Xác định một nguyên hàm của hàm số
Tìm nguyên hàm
của hàm số
?
Ta có:
Vậy một nguyên hàm của hàm số là .
Hãy cùng thử sức kiểm tra đánh giá các kiến thức tổng quan với bài kiểm tra phút Chương 4: Nguyên hàm và tích phân Toán 12 sách Kết nối tri thức các em nhé!
Xác định một nguyên hàm của hàm số
Tìm nguyên hàm
của hàm số
?
Ta có:
Vậy một nguyên hàm của hàm số là .
Chọn đáp án đúng
Tìm họ các nguyên hàm của hàm số
?
Ta có:
Tính quãng đường ôtô di chuyển được
Một ôtô đang chạy với vận tốc 19m/s thì người lái hãm phanh, ôtô chuyển động chậm dần đều với vận tốc
(m/s), trong đó t là khoảng thời gian tính bằng giây kể từ lúc bắt đầu hãm phanh. Hỏi từ lúc hãm phanh đến khi dừng hẳn, ôtô còn di chuyển bao nhiêu mét?
Khi ô tô dừng lại hẳn
Tìm nguyên hàm của hàm số
Cho
là một nguyên hàm của hàm số
. Tìm nguyên hàm của hàm số
?
Cách 1: Sử dụng tính chất của nguyên hàm
.
Từ giả thiết, ta có:
Suy ra .
Vậy
Cách 2: Sử dụng công thức nguyên hàm từng phần.
Nếu u, v là hai hàm số có đạo hàm liên tục trên K thì:
.
Ta có
Từ giả thiết: .
Vậy .
Chọn phương án thích hợp
Nguyên hàm của hàm số
là
Ta có
.
Tìm khẳng định sai
Cho các hàm số
và
liên tục trên
và số
tùy ý. Trong các khẳng định sau, khẳng định nào sai?
Khẳng định sai là:
Chọn đáp án đúng
Công thức tính diện tích S của hình thang cong giới hạn bởi hai đồ thị
,
,
,
, ![]()
Đáp án đúng: .
Tính thể tích nước
Có một cốc thủy tinh hình trụ, bán kính trong lòng đáy cốc là
, chiều cao trong lòng cốc là
đang đựng một lượng nước.

Tính thể tích lượng nước trong cốc, biết khi nghiêng cốc nước vừa lúc nước chạm miệng cốc thì đáy mực nước trùng với đường kính đáy.
Có một cốc thủy tinh hình trụ, bán kính trong lòng đáy cốc là
, chiều cao trong lòng cốc là
đang đựng một lượng nước.

Tính thể tích lượng nước trong cốc, biết khi nghiêng cốc nước vừa lúc nước chạm miệng cốc thì đáy mực nước trùng với đường kính đáy.
Tính giá trị của biểu thức
Gọi
là một nguyên hàm của hàm số
, với
, biết
. Tính
.
Ta có:
.
Do đó .
.
Suy ra .
Vậy .
Tính giá trị thể tích nhỏ nhất
Gọi
là đường thẳng tùy ý đi qua điểm
và có hệ số góc âm. Giả sử
cắt các trục
lần lượt tại
. Quay tam giác
quanh trục
thu được một khối tròn xoay có thể tích là
. Giá trị nhỏ nhất của
bằng
Hình vẽ minh họa
Giả sử A(a; 0), B(0; b). Phương trình đường thẳng d:
Mà M(1; 1) ∈ d nên
Từ (1) suy ra d có hệ số góc là ; theo giả thiết ta có
Nếu mẫu thuẫn với (2) suy ra
Mặt khác từ (2) suy ra kết hợp với a > 0, b > 0 suy ra a > 1.
Khi quay ∆OAB quanh trục Oy, ta được hình nón có chiều cao và bán kính đường tròn đáy
Thể tích khối nón là
Suy ra V đạt giá trị nhỏ nhất khi đạt giá trị nhỏ nhất.
Xét hàm số trên khoảng
Ta có bảng biến thiên như sau:
Vậy giá trị nhỏ nhất của V bằng
Tính thời gian đi đến trường
Một học sinh đi học từ nhà đến trường bằng xe đạp với vận tốc thay đổi theo thời gian được tính bởi công thức
. Biết rằng sau khi đi được 1 phút thì quãng đường học sinh đó đi được là
. Biết quãng đường từ nhà đến trường là
. Hỏi thời gian học sinh đó đi đến trường là bao nhiêu phút?
Ta có:
Vì
Để học sinh đó đến trường thì
Vậy đáp án cần tìm là phút.
Tìm nguyên hàm của hàm số
Xác định nguyên hàm của hàm số
?
Ta có: .
Tìm diện tích hình phẳng
Tính diện tích hình phẳng giới hạn bởi các đường
và trục hoành?
Phương trình hoành độ giao điểm
Khi đó diện tích hình phẳng theo yêu cầu bài toán là:
.
Tính giá trị biểu thức
Thể tích khối tròn xoay khi quay quanh trục Ox hình phẳng giới hạn bởi
là
. Tính
?
Phương trình hoành độ giao điểm
Ta có:
Vậy
Tính giới hạn của tích phân
Giá trị của
bằng
Giải toán bằng hai cách như sau:
Cách 1: Thử bằng máy tính
Lấy giá trị n càng lớn càng tốt. Giả sử .
Nhập biểu thức
Máy tính cho kết quả .
Cách 2: Giải chi tiết
Ta luôn có
Chọn đáp án đúng
Một nguyên hàm của
là :
Ta có:
Đặt:
Khi đó:
Chọn mệnh đề đúng
Cho hàm số
liên tục trên
, có đồ thị hàm số
như sau:

Mệnh đề nào dưới đây là đúng?
Theo ý nghĩa hình học của tích phân thì là diện tích hình thang cong
.
Tìm quãng đường chuyển động
Một vật chuyển động chậm dần với vận tốc
. Hỏi rằng trong
trước khi dừng hẳn vật di chuyển được bao nhiêu mét?
Khi dừng hẳn
Khi đó trong 5s trước khi dừng hẳn vật di chuyển được:
.
Tính quãng đường đi được của chất điểm
Một chất điểm đang chuyển động với vận tốc
thì tăng tốc với gia tốc
. Tính quãng đường chất điểm đó đi được trong khoảng thời gian
kể từ lúc bắt đầu tăng tốc.
Ta có: .
Khi đó
Khi đó quãng đường đi được bằng:
Chọn phát biểu đúng
Cho hàm số
là một nguyên hàm của hàm số
. Phát biểu nào sau đây đúng?
Ta có .
Xác định nguyên hàm
Tìm nguyên hàm
.
Đặt ;
Lúc này ta có
Tính tích phân I
Tích phân
có giá trị là:
Tích phân có giá trị là:
Ta biến đổi: .
Nhận thấy:. Ta dùng đổi biến số.
Đặt .
Đổi cận.
.
Đáp án đúng là .
Chọn đáp án đúng
Biết
, với a, b, c là các số nguyên dương và
là phân số tối giản. Tính
.
Ta có:
Ta có:
Xác định số cực trị của đồ thị hàm số
Biết
là nguyên hàm của hàm số
. Hỏi đồ thị của hàm số
có bao nhiêu điểm cực trị?
Vì là nguyên hàm của hàm số
nên suy ra
Ta có:
Xét hàm số trên
, ta có:
suy ra hàm số
đồng biến trên
.
Vậy phương trình có nhiều nhất một nghiệm trên
(2)
Mặt khác ta có hàm số liên tục trên
và
nên
.
Suy ra tồn tại sao cho
(3)
Từ (1); (2); (3) suy ra phương trình có nghiệm duy nhất
.
Đồng thời vì là nghiệm bội lẻ nên
đổi dấu qua
Vậy đồ thị hàm số có một điểm cực trị.
Ghi đáp án vào ô trống
Một mảnh vườn hình elip có trục lớn bằng
, trục nhỏ bằng
được chia thành hai phần bởi một đoạn thẳng nối hai đỉnh liên tiếp của elip. Phần nhỏ hơn trồng cây con và phần lớn hơn trồng rau. Biết lợi nhuận thu được là
mỗi
trồng cây con và
mỗi
trồng rau. Hỏi thu nhập từ cả mảnh vườn là bao nhiêu? (Kết quả làm tròn đến hàng nghìn).
Một mảnh vườn hình elip có trục lớn bằng
, trục nhỏ bằng
được chia thành hai phần bởi một đoạn thẳng nối hai đỉnh liên tiếp của elip. Phần nhỏ hơn trồng cây con và phần lớn hơn trồng rau. Biết lợi nhuận thu được là
mỗi
trồng cây con và
mỗi
trồng rau. Hỏi thu nhập từ cả mảnh vườn là bao nhiêu? (Kết quả làm tròn đến hàng nghìn).
Chọn đáp án đúng
Một chiếc máy bay di chuyển với vận tốc là
. Hỏi quãng đường máy bay đi được từ giây thứ
đến giây thứ
bằng bao nhiêu?
Quãng đường máy bay đi được từ giây thứ 4 đến giây thứ 10 là:
Tính diện tích S của hình phẳng
Tính diện tích
của hình phẳng giới hạn bởi đồ thị hàm số
, trục hoành, trục tung và đường thẳng
.
Phương trình hoành độ giao điểm .
![]()
.
Tìm họ nguyên hàm của hàm số
Xác định nguyên hàm
của hàm số
?
Ta có:
Tìm thể tích khối tròn xoay
Tính thể tích
của khối tròn xoay được sinh ra khi xoay hình phẳng giới hạn bởi các đường
và hai đường thẳng
quanh trục
:
Thể tích của khối tròn xoay được sinh ra khi xoay hình phẳng giới hạn bởi các đường
và hai đường thẳng
quanh trục
là:
.
Tính tích phân
Giá trị của
bằng
Ta có:
Tính diện tích hình phẳng
Diện tích hình phẳng giới hạn bởi các đường
, trục hoành,
và
bằng
Diện tích hình giới hạn là
Tính thể tích khối tròn xoay
Cho hình phẳng D giới hạn bởi đường cong
, trục hoành và các đường thẳng
,
. Khối tròn xoay tạo thành khi quay D quanh trục hoành có thể tích V bằng bao nhiêu?
Thể tích khối tròn xoay được tạo nên bởi hình phẳng giới hạn bởi các đường ,
,
và trục hoành khi quay quanh Ox là:
(đvtt).
Tìm giá trị của tích phân I
Tích phân
có giá trị là:
Tích phân có giá trị là:
Ta có:
Nhận xét: Không thể dùng máy tính để tính ra kết quả như trên mà ta chỉ có thể dùng để kiểm tra mà thôi.
Chọn đáp án đúng
Cho hàm số
. Một nguyên hàm của hàm số
bằng 0 khi
là:
Ta có:
Vậy
Tìm tham số a thỏa mãn điều kiện
Giá trị dương a sao cho
là
Ta có:
.
Chọn phương án thích hợp
Tìm
?
Đặt:
Mặt khác:
Từ ta có hệ:
Chọn mệnh đề đúng
Cho hàm số
liên tục trên
và có một nguyên hàm là hàm số
. Mệnh đề nào sau đây đúng?
Theo định nghĩa tích phân ta có: .
Chọn kết quả đúng
Bổ dọc một quả dưa hấu ta được thiết diện là hình elip có trục lớn là 28cm, trục nhỏ 25cm. Biết cứ 1000cm3 dưa hấu sẽ làm được cốc sinh tố giá 20.000 đồng. Hỏi từ quả dưa như trên có thể thu được bao nhiêu tiền từ việc bán nước sinh tố? (Biết rằng bề dày của vỏ dưa không đáng kể, kết quả đã được quy tròn)
Hình vẽ minh họa
Giả sử thiết diện nằm trên hệ Oxy, tâm O trùng với tâm thiết diện
Suy ra elip: . Thể tích quả dưa hấu chính là thể tích vật thể thu được khi quay phần gạch chéo quanh trục Ox.
Số tiền thu được là:
đồng.
Hàm số y = x^3 + x có nguyên hàm là:
Hàm số
có nguyên hàm là:
Ta có:
Tính thể tích V
Tính thể tích
của vật thể tròn xoay thu được khi quay hình phẳng giới hạn bởi các đường
quay quanh
.
Xét phương trình hoành độ giao điểm:
Thể tích khối tròn xoay cần tính là:
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: