Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề kiểm tra 45 phút Chương 4 Nguyên hàm và tích phân

Mô tả thêm:

Hãy cùng thử sức kiểm tra đánh giá các kiến thức tổng quan với bài kiểm tra phút Chương 4: Nguyên hàm và tích phân Toán 12 sách Kết nối tri thức các em nhé!

  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Thông hiểu

    Chọn đáp án đúng

    Cho f(x) = 1 + |x|. Một nguyên hàm F(x) của f(x) thỏa F(1) = 1 là:

    Ta có: f(x) = 1 + |x| = \left\lbrack
\begin{matrix}
1 + x;x \geq 0 \\
1 - x;x < 0 \\
\end{matrix} \right.

    Khi đó \int_{}^{}{f(x)dx} = \left\lbrack
\begin{matrix}
x + \frac{x^{2}}{2} + C_{1};x \geq 0 \\
x - \frac{x^{2}}{2} + C_{2};x < 0 \\
\end{matrix} \right. mặt khác F(1) = 1

    \Leftrightarrow 1 + \frac{1^{2}}{2} +
C_{1} = 1(x = 1 > 0) \Leftrightarrow C_{1} = -
\frac{1}{2}

    Vậy đáp án cần tìm là: \left\{ \begin{gathered}
  x + \frac{{{x^2}}}{2} - \frac{1}{2}{\text{ khi  }}x \geqslant 0 \hfill \\
  x - \frac{{{x^2}}}{2} + {C_2}{\text{  khi  }}x < 0 \hfill \\ 
\end{gathered}  \right.

  • Câu 2: Nhận biết

    Chọn đáp án thích hợp

    Cho hàm số y = f(x) liên tục trên \lbrack a;bbrack. Diện tích hình phẳng giới hạn bởi đồ thị hàm số y =
f(x), trục hoành, đường thẳng x =
a;x = b

    Công thức đúng là: S =
\int_{a}^{b}{\left| f(x) ight|dx}

  • Câu 3: Vận dụng

    Tính số tiền nhà trường phải trả

    Trường Nguyễn Văn Trỗi muốn làm một cái cửa nhà hình parabol có chiều cao từ mặt đất đến đỉnh là 2,25 mét, chiều rộng tiếp giáp với mặt đất là 3 mét. Giá thuê mỗi mét vuông là 1500000 đồng. Vậy số tiền nhà trường phải trả là bao nhiêu đồng?

    Gọi phương trình parabol (P):y = ax^{2} +
bx + c. Do tính đối xứng của parabol nên ta có thể chọn hệ trục tọa độ Oxy sao cho (P) có đỉnh I
\in Oy (như hình vẽ).

    Ta có hệ phương trình: \left\{
\begin{matrix}
\frac{9}{4} = c,\left( I \in (P) \right) \\
\frac{9}{4}a - \frac{3}{2}b + c = 0\left( A \in (P) \right) \\
\frac{9}{4}a + \frac{3}{2}b + c = 0\left( B \in (P) \right) \\
\end{matrix} \right. \Leftrightarrow \left\{ \begin{matrix}
c = \frac{9}{4} \\
a = - 1 \\
b = 0 \\
\end{matrix} \right..

    Vậy (P):y = - x^{2} +
\frac{9}{4}.

    Dựa vào đồ thị, diện tích cửa parabol là:

    S = \int_{\frac{-
3}{2}}^{\frac{3}{2}}{\left( - x^{2} + \frac{9}{4} \right)dx} =
2\int_{0}^{\frac{3}{2}}{\left( - x^{2} + \frac{9}{4}
\right)dx}

    = \left. \ 2\left( \frac{- x^{3}}{3} +
\frac{9}{4}x \right) \right|_{0}^{\frac{9}{4}} =
\frac{9}{2}m^{2}.

    Số tiền phải trả là: \frac{9}{2}.1500000
= 6750000 đồng.

  • Câu 4: Thông hiểu

    Tìm số nghiệm nguyên dương của phương trình

    Số nghiệm dương của phương trình: x^{3} +
ax + 2 = 0, với a =
\int_{0}^{1}{2xdx}, ab là các số hữu tỉ là:

    Ta có: a = \int_{0}^{1}{2xdx} = \left. \
\left( x^{2} ight) ight|_{0}^{1} = 1 \Rightarrow x^{3} + x - 2 =
0

    \Leftrightarrow (x - 1)\left( x^{2} + x
+ 2 ight) = 0 \Leftrightarrow x = 1

    Số nghiệm dương của phương trình: x^{3} +
ax - 2 = 0, với a =
\int_{0}^{1}{2xdx} là: 1

  • Câu 5: Thông hiểu

    Tính diện tích hình phẳng

    Hình phẳng giới hạn bởi các đường cong y
= x(1 - x)y = x^{3} -
x có diện tích bằng \frac{a}{b} là phân số tối giản. Kết luận nào sau đây đúng?

    Ta có: x(1 - x) = x^{3} - x

    \Leftrightarrow x^{3} + x^{2} - 2x = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = - 2 \\
x = 1 \\
\end{matrix} \right.

    Gọi S là diện tích hình phẳng giới hạn bởi các đường cong y = x(1 -
x)y = x^{3} - x.

    Khi đó S = \int_{- 2}^{1}{\left| x^{3} +
x^{2} - 2x \right|dx}

    = \int_{- 2}^{0}{\left| x^{3} + x^{2} -
2x \right|dx} + \int_{0}^{1}{\left| x^{3} + x^{2} - 2x
\right|dx}

    = \left| \int_{- 2}^{0}{\left( x^{3} +
x^{2} - 2x \right)dx} \right| + \left| \int_{0}^{1}{\left( x^{3} + x^{2}
- 2x \right)dx} \right|

    = \frac{8}{3} + \frac{5}{12} =
\frac{37}{12} (đvdt).

  • Câu 6: Nhận biết

    Chọn đáp án đúng

    Công thức tính diện tích S của hình thang cong giới hạn bởi hai đồ thị y = f(x), y = g(x), x =
a, x = b, (a < b)

    Đáp án đúng: S = \int_{a}^{b}{\left| f(x)
- g(x) ight|dx}.

  • Câu 7: Nhận biết

    Chọn đáp án đúng

    Cho hàm số f(x) có đạo hàm f'(x) liên tục trên \lbrack a;bbrack; f(b) = 5;\int_{a}^{b}{f'(x)dx} =
3\sqrt{5}. Tính giá trị f(a)?

    Ta có: \int_{a}^{b}{f'(x)dx} =
3\sqrt{5} \Leftrightarrow f(b) - f(a) = 3\sqrt{5}

    \Leftrightarrow f(a) = f(b) - 3\sqrt{5}
= \sqrt{5}\left( \sqrt{5} - 3 ight)

  • Câu 8: Thông hiểu

    Xác định diện tích S của hình phẳng

    Diện tích hình phẳng giới hạn bởi hai đường y = x^{2} + 2xy = x + 2 bằng:

    Xét phương trình hoành độ giao điểm

    x^{2} + 2x = x + 2 \Leftrightarrow
\left\lbrack \begin{matrix}
x = - 2 \\
x = 1 \\
\end{matrix} ight.

    Hình vẽ minh họa

    Diện tích hình phẳng là:

    S = \int_{- 2}^{1}{\left| \left( x^{2} +
2x ight) - (x + 2) ight|dx} = \int_{- 2}^{1}{\left| x^{2} + x - 2
ight|dx}

    = \int_{- 2}^{1}{\left\lbrack - \left(
x^{2} + x - 2 ight) ightbrack dx} = \left| \left. \ \left( -
\frac{x^{3}}{3} - \frac{1}{2}x^{2} + 2x ight) ight|_{- 2}^{1}
ight| = \frac{9}{2}

    = \left| \left. \ \left(
\frac{2}{3}x^{3} - \frac{3}{2}x^{2} ight) ight|_{0}^{\frac{3}{2}}
ight| = \frac{9}{8}

  • Câu 9: Thông hiểu

    Tính quãng đường vật đi được

    Một vật chuyển động với vận tốc 10(m/s) thì tăng tốc với gia tốc a(t) = 3t + t^{2}\left( m/s^{2}
ight)Tính quãng đường vật đi được trong khoảng thời gian 10 giây kể từ lúc bắt đầu tăng tốc.

    Ta có:

    v(t) = \int_{}^{}{a(t)dt} =
\int_{}^{}{\left( 3t + t^{2} ight)dt} = \frac{t^{3}}{3} +
\frac{3}{2}t^{2} + C

    Do khi bắt đầu tăng tốc v_{0} = 10
\Rightarrow v_{(t = 0)} = 10 \Rightarrow C = 10

    \Rightarrow v(t) = \frac{t^{3}}{3} +
\frac{3}{2}t^{2} + 10

    Khi đó quãng đường đi được bằng

    S = \int_{0}^{10}{v(t)dt} =
\int_{0}^{10}{\left( \frac{t^{3}}{3} + \frac{3}{2}t^{2} + 10 ight)dt}
= \frac{4300}{3}(m)

  • Câu 10: Nhận biết

    Tính thể tích hình phẳng

    Cho hàm số y = f(x) liên tục, nhận giá trị dương trên đoạn \lbracka;bbrack. Xét hình phẳng (H) giới hạn bởi đồ thị hảm số y = f(x), trục hoảnh và hai đường thảng x = a,x = b. Khối tròn xoay được tạo thành khi quay hình phẳng (H) quanh trục Ox có thế tích là:

    Ta có: V = \pi\int_{a}^{b}{\left\lbrackf(x) ightbrack^{2}dx}.

  • Câu 11: Vận dụng cao

    Xét tính đúng sai của các nhận định

    Một chất điểm chuyển động trên đường thẳng nằm ngang (chiều dương hướng sang phải) với gia tốc phụ thuộc vào thời gian t(s)a(t)
= 2t - 7\ \ \left( m/s^{2} \right). Biết vận tốc ban đầu bằng 6\ \ (m/s). Xét tính đúng sai của các mệnh đề sau:

    a) [NB] Phương trình vận tốc của chất điểm tại tời điểm t được xác định bởi công thức v(t) = \int_{}^{}{a(t)}dt. Đúng||Sai

    b) [TH] Tại thời điểm t
= 7\ \ (s), vận tốc của chất điểm là 6\ \ (m/s). Đúng||Sai

    c) [VD] Độ dịch chuyển của vật trong khoảng thời gian 1 \leq t \leq 718m. Sai||Đúng

    d) [VDC] Trong 8 giây đầu tiên, thời điểm chất điểm xa nhất về phía bên phải là t = 7\ \
(s). Sai||Đúng

    Đáp án là:

    Một chất điểm chuyển động trên đường thẳng nằm ngang (chiều dương hướng sang phải) với gia tốc phụ thuộc vào thời gian t(s)a(t)
= 2t - 7\ \ \left( m/s^{2} \right). Biết vận tốc ban đầu bằng 6\ \ (m/s). Xét tính đúng sai của các mệnh đề sau:

    a) [NB] Phương trình vận tốc của chất điểm tại tời điểm t được xác định bởi công thức v(t) = \int_{}^{}{a(t)}dt. Đúng||Sai

    b) [TH] Tại thời điểm t
= 7\ \ (s), vận tốc của chất điểm là 6\ \ (m/s). Đúng||Sai

    c) [VD] Độ dịch chuyển của vật trong khoảng thời gian 1 \leq t \leq 718m. Sai||Đúng

    d) [VDC] Trong 8 giây đầu tiên, thời điểm chất điểm xa nhất về phía bên phải là t = 7\ \
(s). Sai||Đúng

    a) [NB] Phương trình vận tốc của chất điểm tại thời điểm t được xác định bởi công thức v(t) = \int_{}^{}{a(t)}dt.

    b) [TH] Tại thời điểm t = 7\ \
(s), vận tốc của chất điểm là 6\ \
(m/s).

    Ta có v(t) = \int_{}^{}{a(t)}dt =
\int_{}^{}(2t - 7)dt = t^{2} - 7t + C.

    v(0) = 6 \Rightarrow C = 6 \Rightarrow
v(t) = t^{2} - 7t + 6.

    Vậy v(7) = 7^{2} - 7.7 + 6 = 6\ \
(m/s).

    c) [VD] Độ dịch chuyển của vật trong khoảng thời gian 1 \leq t \leq 718m.

    Độ dịch chuyển của vật trong khoảng thời gian 1 \leq t \leq 7

    S = \int_{1}^{7}{v(t)}dt =
\int_{1}^{7}\left( t^{2} - 7t + 6 ight)dt= \left. \ \left(\frac{t^{3}}{3} - \frac{7t^{2}}{2} + 6t ight) ight|_{1}^{7} = -
18.

    d) [VD] Trong 8 giây đầu tiên, thời điểm chất điểm xa nhất về phía bên phải là t = 7\ \ (s).

    Vị trí của chất điểm so với vị trí ban đầu tại thời điểm t

    s(t) = \int_{}^{}{v(t)dt} =\int_{}^{}{\left( t^{2} - 7t + 6 ight)dt}= \frac{t^{3}}{3} -\frac{7t^{2}}{2} + 6t + C

    Ta cần tìm giá trị lớn nhất của s(t) với t
\in \lbrack 0;\ 8brack.

    Do s'(t) = v(t) nên s'(t) = 0 \Leftrightarrow v(t) = 0
\Leftrightarrow \left\lbrack \begin{matrix}
t = 1 \\
t = 6 \\
\end{matrix} ight..

    Lại có s(0) = C, s(1) = \frac{17}{6} + C, s(6) = - 18 + C, s(8) = - \frac{16}{3} + C.

    Vậy giá trị lớn nhất của s(t) với t \in \lbrack 0;\ 8brack đạt được khi t = 1.

  • Câu 12: Vận dụng

    Tìm họ nguyên hàm của hàm số

    Giả sử hàm số f(x) luôn xác định. Tìm họ nguyên hàm của hàm số f\left( x ight) = \frac{1}{{{x^2} + \left( {a + b} ight)x + ab}}

    \begin{matrix}  f\left( x ight) = \dfrac{1}{{{x^2} + \left( {a + b} ight)x + ab}} \hfill \\   \Rightarrow f\left( x ight) = \dfrac{1}{{\left( {x + a} ight)\left( {x + b} ight)}} \hfill \\   \Rightarrow f\left( x ight) = \dfrac{1}{{\left( {b - a} ight)\left( {x + a} ight)}} - \dfrac{1}{{\left( {b - a} ight)\left( {x + b} ight)}} \hfill \\ \end{matrix} 

    \begin{matrix}  \int {f\left( x ight)dx}  = \int {\left[ {\dfrac{1}{{\left( {b - a} ight)\left( {x + a} ight)}} - \dfrac{1}{{\left( {b - a} ight)\left( {x + b} ight)}}} ight]dx}  \hfill \\   = \dfrac{1}{{b - a}}.\int {\left[ {\dfrac{1}{{x + a}} - \dfrac{1}{{x + b}}} ight]dx}  \hfill \\   = \dfrac{1}{{b - a}}.\left[ {\ln \left| {x + a} ight| - \ln \left| {x + b} ight|} ight] + C = \dfrac{1}{{b - a}}\ln \left| {\dfrac{{x + a}}{{x + b}}} ight| + C \hfill \\ \end{matrix}

  • Câu 13: Nhận biết

    Xác định nguyên hàm của hàm số

    Tìm một nguyên hàm F(x) của hàm số f(x) = 2 - x^{2} biết F(2) = \frac{7}{3}

    Ta có: \int_{}^{}{f(x)dx} = 2x -
\frac{x^{3}}{3} + C = F(x)

    Mặt khác F(2) = \frac{7}{3}

    \Leftrightarrow 2.2 - \frac{2^{3}}{3} +
C = \frac{7}{3}

    \Leftrightarrow C = 1

    Vậy đáp án cần tìm là: F(x) = 2x -
\frac{x^{3}}{3} + 1

  • Câu 14: Thông hiểu

    Tính giá trị biểu thức

    Cho hàm số f(x) có đạo hàm với mọi x\mathbb{\in R}f'(x) = 2x + 1. Giá trị của f(2) - f(1) bằng:

    Ta có:

    f'(x) = 2x + 1 \Rightarrow\int_{}^{}{f'(x)dx = \int_{}^{}{(2x + 1)dx}}

    = x^{2} + x + C \Rightarrow \existsC_{1}\mathbb{\in R}:f(x) = x^{2} + x + C

    \Rightarrow f(2) - f(1) = 2^{2} + 2 +C_{1} - \left( 1^{2} + 1 + C_{1} ight) = 4

  • Câu 15: Thông hiểu

    Tính tích phân

    Cho hàm số f(x) = x^{4} - 4x^{3} + 2x^{2}
- x + 1;\forall x\mathbb{\in R}. Tính I =
\int_{0}^{1}{f^{2}(x).f'(x)dx}

    Ta có:

    I = \int_{0}^{1}{f^{2}(x).f'(x)dx} =
\int_{0}^{1}{f^{2}(x)d\left( f(x) ight)} = \left. \ \frac{f^{3}(x)}{3}
ight|_{0}^{1} = - \frac{2}{3}.

  • Câu 16: Nhận biết

    Xác định giá trị S đúng nhất

    Một vật chuyển động với vận tốc v(t) =
\frac{6}{5} + \frac{t^{2} + 4}{t + 3}(m/s). Tính quãng đường vật đó đi được trong 4 giây đầu (làm tròn kết quả đến chữ số thập phân thứ hai).?

    Quãng đường vật đó đi được trong 4 giây đầu là:

    S = \int_{0}^{4}{v(t)dt} = \int_{0}^{4}{\left(
\frac{6}{5} + \frac{t^{2} + 4}{t + 3} ight)dt} \approx
11,81(m).

  • Câu 17: Nhận biết

    Tính diện tích hình phẳng

    Diện tích hình phẳng giới hạn bởi đồ thị hàm số y = \frac{1}{x}, trục hoành và hai đường thẳng x = 1, x = e

    Ta có .S = \int_{0}^{e}{\left|
\frac{1}{x} ight|dx} = \ln x|_{1}^{e} = 1

  • Câu 18: Vận dụng

    Tìm giá trị tham số k

    Diện tích hình phẳng giới hạn bởi đồ thị hàm số y = ax^{3} (a
> 0), trục hoành và hai đường thẳng x = - 1, x =
k (k > 0) bằng \frac{15a}{4}. Tìm k.

    Kí hiệu đồ thị hàm số như sau:

    Ta thấy hàm số y = ax^{3};(a >
0) luôn đồng biến trên \mathbb{R} và có tâm đối xứng là O(0;0). Hình vẽ minh họa ở bên ta thấy với x \in ( - 1;0) thì ax^{3} < 0, với x \in (0;k) thì ax^{3} > 0.

    Vậy S = \int_{- 1}^{k}{\left| ax^{3}
ight|dx = \frac{15a}{4}}

    \Leftrightarrow \int_{- 1}^{0}{\left(
ax^{3} ight)dx} + \int_{0}^{k}{\left( ax^{3} ight)dx} =
\frac{15a}{4}

    \Leftrightarrow \frac{- ax^{4}}{4}|_{-
1}^{0} + \frac{ax^{4}}{4}|_{0}^{k} = \frac{15a}{4};(k >
0)

    \Leftrightarrow \frac{a}{4} +
\frac{ak^{4}}{4} = \frac{15a}{414} \Leftrightarrow k^{4} = 14
\Leftrightarrow k = \sqrt[4]{14}

  • Câu 19: Vận dụng

    Tìm tập nghiệm S của phương trình

    Cho F(x) là nguyên hàm của hàm số y = f\left( x ight) = \frac{1}{{{e^x} + 3}} thỏa mãn F\left( 0 ight) =  - \frac{{ - 1}}{3}\ln 4. Tìm tập nghiệm S của phương trình 3F\left( x ight) + \ln \left( {{e^x} + 3} ight) = 2

    F\left( x ight) = \int {\frac{1}{{{e^x} + 3}}dx}  = \int {\frac{{{e^x}}}{{{e^x}\left( {{e^x} + 3} ight)}}dx}

     Đặt t = {e^x} \Rightarrow dt = {e^x}dx

    \int {\frac{{{e^x}}}{{{e^x}\left( {{e^x} + 3} ight)}}dx}  = \int {\frac{1}{{t\left( {t + 3} ight)}}dt}

    = \int {\left( {\frac{1}{{3t}} - \frac{1}{{3\left( {t + 3} ight)}}} ight)dt = \frac{{\ln |t|}}{3} - \frac{{\ln |t + 3|}}{3} + C}

    = \frac{{\ln \left( {{e^x}} ight)}}{3} - \frac{{\ln \left( {{e^x} + 3} ight)}}{3} + C = \frac{x}{3} - \frac{{\ln \left( {{e^x} + 3} ight)}}{3} + C

    F\left( 0 ight) =  - \frac{1}{3}\ln 4 \Rightarrow  - \frac{{\ln 4}}{3} + C =  - \frac{1}{3}\ln 4 \Rightarrow C = 0

    Ta có:

    \begin{matrix}  3F\left( x ight) + \ln \left( {{e^x} + 3} ight) = 2 \hfill \\   \Leftrightarrow 3\left[ {\dfrac{x}{3} - \dfrac{{\ln \left( {{e^x} + 3} ight)}}{3}} ight] + \ln \left( {{e^x} + 3} ight) = 2 \hfill \\   \Leftrightarrow x = 2 \hfill \\ \end{matrix}

  • Câu 20: Nhận biết

    Tìm nguyên hàm của hàm số f(x) = 7^x

    Tìm nguyên hàm của hàm số f\left( x ight) = {7^x} là 

     Ta có:

    \int {{7^x}dx}  = \frac{{7x}}{{\ln 7}} + C

  • Câu 21: Nhận biết

    Chọn khẳng định đúng

    Giả sử hàm số F(x) là một nguyên hàm của hàm số f(x) trên K. Khẳng định nào sau đây đúng.

    Khẳng định đúng là: “Với mỗi nguyên hàm G của f trên K thì tồn tại một hằng số C sao cho G(x) = F(x) + C với x thuộc K.”

  • Câu 22: Vận dụng cao

    Ghi đáp án vào ô trống

    Cho hàm số y = f(x) có đạo hàm liên tục trên \lbrack 0;1brack và thỏa mãn f(0) = 0. Biết rằng \int_{0}^{1}{f^{2}(x)dx} = \frac{9}{2}\int_{0}^{1}{f'(x)\cos\frac{\pi x}{2}}dx= \frac{3\pi}{4}. Tích phân \int_{0}^{1}{f(x)d(x)} bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = f(x) có đạo hàm liên tục trên \lbrack 0;1brack và thỏa mãn f(0) = 0. Biết rằng \int_{0}^{1}{f^{2}(x)dx} = \frac{9}{2}\int_{0}^{1}{f'(x)\cos\frac{\pi x}{2}}dx= \frac{3\pi}{4}. Tích phân \int_{0}^{1}{f(x)d(x)} bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 23: Vận dụng

    Tính tổng các nghiệm của phương trình

    Tìm tổng các nghiệm của phương trình F(x) = x, biết F(x) là một nguyên hàm của hàm số f\left( x ight) = \frac{x}{{\sqrt {8 - {x^2}} }} thỏa mãn F(2) = 0 

    \begin{matrix}  F\left( x ight) = \int {f\left( x ight)dx}  \hfill \\   = \int {\dfrac{x}{{\sqrt {8 - {x^2}} }}dx}  = \dfrac{1}{2}\int {d\frac{x}{{\sqrt {8 - {x^2}} }}d\left( {8 - {x^2}} ight)}  \hfill \\   \Rightarrow F\left( x ight) =  - \sqrt {8 - {x^2}}  + C \hfill \\ \end{matrix}

    Ta có: F(2) = 0 => C = 2

    => F\left( x ight) =  - \sqrt {8 - {x^2}}  + 2

    Xét phương trình F(x) = x ta có:

    \begin{matrix}  F\left( x ight) = x \hfill \\   \Leftrightarrow  - \sqrt {8 - {x^2}}  + 2 = x \hfill \\   \Leftrightarrow \sqrt {8 - {x^2}}  = 2 - x \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {2 - x \geqslant 0} \\   {8 - {x^2} = {{\left( {2 - x} ight)}^2}} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x \leqslant 2} \\   {{x^2} - 2x + 2 = 0} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x \leqslant 2} \\   {x = 1 \pm \sqrt 3 } \end{array}} ight. \Leftrightarrow x = 1 - \sqrt 3  \hfill \\ \end{matrix}

    Vậy tổng các nghiệm của phương trình đã cho bằng x = 1 - \sqrt 3

  • Câu 24: Nhận biết

    Tìm công thức tính diện tích thích hợp

    Xét hình phẳng (H) giới hạn bởi các đường như hình vẽ (phần gạch sọc).

    Diện tích hình phẳng (H) được tính theo công thức

    Ta có:

    S = \int_{0}^{1}{\left| f(x) ight|dx}
+ \int_{1}^{4}{\left| g(x) ight|dx}

    = \int_{0}^{1}{f(x)dx} +
\int_{1}^{4}{g(x)dx}

  • Câu 25: Thông hiểu

    Tìm giá trị của biểu thức I

    Tích phân I =
\int_{0}^{1}\frac{a}{\sqrt{3x^{2} + 12}}dx có giá trị là:

    Ta có:

    I = \int_{0}^{1}\frac{a}{\sqrt{3x^{2} +
12}}dx = \frac{a}{\sqrt{3}}\int_{0}^{1}\frac{1}{\sqrt{x^{2} +
4}}dx.

    Đặt u = x + \sqrt{x^{2} + 4} \Rightarrow
du = \frac{x + \sqrt{x^{2} + 4}}{\sqrt{x^{2} + 4}}dx \Rightarrow
\frac{du}{u} = \frac{dx}{\sqrt{x^{2} + 4}}.

    I = \frac{a}{\sqrt{3}}\int_{2}^{1 +\sqrt{5}}{\frac{1}{u}du}= \left. \ \frac{a}{\sqrt{3}}\left( \ln uight) ight|_{2}^{1 + \sqrt{5}}= \frac{a}{\sqrt{3}}\ln\left| \frac{1+ \sqrt{5}}{2} ight|.

  • Câu 26: Thông hiểu

    Hàm số f(x) = x^3 + 3x - 2 có một nguyên hàm F(x)

    Hàm số f\left( x ight) = {x^3} + 3x - 2 có một nguyên hàm F(x). Biết đồ thị hàm số y = F(x) đi qua điểm B(2; 10). Giá trị F(-2) là:

     F\left( x ight) = \int {\left( {{x^3} + 3x - 2} ight)dx = \frac{{{x^4}}}{4} + \frac{{3{x^2}}}{2} - 2x + C}

    Hàm số đi qua B(2; 10) => \frac{{{2^4}}}{4} + \frac{{{{3.2}^2}}}{2} - 2.2 + C = 10 \Rightarrow C = 4

    => F\left( x ight) = \frac{{{x^4}}}{4} + \frac{{3{x^2}}}{2} - 2x + 4

    => F\left( { - 2} ight) = \frac{{{{\left( { - 2} ight)}^4}}}{4} + \frac{{3.{{\left( { - 2} ight)}^2}}}{2} - 2\left( { - 2} ight) + 4 = 6

  • Câu 27: Thông hiểu

    Chọn đáp án thích hợp

    Cho hàm số y = f(x) liên tục trên \mathbb{R} và có đồ thị (C) là đường cong như hình vẽ:

    Diện tích hình phẳng giới hạn bởi đồ thị (C), trục hoành và hai đường thẳng x = 0;x = 2 (phần tô đen) là:

    Dựa vào hình vẽ ta thấy x \in
(0;1) thì \left\{ \begin{matrix}
f(x) > 0;\forall x \in (0;1) \\
f(x) < 0;\forall x \in (1;2) \\
\end{matrix} ight.

    Vậy S = \int_{0}^{1}{f(x)dx} -
\int_{1}^{2}{f(x)dx}

  • Câu 28: Thông hiểu

    Gọi F(x) là một nguyên hàm của hàm số f(x) = cos5x.cosx

    Gọi F(x) là một nguyên hàm của hàm số f\left( x ight) = \cos 5x.\cos x thỏa mãn F\left( {\frac{\pi }{5}} ight) = 0. Tính F\left( {\frac{\pi }{6}} ight).

     \begin{matrix}  \cos 5x + \cos x = \dfrac{1}{2}\left( {\cos 6x + \cos 4x} ight) \hfill \\  \int {\cos 5x.\cos xdx}  = \int {\dfrac{1}{2}\left( {\cos 6x + \cos 4x} ight)} dx = \dfrac{1}{2}.\dfrac{{\sin 6x}}{6} + \dfrac{1}{2}\dfrac{{\sin 4x}}{4} + C \hfill \\  F\left( {\dfrac{\pi }{3}} ight) = 0 \Rightarrow C = \dfrac{{\sqrt 3 }}{6} \hfill \\  F\left( {\dfrac{\pi }{6}} ight) = \dfrac{{\sqrt 3 }}{8} \hfill \\ \end{matrix}

  • Câu 29: Nhận biết

    Tính tích phân I

    Cho \int_{1}^{2}{f(x)dx} = - 3. Tính I = \int_{2}^{4}{f\left( \frac{x}{2}
\right)dx}.

    Ta có:

    Đặt \frac{x}{2} = t \Rightarrow dx =
2dt

    \Rightarrow I = \int_{1}^{2}{2f(t)dt} =
2\int_{1}^{2}{f(t)dt} = 2.( - 3) = - 6

  • Câu 30: Vận dụng cao

    Tính thể tích chi tiết máy

    Một chi tiết máy được thiết kế như hình vẽ bên.

    Các tứ giác ABCD,CDPQ là các hình vuông cạnh 2,5\ cm. Tứ giác ABEF là hình chữ nhật có BE = 3,5\ cm. Mặt bên PQEF được mài nhẵn theo đường parabol (P) có đỉnh parabol nằm trên cạnh EF. Tính thể tích của chi tiết máy gần nhất với giá trị nào dưới đây?

    Gọi hình chiếu của P,\ Q trên AFBERS.

    Vật thể được chia thành hình lập phương ABCD.PQRS có cạnh 2,5\ cm, thể tích V_{1} = \frac{125}{8}\ cm^{3} và phần còn lại có thể tích V_{2}.

    Khi đó thể tích vật thể V = V_{1} + V_{2}
= \frac{125}{8} + V_{2}.

    Đặt hệ trục Oxyz sao cho O trùng vớiF, Ox trùng với FA, Oy trùng với tia Fy song song với AD.

    Khi đó Parabol (P) có phương trình dạng y = ax^{2}, đi qua điểm P\left( 1;\frac{5}{2} \right) do đó a = \frac{5}{2} \Rightarrow y =
\frac{5}{2}x^{2}.

    Cắt vật thể bởi mặt phẳng vuông góc với Ox và đi qua điểm M(x;0;0),\ 0 \leq x \leq 1 ta được thiết diện là hình chữ nhật MNHK có cạnh là MN = \frac{5}{2}x^{2}MK = \frac{5}{2}

    Do đó diện tích S(x) =
\frac{25}{4}x^{2}

    Áp dụng công thức thể tích vật thể ta có V_{2} = \int_{0}^{1}{\frac{25}{4}x^{2}dx} =
\frac{25}{12}.

    Từ đó V = \frac{125}{8} + \frac{25}{12} =
\frac{425}{24}cm^{3}

  • Câu 31: Nhận biết

    Xác định nguyên hàm của hàm số

    Nguyên hàm của hàm số f(x) =
\frac{1}{x\sqrt{x}} là:

    Ta có: \int_{}^{}{f(x)dx} =
\int_{}^{}{\frac{1}{x\sqrt{x}}dx}

    = \int_{}^{}{x^{- \frac{3}{2}}dx=}\dfrac{x^{- \frac{1}{2}}}{- \dfrac{1}{2}} + C = - \frac{2}{\sqrt{x}} +C.

  • Câu 32: Thông hiểu

    Tính diện tích hình phẳng

    Tính diện tích hình phẳng S giới hạn bởi đồ thị các hàm số y = 2^{x}y = 3 - x, trục hoành và trục tung.

    Giao điểm 2^{x} = 3 - x
\Rightarrow Nhẩm được nghiệm 1

    S = \int_{0}^{1}\left| 2^{x} + x - 3
ight|dx = \left| \frac{2^{x}}{\ln2} + \frac{x^{2}}{2} - 3x
ight|_{0}^{1}

    = \frac{2}{\ln2} + \frac{1}{2} - 3 -
\frac{1}{\ln2} = \frac{1}{\ln2} - \frac{5}{2}

  • Câu 33: Thông hiểu

    Xác định giá trị của tích phân I

    Tích phân I = \int_{-
\frac{\pi}{2}}^{\frac{\pi}{2}}{\left( \sin ax + \cos ax
\right)dx}, với a \neq 0 có giá trị là:

    Tích phân I = \int_{-
\frac{\pi}{2}}^{\frac{\pi}{2}}{\left( \sin ax + \cos ax
ight)dx} có giá trị là:

    Ta có:

    I = \int_{-
\frac{\pi}{2}}^{\frac{\pi}{2}}{\left( \sin ax + \cos ax
ight)dx} = \left. \ \left( -
\frac{1}{a}\cos ax + \frac{1}{a}\sin ax ight) ight|_{-
\frac{\pi}{2}}^{\frac{\pi}{2}}

    = \left. \ \left(
\frac{\sqrt{2}}{a}\sin\left( ax - \frac{\pi}{4} ight) ight)
ight|_{- \frac{\pi}{2}}^{\frac{\pi}{2}}

    = \frac{\sqrt{2}}{a}\left\lbrack
\sin\left( a\frac{\pi}{2} - \frac{\pi}{4} ight) + \sin\left(
a\frac{\pi}{2} + \frac{\pi}{4} ight) ightbrack.

    Đáp án đúng là I =
\frac{\sqrt{2}}{a}\left\lbrack \sin\left( a\frac{\pi}{2} - \frac{\pi}{4}
ight) + \sin\left( a\frac{\pi}{2} + \frac{\pi}{4} ight)
ightbrack.

  • Câu 34: Nhận biết

    Xác định nguyên hàm của hàm số

    Tìm nguyên hàm F(x) = \int_{}^{}{\left( x
+ \sin x \right)dx} biết F(0) =
19 .

    Ta có:

    F(x) = \int_{}^{}{\left( x + \sin x
ight)dx = \frac{x^{2}}{2} - \cos x + C}

    F(0) = 19 \Rightarrow C = 20\Rightarrow F(x) = \frac{x^{2}}{2} - \cos x + 20

  • Câu 35: Vận dụng

    Xét tính đúng sai của các khẳng định

    Vào năm 2014, dân số nước ta khoảng 90,7 triệu người. Giả sử, dân số nước ta sau t năm được xác định bởi hàm số S(t) (đơn vị: triệu người), trong đó tốc độ gia tăng dân số được cho bởi S'(t) = 1,2698e^{0,014t}, với t là số năm kể từ năm 2014, S'(t) tính bằng triệu người / năm.

    a) S(t) là một nguyên hàm của S'(t).Đúng||Sai

    b) S(t) = 90,7e^{0,014t} +
90,7.Sai||Đúng

    c) Theo công thức trên, tốc độ tăng dân số nước ta năm 2034 (làm tròn đến hàng phần mười của triệu người / năm) khoảng 1,7triệu người /năm. Đúng||Sai

    d) Theo công thức trên, dân số nước ta năm 2034 (làm tròn đến hàng đơn vị của triệu người) khoẳng 120triệu người. Đúng||Sai

    Đáp án là:

    Vào năm 2014, dân số nước ta khoảng 90,7 triệu người. Giả sử, dân số nước ta sau t năm được xác định bởi hàm số S(t) (đơn vị: triệu người), trong đó tốc độ gia tăng dân số được cho bởi S'(t) = 1,2698e^{0,014t}, với t là số năm kể từ năm 2014, S'(t) tính bằng triệu người / năm.

    a) S(t) là một nguyên hàm của S'(t).Đúng||Sai

    b) S(t) = 90,7e^{0,014t} +
90,7.Sai||Đúng

    c) Theo công thức trên, tốc độ tăng dân số nước ta năm 2034 (làm tròn đến hàng phần mười của triệu người / năm) khoảng 1,7triệu người /năm. Đúng||Sai

    d) Theo công thức trên, dân số nước ta năm 2034 (làm tròn đến hàng đơn vị của triệu người) khoẳng 120triệu người. Đúng||Sai

    Ta có S(t) là một nguyên hàm của S'(t)

    \int_{}^{}{S'(t)dt
=}\int_{}^{}{1,2698e^{0,014t}dt} = 1,2698\int_{}^{}\left( e^{0,014t}
\right)^{t}dt

    = \frac{1,2698e^{0,014t}}{0,014} =
90,7e^{0,014t} + C.

    S(0) = 90,7 nên C = 0. Suy ra S(t) = 90,7e^{0,014t}.

    Tốc độ tăng dân số ở nước ta năm 2034 là:

    S'(20) = 1,2698e^{0,014.20} \approx
1,7 (triệu người/năm).

    Dân số nước ta năm 2034 là: S(20) =
90,7e^{0,014.20} \approx 120 (triệu người).

  • Câu 36: Vận dụng

    Tìm tích phân I

    Tích phân I =
\int_{\frac{5}{2}}^{3}{\sqrt{(x - 1)(3 - x)}dx} có giá trị là:

    Tích phân I =
\int_{\frac{5}{2}}^{3}{\sqrt{(x - 1)(3 - x)}dx} có giá trị là:

    I = \int_{\frac{5}{2}}^{3}{\sqrt{(x -
1)(3 - x)}dx} = \int_{\frac{5}{2}}^{3}{\sqrt{- 3 - x^{2} + 2x}dx} =
\int_{\frac{5}{2}}^{3}{\sqrt{1 - (x - 2)^{2}}dx}.

    Đặt x - 2 = \sin t,t \in \left\lbrack -
\frac{\pi}{2};\frac{\pi}{2} ightbrack \Rightarrow dx = \cos
tdt.

    Đổi cận\left\{ \begin{matrix}
x = \frac{5}{2} \Rightarrow t = \frac{\pi}{6} \\
x = 3 \Rightarrow t = \frac{\pi}{2} \\
\end{matrix} ight..

    \Rightarrow I =
\int_{\frac{\pi}{6}}^{\frac{\pi}{2}}{\sqrt{1 - sin^{2}t}.costdt} =
\int_{\frac{\pi}{6}}^{\frac{\pi}{2}}{cos^{2}tdt}

    =
\int_{\frac{\pi}{6}}^{\frac{\pi}{2}}{\frac{1 + cos2t}{2}dt =
\frac{1}{2}\left. \ \left( x + \frac{1}{2}sin2t ight)
ight|_{\frac{\pi}{6}}^{\frac{\pi}{2}}} = \frac{\pi}{6} -
\frac{\sqrt{3}}{8}

    Đáp án đúng là I = \frac{\pi}{6} -
\frac{\sqrt{3}}{8}.

  • Câu 37: Nhận biết

    Chọn đáp án đúng

    Tích phân \int_{1}^{8}\sqrt[3]{x}dx bằng:

    Ta có:

    \int_{1}^{8}\sqrt[3]{x}dx = \left. \
\left( \frac{3}{4}x\sqrt[3]{x} ight) ight|_{1}^{8} =
\frac{45}{4}.

  • Câu 38: Vận dụng cao

    Xác định nguyên hàm I

    Tìm I = \int_{}^{}\frac{\sin x}{\sin x +
\cos x}dx?

    Đặt: T = \int_{}^{}{\frac{\cos x}{\sin x
+ \cos x}dx}

    \Rightarrow I + T =
\int_{}^{}{\frac{\sin x}{\sin x + \cos x}dx + \int_{}^{}{\frac{\cos
x}{\sin x + \cos x}dx}}

    = \int_{}^{}{\frac{\sin x + \cos x}{\sin
x + \cos x}dx = x + C_{1}}(1)

    Ta lại có :

    I - T = \int_{}^{}{\frac{\sin x}{\sin x
+ \cos x}dx - \int_{}^{}{\frac{\cos x}{\sin x + \cos x}dx
=}}\int_{}^{}{\frac{\sin x - \cos x}{\sin x + \cos x}dx}

    \Leftrightarrow I - T = -\int_{}^{}{\frac{d\left( \sin x + \cos x \right)}{\sin x + \cos x}}= -\ln\left| \sin x + \cos x \right| + C_{2}(2)

    Từ (1);(2) ta có hệ: \left\{ \begin{matrix}
I + T = x + C_{1} \\
I - T = - \ln\left| \sin x + \cos x \right| + C_{2} \\
\end{matrix} \right.

    \Rightarrow \left\{ \begin{matrix}I = \dfrac{1}{2}\left( x - \ln\left| \sin x + \cos x \right| \right) + C\\T = \dfrac{1}{2}\left( x + \ln\left| \sin x + \cos x \right| \right) + C\\\end{matrix} \right.

  • Câu 39: Thông hiểu

    Chọn đáp án đúng

    Cho hình phẳng (H) như hình vẽ (phần tô đậm):

    Diện tích hình phẳng (H) là:

    Gọi S là diện tích hình phẳng (H) theo hình vẽ suy ra S = \int_{1}^{3}{x\ln xdx}

    Theo công thức tích phân từng phần:

    S = \left. \ \frac{x^{2}}{2}.\ln2ight|_{2}^{3} + \int_{1}^{3}{\frac{x}{2}dx} = \left. \frac{x^{2}}{2}.\ln2 ight|_{2}^{3} - \left. \ \frac{x^{2}}{4}ight|_{2}^{3} = \frac{9}{4}\ln3 - 2.

  • Câu 40: Thông hiểu

    Tính giá trị của biểu thức

    Gọi F(x) là một nguyên hàm của hàm số f(x), với f(x) = 3sinx + \frac{4}{cos^{2}x}, biết F(0) = 2. Tính F\left( \frac{\pi}{3} \right).

    Ta có:

    \int_{}^{}{f(x)dx} = \int_{}^{}{\left(
3sinx + \frac{4}{cos^{2}x} \right)dx}

    = 3\int_{}^{}{\sin xdx} +
4\int_{}^{}{\frac{1}{cos^{2}x}dx}

    = - 3cosx + 4tanx + C.

    Do đó F(x) = - 3cosx + 4tanx +
C.

    F(0) = 2 \Leftrightarrow - 3 + C = 2
\Leftrightarrow C = 5.

    Suy ra F(x) = - 3cosx + 4tanx +
5.

    Vậy F\left( \frac{\pi}{3} \right) = -
3cos\frac{\pi}{3} + 4tan\frac{\pi}{3} + 5 = \frac{7}{2} +
4\sqrt{3}.

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 4 Nguyên hàm và tích phân Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo