Tìm nguyên hàm của hàm số
Tìm nguyên hàm của hàm số ![]()
Hãy cùng thử sức kiểm tra đánh giá các kiến thức tổng quan với bài kiểm tra phút Chương 4: Nguyên hàm và tích phân Toán 12 sách Kết nối tri thức các em nhé!
Tìm nguyên hàm của hàm số
Tìm nguyên hàm của hàm số ![]()
Tính tích phân
Tích phân
có giá trị là:
Tích phân có giá trị là:
Cách 1:.
Cách 2: Dùng máy tính cầm tay.
Đáp án đúng là
Tìm tập nghiệm S của phương trình
Cho F(x) là nguyên hàm của hàm số
thỏa mãn
. Tìm tập nghiệm S của phương trình ![]()
Đặt
Ta có:
Tính số tiền cần xây cầu
Trong chương trình nông thôn mới của tỉnh Phú Yên, tại xã Hòa Mỹ Tây có xây một cây cầu bằng bê tông như hình vẽ (đường cong trong hình vẽ là các đường Parabol). Biết
khối bê tông để đổ cây cầu có giá 5 triệu đồng. Tính số tiền mà tỉnh Phú Yên cần bỏ ra để xây cây cầu trên.

Chọn hệ trục như hình vẽ.
.
Gọi là Parabol đi qua hai điểm
Nên ta có hệ phương trình sau:
.
Gọi là Parabol đi qua hai điểm
Nên ta có hệ phương trình sau:
.
Ta có thể tích của bê tông là:
.
Số tiền mà tỉnh Phú Yên cần bỏ ra để xây cây cầu là: triệu đồng
Tính giá trị của biểu thức M
Cho a, b là các số hữu tỉ thỏa mãn
![]()
Tính giá trị biểu thức M = a + b.
=>
=>
Tìm giá trị của biểu thức
Cho tích phân
, a và b là các số hữu tỉ. Giá trị của
là:
Ta có:
, với
.
Đáp án đúng là .
Tìm nguyên hàm của hàm số
Biết
. Khi đó
tương ứng bằng
Ta có:
Tính diện tích hình phẳng
Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số
với các trục tọa độ?
Xét .
Ta có diện tích hình phẳng giới hạn bởi đồ thị hàm số với các trục tọa độ là:
.
Vì biểu thức không đổi dấu trên miền
nên:
Tính số tiền để mua vật dụng trang trí
Một hoa văn trang trí được tạo ra từ một miếng bìa mỏng hình vuông cạnh bằng
cm bằng cách khoét đi bốn phần bằng nhau có hình dạng parabol như hình bên. Biết
cm,
cm. Biết giá trang trí hoa văn
là 50.000 đồng, tính số tiền cần bỏ ra để trang trí hoa văn đó.


Đưa parabol vào hệ trục ta tìm được phương trình là:
.
Diện tích hình phẳng giới hạn bởi , trục hoành và các đường thẳng
,
là:
.
Tổng diện tích phần bị khoét đi:
.
Diện tích của hình vuông là: .
diện tích bề mặt hoa văn là: .
Vậy số tiền cần bỏ ra để trang trí hoa văn đó là: đồng
Tính tổng a và b
Biết rằng:
, trong đó a, b, c là các hằng số, khi đó tổng
có giá trị là
Ta có:
Đặt
Đặt
.
Chọn đáp án đúng
Tích phân
. Giá trị của a là:
Ta có:
.
Xét
Xét .
Theo đề bài: .
Xét tính đúng sai của các nhận định
Một chất điểm chuyển động trên đường thẳng nằm ngang (chiều dương hướng sang phải) với gia tốc phụ thuộc vào thời gian
là
Biết vận tốc ban đầu bằng
Xét tính đúng sai của các mệnh đề sau:
a) [NB] Phương trình vận tốc của chất điểm tại tời điểm
được xác định bởi công thức
Đúng||Sai
b) [TH] Tại thời điểm
vận tốc của chất điểm là
Đúng||Sai
c) [VD] Độ dịch chuyển của vật trong khoảng thời gian
là
Sai||Đúng
d) [VDC] Trong 8 giây đầu tiên, thời điểm chất điểm xa nhất về phía bên phải là
Sai||Đúng
Một chất điểm chuyển động trên đường thẳng nằm ngang (chiều dương hướng sang phải) với gia tốc phụ thuộc vào thời gian
là
Biết vận tốc ban đầu bằng
Xét tính đúng sai của các mệnh đề sau:
a) [NB] Phương trình vận tốc của chất điểm tại tời điểm
được xác định bởi công thức
Đúng||Sai
b) [TH] Tại thời điểm
vận tốc của chất điểm là
Đúng||Sai
c) [VD] Độ dịch chuyển của vật trong khoảng thời gian
là
Sai||Đúng
d) [VDC] Trong 8 giây đầu tiên, thời điểm chất điểm xa nhất về phía bên phải là
Sai||Đúng
a) [NB] Phương trình vận tốc của chất điểm tại thời điểm được xác định bởi công thức
b) [TH] Tại thời điểm vận tốc của chất điểm là
Ta có
Vậy
c) [VD] Độ dịch chuyển của vật trong khoảng thời gian là
Độ dịch chuyển của vật trong khoảng thời gian là
d) [VD] Trong 8 giây đầu tiên, thời điểm chất điểm xa nhất về phía bên phải là
Vị trí của chất điểm so với vị trí ban đầu tại thời điểm là
Ta cần tìm giá trị lớn nhất của với
.
Do nên
.
Lại có ,
,
,
.
Vậy giá trị lớn nhất của với
đạt được khi
.
Tính nguyên hàm
Tính
?
Áp dụng công thức
Suy ra
Tính giá trị biểu thức S
Cho biết
với
. Tính
?
Xét trên đoạn ta có:
Xét . Đặt
Xét . Đặt
Vậy .
Tính thời điểm chất điểm ở xa nhất
Một chất điểm chuyển động trên đường thẳng nằm ngang (chiều dương hướng sang phải) với gia tốc phụ thuộc vào thời gian
là
. Biết vận tốc đầu bằng
. Hỏi trong
giây đầu tiên, thời điểm nào chất điểm ở xa nhất về phía bên phải?
Ta có:
Vận tốc của vật được tính theo công thức:
Suy ra quãng đường vật đi được tính theo công thức:
Ta có:
Suy ra
Vậy thời điểm chất điểm ở xa nhất về phía bên phải là 2s.
Xác định hàm số
Biết rằng hàm số
có
và đồ thị hàm số
cắt trục tung tại điểm có tung độ bằng
. Hàm số
là:
Theo lí thuyết
Ta có:
Khi đó có dạng
Theo đề ta có:
Vậy hàm số là .
Tìm giá trị của tham số a
Cho
. Tìm giá trị của a là
Ta có:
.
Suy ra: .
Trong các đáp án .
Chọn mệnh đề đúng
Cho hàm số
liên tục trên
và có một nguyên hàm là hàm số
. Mệnh đề nào sau đây đúng?
Theo định nghĩa tích phân ta có: .
Chọn khẳng định đúng
Gọi
là hình phẳng giới hạn bởi đồ thị hàm số
, trục hoành và hai đường thẳng
. Gọi
là thể tích của khối tròn xoay thu được khi quay hình
xung quanh trục hoành. Chọn khẳng định đúng trong các khẳng định sau đây?
Áp dụng công thức thể tích khối tròn xoay ta có:
Khi đó áp dụng vào bài toán ta được:
.
Tính thể tích khối tròn xoay
Gọi (H) là hình phẳng giới hạn bởi các đường
và
(với
) được minh họa bằng hình vẽ bên (phần tô đậm):

Cho
quay quanh trục
, thể tích khối tròn xoay tạo thành bằng bao nhiêu?
Ta có:
Thể tích khối tròn xoay cần tính là
Tính giá trị biểu thức T
Tính tổng
?
Ta có:
.
Do đó
.
Mặt khác:
.
Đặt .
Đổi cận và
. Khi đó
Tính diện tích hình phẳng
Diện tích hình phẳng giới hạn bởi
, trục hoành,
và
là:
Ta có: nên ta có:
Chọn đáp án đúng
Tìm họ các nguyên hàm của hàm số
?
Ta có:
Chọn đáp án đúng
Cho
. Tính
.
Ta có
Tính giá trị biểu thức
Cho hàm số
thỏa mãn
và
với mọi
. Giá trị của
bằng?
Ta có:
Vậy
Theo bài ra ta có:
Vậy
Tìm thể tích V của vật thể
Tính thể tích
của phần vật thể giới hạn bởi hai mặt phẳng
và
biết rằng khi cắt vật thể bởi mặt phẳng tùy ý vuông góc với trục
tại điểm có hoành độ
thì được thiết diện là một hình chữ nhật có hai cạnh là
và
.
Ta có diện tích thiết diện: .
Khi đó .
Tính thể tích khối tròn xoay
Trong mặt phẳng tọa độ Oxy, cho hình thang ABCD với
,
,
,
. Quay hình thang ABCD xung quanh trục Ox thì thể tích khối tròn xoay tạo thành bằng bao nhiêu?
Hình vẽ minh họa
Phương trình đường thẳng AB là:
Thể tích khối tròn xoay là:
Tìm câu sai
Câu nào sau đây sai?
Câu sai cần tìm là: Nếu thì
.
Tìm kết luận đúng
Cho
là một nguyên hàm của hàm số
. Khi đó hiệu số
bằng:
Theo định nghĩa tích phân ta có:
suy ra
.
Chọn phương án đúng
Họ nguyên hàm của hàm số
là:
Ta có:
Tính thể tích quả bóng
Một quả bóng bầu dục có khoảng cách giữa 2 điểm xa nhất bằng 10 cm và cắt quả bóng bằng mặt phẳng trung trực của đoạn thẳng đó thì được đường tròn có diện tích bằng
. Thể tích của quả bóng bằng (Tính gần đúng đến hai chữ số thập phân, đơn vị lít)
Quả bóng bầu dục sẽ có dạng elip.
Độ dài trục lớn bằng
Ta có diện tích đường tròn thiết diện là
Ta sẽ có phương trình elip
Chọn công thức thích hợp
Viết công thức tính thể tích
của phần vật thể bị giới hạn bởi hai mặt phẳng vuông góc với trục
tại các điểm
, có diện tích thiết diện cắt bởi mặt phẳng vuông góc với trục
tại điểm có hoành độ
là
.
Thể tích của vật thể đã cho là: .
Xác định họ nguyên hàm
Tìm nguyên hàm của hàm số
.
Ta có
Tính giá trị của c
Giả sử
. Giá trị của c là
Ta có:
Chọn kết luận đúng
Hàm số
được gọi là nguyên hàm của hàm số
trên đoạn
nếu:
Hàm số được gọi là nguyên hàm của hàm số
trên đoạn
nếu với mọi
, ta có
, ngoài ra
và
.
Tính quãng đường ôtô di chuyển được
Một ôtô đang chạy với vận tốc 19m/s thì người lái hãm phanh, ôtô chuyển động chậm dần đều với vận tốc
(m/s), trong đó t là khoảng thời gian tính bằng giây kể từ lúc bắt đầu hãm phanh. Hỏi từ lúc hãm phanh đến khi dừng hẳn, ôtô còn di chuyển bao nhiêu mét?
Khi ô tô dừng lại hẳn
Chọn đáp án đúng
Một nguyên hàm của
là :
Ta có:
Đặt:
Khi đó:
Tính thời gian bơm nước theo yêu cầu
Người ta thay nước mới cho một bể bơi có dạng hình hộp chữ nhật có độ sâu là
cm. Giả sử
là chiều cao (tính bằng cm) của mực nước bơm được tại thời điểm
giây, biết rằng tốc độ tăng của chiều cao mực nước tại giây thứ
là
và lúc đầu hồ bơi không có nước. Hỏi sau bao lâu thì bơm được số nước bằng
độ sâu của hồ bơi?
Gọi là thời điểm bơm được số nước bằng
độ sâu của bể (
tính bằng giây).
Ta có:
giây
Vậy sau 7237,6242 giây thì bơm được số nước bằng độ sâu của hồ bơi.
Tìm thể tích khối tròn xoay
Gọi
là hình phẳng giới hạn bởi các đường
. Tính thể tích vật thể tròn xoay tạo thành khi quay hình
quanh trục
?
Thể tích vật thể tròn xoay tạo thành khi quay hình quanh trục
là
.
Tìm nguyên hàm của hàm số
Xác định nguyên hàm
của hàm số
?
Ta có:
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: