Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề kiểm tra 15 phút Chương 5 Phương pháp tọa độ trong không gian KNTT

Mô tả thêm:

Cùng nhau thử sức với bài kiểm tra 15 phút Toán 12 Kết nối tri thức Chương 5 Phương pháp tọa độ trong không gian nhé!

  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Thông hiểu

    Chọn đáp án đúng

    Trong không gian với hệ trục tọa độ Oxyz, cho điểm H(2; - 1; - 2) là hình chiếu vuông góc của gốc tọa độ O xuống mặt phẳng (P), số đo góc giữa mặt phẳng (P) và mặt phẳng (Q):x - y - 11 = 0 bằng bao nhiêu?

    H(2; - 1; - 2) là hình chiếu vuông góc của gốc tọa độ O xuống mặt phẳng (P) nên mặt phẳng (P) có vectơ pháp tuyến \overrightarrow{n_{(P)}} = \overrightarrow{OH} =
(2; - 1; - 2).

    Mặt phẳng (Q) có vectơ pháp tuyến \overrightarrow{n_{(Q)}} = (1; -
1;0).

    Gọi \varphi là số đo góc giữa mặt phẳng (P) và mặt phẳng (Q), ta có:

    \cos\varphi = \frac{\left|
\overrightarrow{n_{(P)}}.\overrightarrow{n_{(Q)}} ight|}{\left|
\overrightarrow{n_{(P)}} ight|.\left| \overrightarrow{n_{(Q)}}
ight|}

    = \frac{\left| 2.1 + ( - 1).( - 1) + ( -
2).0 ight|}{\sqrt{2^{2} + ( - 1)^{2} + ( - 2)^{2}}.\sqrt{1^{2} + ( -
1)^{2} + 0^{2}}} = \frac{\sqrt{2}}{2}

    \Rightarrow \varphi =
45^{0}

  • Câu 2: Nhận biết

    Chọn khẳng định đúng

    Trong không gian tọa độ Oxyz, cho đường thẳng \Delta:\frac{x - 1}{- 2} =
\frac{y + 1}{2} = \frac{z - 2}{- 1} và mặt phẳng (P):2x - y - 2z + 1 = 0. Gọi \alpha là góc giữa đường thẳng \Delta và mặt phẳng (P). Khẳng định nào sau đây đúng?

    Ta có: \Delta có một vectơ chỉ phương là \overrightarrow{u} = ( - 2;2; -
1), (P) có một vectơ pháp tuyến là \overrightarrow{n} = (2; - 1; -
2).

    Từ đó: \sin\alpha = \left| \cos\left(
\overrightarrow{n};\overrightarrow{u} ight) ight| = \left|
\frac{\overrightarrow{n}.\overrightarrow{u}}{\left| \overrightarrow{n}
ight|.\left| \overrightarrow{u} ight|} ight| =
\frac{4}{9}

  • Câu 3: Nhận biết

    Chọn đáp án đúng

    Trong không gian Oxyz, phương trình nào dưới đây là phương trình của mặt phẳng đi qua điểm E(1;2;3) và song song với mặt phẳng (Oxy)?

    Mặt phẳng (Oxy) có phương trình là z = 0 nên có một vectơ pháp tuyến là \overrightarrow{k} =
(0;0;1).

    Phương trình của mặt phẳng cần tìm có dạng

    0(x - 1) + 0(y - 2) + 1(z - 3) = 0
\Leftrightarrow z = 3.

  • Câu 4: Vận dụng cao

    Tính chu vi của đường tròn

    Trong không gian với hệ trục tọa độ Oxyz cho mặt phẳng (P):x - y - z + 3 = 0 và hai điểm M( - 1;1; - 1),N(3; - 3;3). Mặt cầu (S) đi qua hai điểm M,N và tiếp xúc với (P) tại C. Biết rằng C luôn thuộc một đường tròn cố định. Tính chu vi của đường tròn đó.

    Ta có MN đi qua M( - 1;1; - 1), nhận \frac{1}{4}\overrightarrow{MN} = \frac{1}{4}(4; -
4;4) = (1; - 1;1) là một vecto chỉ phương nên MN:\left\{ \begin{matrix}
x = - 1 + t \\
y = 1 - t \\
z = - 1 + t
\end{matrix} \right.\ ;\left( t\mathbb{\in R} \right).

    Thay \left\{ \begin{matrix}
x = - 1 + t \\
y = 1 - t \\
z = - 1 + t
\end{matrix} \right.vào (P) ta được -
1 + t + 1 + t + 1 - t + 3 = 0 \Leftrightarrow t = 4

    Tọa độ điểm D(3;3;3) là giao điểm của của MN(P). Do đó theo tính chất của phương tích ta được DM.DN = DI^{2} - R^{2}.

    Mặt khác vì DC là tiếp tuyến của mặt cầu (S) cho nên DC^{2} = DI^{2} - R^{2}.

    Do vậy DC^{2} = DM.DN = 36 \Rightarrow DC = 6 (là một giá trị không đổi).

    Vậy C luôn thuộc một đường tròn cố định tâm D với bán kính R = 6 suy ra chu vi của đường tròn là 12\pi.

  • Câu 5: Thông hiểu

    Chọn phương án đúng

    Cho mặt phẳng (P):3x + 4y + 5z + 8 =
0 và đường thẳng d là giao tuyến của hai mặt phẳng: (\alpha):x - 2y + 1 = 0(\beta):x - 2z - 3 = 0. Gọi \varphi là góc giữa đường thẳng d và mặt phẳng (P). Khi đó:

    Ta có: \overrightarrow{u_{d}} =
\left\lbrack \overrightarrow{n_{\alpha}};\overrightarrow{n_{\beta}}
\right\rbrack = (4;2;2)

    \sin\left( d;(P) \right) = \left|
\cos\left( \overrightarrow{u_{d}};\overrightarrow{n_{(P)}} \right)
\right| = \frac{\sqrt{3}}{2} \Rightarrow \varphi = 60^{0}.

  • Câu 6: Nhận biết

    Chọn đáp án thích hợp

    Trong không gian với hệ toạ độ Oxyz, cho mặt phẳng (P):2x - y + z - 1 = 0. Vectơ nào là vectơ pháp tuyến của mặt phẳng (P)?

    Vectơ nào là vectơ pháp tuyến của mặt phẳng (P) có tọa độ là (2; - 1;1) hoặc ( - 2;1; - 1).

  • Câu 7: Thông hiểu

    Tìm tọa độ điểm B

    Cho mặt phẳng (P):x + 2y - 2z + 2 =
0 và điểm A(2; - 3;0). Gọi B là điểm thuộc tia Oy sao cho mặt cầu tâm B, tiếp xúc với mặt phẳng (P) có bán kính bằng 2. Tọa độ điểm B là:

    B thuộc tia Oy nên B(0;b;0) (với b > 0)

    Bán kính của mặt cầu tâm B, tiếp xúc với (P)R = d\left( B,(P) \right) = \frac{|2b +
2|}{3}.

    Theo giả thiết R = 2 \Leftrightarrow
\frac{|2b + 2|}{3} = 2

    \Leftrightarrow |2b + 2| = 6
\Leftrightarrow \left\lbrack \begin{matrix}
2b + 2 = 6 \\
2b + 2 = - 6 \\
\end{matrix} \right.\  \Leftrightarrow \left\lbrack \begin{matrix}
b = 2 \\
b = - 4 \\
\end{matrix} \right.\ .

    Do b > 0 \Rightarrow b =
2

    Vậy B(0;2;0).

  • Câu 8: Vận dụng

    Tính cosin góc giữa hai mặt phẳng

    Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1;2; - 1),B(0;4;0) và mặt phẳng (P) có phương trình 2x - y - 2z + 2015 = 0. Gọi \alpha là góc nhỏ nhất mà mặt phẳng (Q) đi qua hai điểm A, B tạo với mặt phẳng (P). Giá trị của \cos\alpha

    Ta có:

    (Q) đi qua A nên:

    (Q):a(x - 1) + b(y - 2) + c(z + 1) =
0

    (Q) đi qua B nên:

    a.(0 - 1) + b.(4 - 2) + c.(0 + 1) =
0

    \Rightarrow - a + 2b + c = 0 \Rightarrow
a = 2b + c

    \Rightarrow (Q):(2b + c)(x - 1) + b(y -
2) + c(z + 1) = 0

    \Rightarrow \overrightarrow{n_{(Q)}} =
(2b + c;b;c)

    (P):2x - y - 2z + 2015 = 0 \Rightarrow
\overrightarrow{n_{(P)}} = (2; - 1; - 2)

    \Rightarrow cos\left( \widehat{(P);(Q)}
\right) = \left| \cos\left(
\overrightarrow{n_{(P)}};\overrightarrow{n_{(Q)}} \right)
\right|

    \Rightarrow cos\left( \widehat{(P);(Q)}
\right) = \frac{\left| 2(2b + c) - b - 2c \right|}{\sqrt{(2b + c)^{2} +
b^{2} + c^{2}}.\sqrt{2^{2} + ( - 1)^{2} + 2^{2}}}

    \Rightarrow cos(\alpha) =
\frac{|3b|}{3.\sqrt{5b^{2} + 4bc + 2c^{2}}}

    Ta cần tìm \alpha_{\min} \Leftrightarrow
(cos\alpha)_{\max}

    cos\alpha = \frac{|3b|}{3.\sqrt{5b^{2} +
4bc + 2c^{2}}} = \frac{|b|}{\sqrt{3b^{2} + 2(b + c)^{2}}} \leq
\frac{1}{\sqrt{3}}

    Dấu " = " xảy ra khi: b = - c .

  • Câu 9: Thông hiểu

    Tính khoảng cách từ điểm đến trục Ox

    Trong không gian với hệ tọa độ Oxyz cho điểm A(1;2;3) Khoảng cách từ A đến trục Ox bằng

    Trục Ox có véc-tơ chỉ phương \overrightarrow{i} = (1;0;0) và đi qua O(0;0;0).

    Áp dụng công thức, ta có d(A;Ox) =
\frac{\left| \left\lbrack \overrightarrow{i};\overrightarrow{OA}
\right\rbrack \right|}{\left| \overrightarrow{i} \right|} =
\sqrt{13}.

  • Câu 10: Vận dụng cao

    Tìm vectơ chỉ phương của đường thẳng

    Trong không gian với hệ tọa độ Oxyz,cho bốn đường thẳng d_{1}:\frac{x - 1}{1} = \frac{y - 2}{2} =
\frac{z}{- 2}; d_{2}:\frac{x -
2}{2} = \frac{y - 2}{4} = \frac{z}{- 4}; d_{3}:\frac{x}{2} = \frac{y}{1} = \frac{z -
1}{1}; d_{4}:\frac{x - 2}{2} =
\frac{y}{2} = \frac{z - 1}{- 1}. Gọi \Delta là đường thẳng cắt cả bốn đường thẳng đã cho. Vectơ nào sau đây là vectơ chỉ phương của đường thẳng \Delta.

    Ta có d_{1}//d_{2}. Phương trình mặt phẳng \left( d_{1};d_{2} \right):y - z +
2 = 0

    Gọi \left\{ \begin{matrix}A = d_{3} \cap \left( d_{1};d_{2} \right) \Rightarrow A\left(1;\dfrac{1}{2};\dfrac{3}{2} \right) \\B = d_{4} \cap \left( d_{1};d_{2} \right) \Rightarrow B(4;2;0) \\\end{matrix} \right.

    Khi đó AB là đường thẳng \Delta. \overrightarrow{AB} = \left( 3;\frac{3}{2};
- \frac{3}{2} \right) \Rightarrow \overrightarrow{u_{2}} = (2;1; -
1) là vectơ chỉ phương của đường thẳng \Delta.

  • Câu 11: Thông hiểu

    Tìm tọa độ điểm M

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng \Delta:\left\{ \begin{matrix}
x = - 1 + 3t \\
y = 1 + t \\
z = 3t \\
\end{matrix}\ (t \in \mathbb{R}) ight. và hai điểm A(5;0;2),B(2; - 5;3). Tìm điểm M thuộc \Delta sao cho \bigtriangleup ABM vuông tại A.

    Điểm M thuộc đường thẳng \Delta nên M(
- 1 + 3t;1 + t;3t).

    Ta có \overrightarrow{AM} = (3t - 6;t +
1;3t - 2)\overrightarrow{AB} =
( - 3; - 5;1).

    Tam giác ABM vuông tại M khi và chỉ khi

    \overrightarrow{AB}\bot\overrightarrow{AM}
\Leftrightarrow \overrightarrow{AB} \cdot \overrightarrow{AM} =
0

    \Leftrightarrow - 3(3t - 6) - 5(t + 1) +
3t - 2 = 0 \Leftrightarrow t = 1

    Khi đó tọa độ điểm M(2;2;3).

  • Câu 12: Thông hiểu

    Tìm phương trình mặt phẳng thích hợp

    Trong không gian với hệ toạ độ Oxyz, cho hình cầu (S):(x - 1)^{2} + (y - 2)^{2} + (z - 3)^{2} =
1. Phương trình mặt phẳng (\alpha) chứa trục Oz và tiếp xúc với (S)

    Mặt phẳng (\alpha) chứa trục Oz có dạng: Ax + By = 0\left( A^{2} + B^{2} \neq 0
\right)

    Ta có: d\left( I,(\alpha) \right) = 3
\Leftrightarrow \frac{|A + 2B|}{\sqrt{A^{2} + B^{2}}} = 1

    \Leftrightarrow 4AB + B^{2} = 0
\Leftrightarrow 4A + B = 0.

    Chọn A = 3,B = - 4 \Rightarrow
(\alpha):3x - 4y = 0

  • Câu 13: Nhận biết

    Chọn phương trình mặt cầu

    Trong không gian với hệ toạ độ Oxyz, phương trình nào sau đây là phương trình mặt cầu

    Phương trình mặt cầu tâm I bán kính R có dạng: (x - a)^{2} + (y - b)^{2} + (z - c)^{2} =
R^{2}

    Vậy đáp án cần tìm là: (x - 13)^{2} + (y
- 24)^{2} + (z - 36)^{2} = 7^{2} .

  • Câu 14: Vận dụng

    Viết phương trình đường thẳng d

    Trong không gian với hệ tọa độ  Oxyz,  gọi d đi qua A( -
1;0; - 1), cắt \Delta_{1}:\frac{x -
1}{2} = \frac{y - 2}{1} = \frac{z + 2}{- 1}, sao cho góc giữa d\Delta_{2}:\frac{x - 3}{- 1} = \frac{y - 2}{2} =
\frac{z + 3}{2} là nhỏ nhất. Phương trình đường thẳng d

    Gọi M = d \cap \Delta_{1} \Rightarrow M(1
+ 2t;2 + t; - 2 - t)

    d có vectơ chỉ phương \overrightarrow{a_{d}} = \overrightarrow{AM} = (2t
+ 2;t + 2; - 1 - t)

    \Delta_{2} có vectơ chỉ phương \overrightarrow{a_{2}} = ( -
1;2;2)

    \cos\left( d;\Delta_{2} ight) =
\frac{2}{3}\sqrt{\frac{t^{2}}{6t^{2} + 14t + 9}}

    Xét hàm số f(t) = \frac{t^{2}}{6t^{2} +
14t + 9}, ta suy ra được \min f(t)
= f(0) = 0 \Leftrightarrow t = 0

    Do đó \min\left\lbrack \cos(\Delta,d)
ightbrack = 0 \Leftrightarrow t = 0 \Rightarrow \overrightarrow{AM}
= (2;2 - 1)

    Vậy phương trình đường thẳng d\frac{x + 1}{2} = \frac{y}{2} = \frac{z +
1}{- 1}

  • Câu 15: Thông hiểu

    Viết phương trình mặt cầu

    Trong không gian (Oxyz), cho mặt phẳng(P):2x - y - z + 4 = 0 và điểm I(2; - 3; - 1); mặt cầu (S) tâm I và tiếp xúc mặt phẳng (P) có phương trình là

    Mặt cầu (S) tâm I và tiếp xúc mặt phẳng (P) có bán kính là:

    R = \frac{\left| 2.2 - ( - 3) - ( - 1) + 4
ight|}{\sqrt{2^{2} + ( - 1)^{2} + ( - 1)^{2}}} =
2\sqrt{6}.

    Phương trình mặt cầu (S)

    (x - 2)^{2} + (y + 3)^{2} + (z + 1)^{2} =
\left( 2\sqrt{6} ight)^{2} = 24

  • Câu 16: Thông hiểu

    Chọn đáp án đúng

    Trong không gian với hệ trục tọa độ Oxyz, gọi (P)là mặt phẳng chứa trục Ox và vuông góc với mặt phẳng (Q):x + y + z - 3 = 0. Phương trình mặt phẳng (P) là:

    +) Trục Ox véctơ đơn vị \overrightarrow{i} = (1;0;0).

    Mặt phẳng (Q) có VTPT {\overrightarrow{n}}_{(Q)} = (1;1;1).

    Mặt phẳng (P) chứa trục Ox và vuông góc với (Q):x + y + z - 3 = 0nên (P) có VTPT \overrightarrow{n} = \left\lbrack
\overrightarrow{i},\overrightarrow{n_{(Q)}} \right\rbrack = (0; -
1;1).

    Phương trình mặt phẳng (P) là: y - z = 0.

  • Câu 17: Nhận biết

    Tìm phương trình chính tắc

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d:\left\{ \begin{matrix}
x = 2 - t \\
y = 1 + t \\
z = t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight). Phương trình nào sau đây là phương trình chính tắc của d?

    Đường thẳng d có vectơ chỉ phương \overrightarrow{u} = ( - 1;1;1) và đi qua điểm M(2;1;0). Do đó phương trình chính tắc của d là: \frac{x - 2}{- 1} = \frac{y - 1}{1} =
\frac{z}{1}

  • Câu 18: Nhận biết

    Vị trí tương đối của hai đường thẳng

    Trong không gian với hệ trục tọa độ Oxyz, cho hai đường thẳng d:\left\{ \begin{matrix}
x = - 1 + 3t \\
y = - t \\
z = 1 - 2t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)d':\frac{x - 1}{- 3} = \frac{y - 2}{1} =
\frac{z - 3}{2}. Vị trí tương đối của dd'

    Đường thẳng d có vectơ chỉ phương \overrightarrow{u_{d}} = (3; - 1; - 2) và đi qua điểm M(−1; 0; 1).

    Đường thẳng d’ có vectơ chỉ phương \overrightarrow{u_{d'}} = ( -
3;1;2).

    Hai vectơ \overrightarrow{u_{d}}\overrightarrow{u_{d'}} cùng phương và điểm M không thuộc đường thẳng d’.

    Do đó hai đường thẳng d và d’ song song với nhau.

  • Câu 19: Vận dụng

    Ghi đáp án vào ô trống

    Trong không gian Oxyz cho điểm M(2;1;5). Mặt phẳng (P) đi qua điểm M và cắt các trục Ox,Oy,Oz lần lượt tại các điểm A,B,C sao cho M là trực tâm của tam giác ABC. Tính khoảng cách từ điểm I(1;2;3) đến mặt phẳng (P).

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Trong không gian Oxyz cho điểm M(2;1;5). Mặt phẳng (P) đi qua điểm M và cắt các trục Ox,Oy,Oz lần lượt tại các điểm A,B,C sao cho M là trực tâm của tam giác ABC. Tính khoảng cách từ điểm I(1;2;3) đến mặt phẳng (P).

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 20: Vận dụng

    Xác định giá trị của k

    Cho hai điểm A(2, - 3, - 1);\ \ \ B( -
4,5, - 3). Định k để tập hợp các điểm M(x,y,z) sao cho AM^{2} + BM^{2} = 2\left( k^{2} + 1 \right),\ \ k
\in \mathbb{R}^{+}, là một mặt cầu.

    Theo bài ra ta có:

    AM^{2} + BM^{2} = 2\left( k^{2} + 1
\right)

    \Leftrightarrow (x - 2)^{2} + (y +
3)^{2} + (z + 1)^{2} + (x + 4)^{2}+ (y - 5)^{2} + (z + 3)^{2} = 2\left(
k^{2} + 1 \right)

    \Leftrightarrow (S):x^{2} + y^{2} + z^{2}
+ 2x - 2y + 4z + 31 - k^{2} = 0,\ \ k \in \mathbb{R}^{+}

    Ta có: a = - 1;b = 1;c = - 2;d = 31 -
k^{2}

    (S) là mặt cầu \Leftrightarrow a^{2} + b^{2} + c^{2} - d > 0
\Leftrightarrow k^{2} - 25 > 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
k < 5 \\
k > - 5 \\
\end{matrix} \right. Với k \in
\mathbb{R}^{+} \Rightarrow k > 5

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 5 Phương pháp tọa độ trong không gian KNTT Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo