm của hàm số
Tìm nguyên hàm của hàm số
??
Đặt
Xác định nguyên hàm của hàm số
Tìm nguyên hàm
biết
.
Ta có:
Tính thể tích khối tròn xoay
Tính thể tích khối tròn xoay khi cho hình phẳng giới hạn bởi đồ thị các hàm số
và
quay quanh trục Ox.
Xét phương trình hoành độ giao điểm
Khi đó thể tích khối tròn xoay có được khi quay hình phẳng giới hạn bởi các đồ thị hàm số
quay quanh trục Ox được tính bởi công thức
Ta thấy trên thì
, do vậy ta có công thức
(đvtt)
Tìm tích phân I
Tích phân
có giá trị là:
Tích phân có giá trị là:
.
Chọn hàm số thích hợp
Cho
. Hỏi
là nguyên hàm của hàm số nào dưới đây?
Cách 1: Ta có
Cách 2: Thực chất đây là công thức nguyên hàm mà tôi đã giới thiệu ở bảng nguyên hàm phía trên (dòng số 6 trong bảng).
Áp dụng công thức trên ta có ngay .
Tìm tích phân
Cho hàm số
dương và liên tục trên
thỏa mãn
và biểu thức
đạt giá trị lớn nhất, khi đó
bằng:
Do
Dấu bằng xảy ra khi và chỉ khi .
Chọn kết luận đúng
Cho các hàm số
có đạo hàm cấp một, đạo hàm cấp hai liên tục trên
và thỏa mãn
. Giá trị của biểu thức
bằng:
Đặt
Ta có:
Ta có:
Vậy
Tìm hàm số không thích hợp
Hàm số nào sau đây không là nguyên hàm của hàm số
?
Dễ nhận thấy
Ta thấy 3 phương án ,
,
có cùng đạo hàm.
Vậy phương án sai.
Xác định công thức hàm số
Hàm số
có đạo hàm liên tục trên tập số thực và
;
. Hàm số
là:
Ta có:
Theo bài ra ta có:
Vậy .
Xác định các mệnh đề đúng
Cho hai hàm số
là hàm số liên tục, có
lần lượt là nguyên hàm của
. Xét các mệnh đề sau:
(I).
là một nguyên hàm của ![]()
(II).
là một nguyên hàm của
với
.
(III).
là một nguyên hàm của ![]()
Các mệnh đúng là
Các mệnh đề đúng là:
(I) là một nguyên hàm của
(II). là một nguyên hàm của
với
.
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: