Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề kiểm tra 15 phút Chương 5 Phương pháp tọa độ trong không gian KNTT

Mô tả thêm:

Cùng nhau thử sức với bài kiểm tra 15 phút Toán 12 Kết nối tri thức Chương 5 Phương pháp tọa độ trong không gian nhé!

  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Nhận biết

    Viết PT tham số

    Viết phương trình tham số của đường thẳng d qua hai điểm: A\left( { - 1,3, - 2} ight);B\left( {2, - 3,4} ight)

     Đường thẳng d đi qua hai điểm A và B nên VTCP của đường thẳng d chính là \overrightarrow {AB} hay ta có: \overrightarrow {AB}  = \left( {3, - 6,6} ight) = 3\left( {1, - 2,2} ight) =  - 3\left( { - 1,2, - 2} ight)

    \begin{array}{l} \Rightarrow \left( d ight)\left\{ \begin{array}{l}x = 3t - 1\\y = 3 - 6t\\z = 6t - 2\end{array} ight.\,\,;t \in \mathbb{R},\,\\hay\,\,\left( d ight)\left\{ \begin{array}{l}x = 2 + m\\y =  - 3 - 2m\\z = 4 + 2m\end{array} ight.\,\,;m \in \mathbb{R}\\\hay\,\,\left( d ight)\,\left\{ \begin{array}{l}x =  - 1 - \tan t\\y = 3 + 2\tan t\\z =  - 2 - 2\tan t\end{array} ight.\,\,;t \in\mathbb{R}\end{array}

     

  • Câu 2: Vận dụng

    Ghi đáp án vào ô trống

    Trong không gian Oxyz cho điểm M(2;1;5). Mặt phẳng (P) đi qua điểm M và cắt các trục Ox,Oy,Oz lần lượt tại các điểm A,B,C sao cho M là trực tâm của tam giác ABC. Tính khoảng cách từ điểm I(1;2;3) đến mặt phẳng (P).

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Trong không gian Oxyz cho điểm M(2;1;5). Mặt phẳng (P) đi qua điểm M và cắt các trục Ox,Oy,Oz lần lượt tại các điểm A,B,C sao cho M là trực tâm của tam giác ABC. Tính khoảng cách từ điểm I(1;2;3) đến mặt phẳng (P).

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 3: Thông hiểu

    Tìm tỉ số đoạn thẳng

    Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(2;2; - 2),B(3; - 1;0). Đường thẳng AB cắt mặt phẳng (P):x + y - z + 2 = 0 tại điểm I. Tỉ số \frac{IA}{IB} bằng

    Ta có: \frac{IA}{IB} = \frac{d\left(
A;(P) ight)}{d\left( B;(P) ight)} =
\frac{8}{\sqrt{3}}:\frac{4}{\sqrt{3}} = 2

  • Câu 4: Vận dụng

    Chọn đáp án đúng

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt cầu \left( S_{1} ight):x^{2} + y^{2} + z^{2} + 4x +
2y + z = 0\left( S_{2}
ight):x^{2} + y^{2} + z^{2} - 2x - y - z = 0 cắt nhau theo một đường tròn (C) nằm trong mặt phẳng (P). Cho các điểm A (1; 0; 0), B (0; 2; 0), C (0; 0; 3). Có bao nhiêu mặt cầu tâm thuộc (P) và tiếp xúc với cả ba đường thẳng AB, BC, CA?

    Mặt phẳng (P) chứa đường tròn (C) có được bằng cách khử x^{2};y^{2};z^{2} trong phương trình hai mặt cầu ta được 6x + 3y + 2z = 0. Mặt phẳng (ABC) có phương trình là

    \frac{x}{1} + \frac{y}{2} + \frac{z}{3} =
1⇔ 6x + 3y + 2z − 6 = 0.

    Do đó (P) // (ABC). Mặt cầu (S) tiếp xúc với cả ba đường thẳng AB, BC, CA sẽ giao với mặt phẳng (ABC) theo một đường tròn tiếp xúc với ba đường thẳng AB, BC, CA.

    Trên mặt phẳng (ABC) có 4 đường tròn tiếp xúc với ba đường thẳng AB, BC, CA đó là đường tròn nội tiếp tam giác ABC và ba đường tròn bàng tiếp các góc A, B, C.

    Do đó có 4 mặt cầu có tâm nằm trên (P) và tiếp xúc với cả ba đường thẳng AB, BC, CA.

    Tâm của 4 mặt cầu là hình chiếu của tâm 4 đường tròn tiếp xúc với ba đường thẳng AB, BC, CA lên mặt phẳng (P).

  • Câu 5: Thông hiểu

    Tính góc giữa hai vectơ

    Cho hình chóp :\ O(0;0;0)\ ,\ A\ a\ (0;\
;0)\ ,\ B\ a(\ ;0;0)\ ,\ C\ a\ (0;0;\ ) có ba cạnh OA,OB,OC đôi một vuông góc và OA = OB = OC = a. Gọi M là trung điểm cạnh AB. Góc tạo bởi hai vectơ \overrightarrow{BC}\overrightarrow{OM} bằng:

    Hình vẽ minh họa

    Chọn hệ trục tọa độ Oxyz như hình vẽ

    Ta có: \left\{ \begin{matrix}O(0;0;0),A(0;a;0),B(a;0;0) \\C(0;0;a),M\left( \dfrac{a}{2};\dfrac{a}{2};0 ight) \\\end{matrix} ight.

    Khi đó ta có: \overrightarrow{BC} = ( -
a;0;a);\overrightarrow{OM} = \left( \frac{a}{2};\frac{a}{2};0
ight)

    \Rightarrow \cos\left(\overrightarrow{BC};\overrightarrow{OM} ight) =\dfrac{\overrightarrow{BC}.\overrightarrow{OM}}{BC.OM} = \dfrac{-\dfrac{a^{2}}{2}}{a\sqrt{2}.\dfrac{a\sqrt{2}}{2}} = -\dfrac{1}{2}

    \Rightarrow \left(
\overrightarrow{BC};\overrightarrow{OM} ight) = 120^{0}

  • Câu 6: Thông hiểu

    Định tham số để hai đường thẳng cắt nhau

    Trong không gian Oxyz, cho hai đường thẳng d_{1}:\left\{ \begin{matrix}
x = 1 + t \\
y = 2 - t \\
z = 3 + 2t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)d_{2}:\frac{x - 1}{2} = \frac{y - m}{1} = \frac{z
+ 2}{- 1}, (với m là tham số). Tìm m để hai đường thẳng d_{1}d_{2} cắt nhau

    Ta có:

    d_{1} đi qua điểm M1(1; 2; 3) và có vectơ chỉ phương \overrightarrow{u_{1}} =
(1; - 1;2)

    d_{2} đi qua điểm M2(1; m; −2) và có vectơ chỉ phương \overrightarrow{u_{2}} = (2;1; - 1)

    Ta có: \left\{ \begin{matrix}
\left\lbrack \overrightarrow{u_{1}};\overrightarrow{u_{2}} ightbrack
= ( - 1;5;3) \\
\overrightarrow{M_{1}M_{2}} = (0;m - 2; - 5) \\
\end{matrix} ight.

    d_{1}d_{2} cắt nhau \left\lbrack
\overrightarrow{u_{1}};\overrightarrow{u_{2}}
ightbrack.\overrightarrow{M_{1}M_{2}} = 0

    \Leftrightarrow - 1\ .0 + 5(m - 2) - 15
= 0 \Leftrightarrow m = 5

  • Câu 7: Vận dụng

    Chọn kết quả chính xác

    Cho hình chóp tứ giác đều S.ABCD có AB =
a;SA = a\sqrt{2}. Gọi G là trọng tâm tam giác SCD. Góc giữa đường thẳng BG với đường thẳng SA bằng:

    Gọi O = AC ∩ BD

    Tam giác SAO vuông nên suy ra SO =
\sqrt{SA^{2} - AO^{2}} = \frac{a\sqrt{6}}{2}

    Gắn tọa độ như hình vẽ:

    Ta có: \left\{ \begin{matrix}A(0;0;0),B(a;0;0),C(a;a;0) \\D(0;a;0),O\left( \dfrac{a}{2};\dfrac{a}{2};0 ight),S\left(\dfrac{a}{2};\dfrac{a}{2};\dfrac{a\sqrt{6}}{2} ight) \\\end{matrix} ight.

    Vì G là trọng tâm tam giác SCD nên G\left(
\frac{a}{2};\frac{5a}{6};\frac{a\sqrt{6}}{6} ight)

    Ta có: \left\{ \begin{matrix}\overrightarrow{AS} = \left( \dfrac{a}{2};\dfrac{a}{2};\dfrac{a\sqrt{6}}{2}ight) = \dfrac{a}{2}\left( 1;1;\sqrt{6} ight) \\\overrightarrow{BG} = \left( -\dfrac{a}{2};\dfrac{5a}{6};\dfrac{a\sqrt{6}}{6} ight) = \dfrac{a}{6}\left(- 3;5;\sqrt{6} ight) \\\end{matrix} ight.

    Góc giữa đường thẳng BG với đường thẳng SA bằng:

    \cos(BG;SA) = \frac{\left|
\overrightarrow{AS}.\overrightarrow{BG} ight|}{BG.AS} = \frac{| - 3 +
5 + 6|}{\sqrt{40}.\sqrt{8}} = \frac{\sqrt{5}}{5}

    Vậy đáp án cần tìm là: \arccos\frac{\sqrt{5}}{5}.

  • Câu 8: Thông hiểu

    Tìm tham số để mặt cong là mặt cầu

    Giá trị \alpha phải thỏa mãn điều kiện nào để mặt cong là mặt cầu: (S):x^{2} + y^{2} + z^{2} + 2\left( 3 -
cos^{2}\alpha \right)x+ 4\left( sin^{2}\alpha - 1 \right) + 2z +
cos4\alpha + 8 = 0?

    Ta có: a = 2cos^{2}\alpha - 3 =
cos2\alpha - 2;b = 2\left( 1 - sin^{2}\alpha \right) = cos2\alpha +
1;c = - 1;

    d = cos4\alpha + 8 = 2cos^{2}2\alpha +
7.\ \ (S) là mặt cầu \Leftrightarrow a^{2} + b^{2} + c^{2} - d >
0

    \begin{matrix}
   \Leftrightarrow  - 1 + \cos 2\alpha  <  - \frac{1}{2} \Leftrightarrow \frac{{2\pi }}{3} + k2\pi  < 2\alpha  < \frac{{4\pi }}{3} + k2\pi  \hfill \\
   \Leftrightarrow \frac{\pi }{3} + k\pi  < \alpha  < \frac{{2\pi }}{3} + k\pi ,\,\,k \in \mathbb{Z} \hfill \\ 
\end{matrix}

  • Câu 9: Vận dụng

    Chọn phương án thích hợp

    Trong không gian với hệ tọa độ Oxyz gọi d đi qua A(3; - 1;1), nằm trong mặt phẳng (P):x - y + z - 5 = 0, đồng thời tạo với \Delta:\frac{x}{1} = \frac{y - 2}{2}
= \frac{z}{2} một góc 45^{0}. Phương trình đường thẳng d

    \Delta có vectơ chỉ phương \overrightarrow{a_{\Delta}} = (1;2;2)

    d có vectơ chỉ phương \overrightarrow{a_{d}} = (a;b;c)

    (P) có vectơ pháp tuyến \overrightarrow{n_{P}} = (1; - 1;1)

    d \subset (P) \Rightarrow
\overrightarrow{a_{d}}\bot\overrightarrow{n_{P}} \Leftrightarrow b = a +
c;\ (1)

    (\Delta,d) = 45^{0} \Leftrightarrow
\cos(\Delta,d) = cos45^{0}

    \Leftrightarrow \frac{|a + 2b +
2c|}{3\sqrt{a^{2} + b^{2} + c^{2}}} = \frac{\sqrt{2}}{2}

    \Leftrightarrow 2(a + 2b + 2c)^{2} =
9\left( a^{2} + b^{2} + c^{2} ight);\ (2)

    Từ 1 và 2, ta có:14c^{2} + 30ac = 0
\Leftrightarrow \left\lbrack \begin{matrix}
c = 0 \\
15a + 7c = 0 \\
\end{matrix} ight.

    Với c = 0, chọn a = b = 1, phương trình đường thẳng d\left\{
\begin{matrix}
x = 3 + t \\
y = - 1 - t \\
z = 1 \\
\end{matrix} ight. 

    Với 15a + 7c = 0, chọn a = 7 \Rightarrow c = - 15;b = - 8, phương trình đường thẳng d\left\{ \begin{matrix}
x = 3 + 7t \\
y = - 1 - 8t \\
z = 1 - 15t \\
\end{matrix} ight.

  • Câu 10: Nhận biết

    Tính góc giữa hai đường thẳng

    Trong không gian Oxyz, cho hai đường thẳng \Delta_{1}:\frac{x - 1}{- 2} =
\frac{y + 2}{1} = \frac{z - 3}{2}\Delta_{2}:\frac{x + 3}{1} = \frac{y - 1}{1} =
\frac{z + 2}{- 4}. Góc giữa hai đường thẳng \Delta_{1};\Delta_{2} bằng?

    Véc tơ chỉ phương của \Delta_{1}\overrightarrow{u_{1}} = ( -
2;1;2)

    Véc tơ chỉ phương của \Delta_{2}\overrightarrow{u_{2}} = (1;1; -
4)

    \cos\left( \Delta_{1};\Delta_{2} \right)
= \frac{\left| \overrightarrow{u_{1}}.\overrightarrow{u_{2}}
\right|}{\left| \overrightarrow{u_{1}} \right|.\left|
\overrightarrow{u_{2}} \right|} = \frac{\sqrt{2}}{2}.

    Do đó góc giữa hai đường thẳng \Delta_{1}\Delta_{2}45^{0}

  • Câu 11: Nhận biết

    Viết phương trình mặt phẳng

    Trong không gian với hệ tọa độ Oxyz, cho điểm M(2; - 1;1) và vectơ \overrightarrow{n} = (1;3;4). Viết phương trình mặt phẳng (P) đi qua điểm M(2; - 1;1) và có vectơ pháp tuyến \overrightarrow{n}.

    Phương trình tổng quát của mặt phẳng (P) có dạng:

    (x - 2) + 3(y - 1) + 4(z - 1) =
0

    \Leftrightarrow x + 3y + 4z - 3 =
0

  • Câu 12: Nhận biết

    Xác định vectơ chỉ phương

    Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1;1;0)B(0;1;2). Vectơ nào dưới đây là một vectơ chỉ phương của đường thẳng AB?

    Ta có:

    \overrightarrow{AB} = ( - 1;0;2) là một vectơ chỉ phương của đường thẳng AB.

    Vậy đáp án cần tìm là: \overrightarrow{b}
= ( - 1;0;2).

  • Câu 13: Thông hiểu

    Xác định diện tích tam giác ABC

    Trong không gian Oxyz, cho A(1;2;0),B(3; - 1;1),C(1;1;1). Tính diện tích tam giác ABC?

    Ta có:

    \left\{ \begin{matrix}
\overrightarrow{AB} = (2; - 3;1) \\
\overrightarrow{AC} = (0; - 1;1) \\
\end{matrix} ight.\  \Rightarrow \left\lbrack
\overrightarrow{AB};\overrightarrow{AC} ightbrack = ( - 2; - 2; -
2)

    Lại có diện tích tam giác ABC là:

    S_{ABC} = \frac{1}{2}\left\lbrack
\overrightarrow{AB};\overrightarrow{AC} ightbrack =
\sqrt{3}

  • Câu 14: Thông hiểu

    Tìm hình chiếu của điểm lên đường thẳng

    Trong không gian Oxyz, tìm tọa độ hình chiếu H của A(1;1;1)lên đường thẳng d:\left\{ \begin{matrix}
x = 1 + t \\
y = 1 + t \\
z = t \\
\end{matrix} \right..

    Đường thẳng d có vectơ chỉ phương là \overrightarrow{u} = (1;1;1)

    Do H \in d \Rightarrow H(1 + t;1 +
t;t).

    Ta có: \overrightarrow{AH} = (t;t;t -
1)

    Do H là hình chiếu của điểm A lên đường thẳng d nên suy ra \overrightarrow{AH}\bot\overrightarrow{u}
\Leftrightarrow \overrightarrow{AH}.\overrightarrow{u} = 0

    \Leftrightarrow t + t + t - 1 = 0
\Leftrightarrow t = \frac{1}{3} \Rightarrow H\left(
\frac{4}{3};\frac{4}{3};\frac{1}{3} \right)

  • Câu 15: Vận dụng cao

    Viết phương trình đường thẳng

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng \left( d_{1} \right):\left\{ \begin{matrix}
x = t \\
y = 4 - t \\
z = - 1 + 2t \\
\end{matrix} \right., \left(
d_{2} \right):\frac{x}{2} = \frac{y - 2}{1} = \frac{z}{1}, \left( d_{3} \right):\frac{x + 1}{5} =
\frac{y - 1}{2} = \frac{z + 1}{1}. Viết phương trình đường thẳng \left( d_{3} \right):\frac{x + 1}{5} =
\frac{y - 1}{2} = \frac{z + 1}{1} cắt ba đường thẳng \left( d_{1} \right);\left( d_{2} \right);\left(
d_{3} \right) lần lượt tại các điểm A;B;C sao choAB = BC.

    Ta có: A \in \left( d_{1} \right)
\Rightarrow A(a;4 - a; - 1 + 2a).

    B \in \left( d_{2} \right) \Rightarrow
B(2b;2 + b;b).

    C \in \left( d_{3} \right) \Rightarrow C(
- 1 + 5c;1 + 2c; - 1 + c).

    B là trung điểm của AC nên \left\{ \begin{matrix}2b = \dfrac{a - 1 + 5c}{2} \\2 + b = \dfrac{4 - a + 1 + 2c}{2} \\b = \dfrac{- 1 + 2a - 1 + c}{2} \\\end{matrix} \right.

    \Leftrightarrow \left\{ \begin{matrix}
a - 4b + 5c = 1 \\
- a - 2b + 2c = - 1 \\
2a - 2b + c = 2 \\
\end{matrix} \right.\  \Leftrightarrow \left\{ \begin{matrix}
a = 1 \\
b = 0 \\
c = 0 \\
\end{matrix} \right..

    \Rightarrow
A(1;3;1),B(0;2;0).

    (d) đi qua điểm B(0;2;0) và có VTCP \overrightarrow{BA} = (1;1;1) có phương trình \frac{x}{1} = \frac{y - 2}{1} =
\frac{z}{1}.

  • Câu 16: Thông hiểu

    Tính chu vi đường tròn

    Trong không gian với hệ tọa độ Oxyz, mặt cầu (S):x^{2} + y^{2} + z^{2} - 2x - 4y - 20 =
0 và mặt phẳng (\alpha):x + 2y - 2z
+ 7 = 0 cắt nhau theo một đường tròn có chu vi là:

    Hình vẽ minh họa

    Mặt cầu (S) có tâm I(1; 2; 0) và bán kính R = 5.

    Ta có d\left( I,(\alpha) ight) = \
\frac{|1.1 + 2.2 - 2.0 + 7|}{\sqrt{1^{2} + 2^{2} + ( - 2)^{2}}} =
4

    d(I,(α)) < R nên (α) cắt (S) theo giao tuyến là đường tròn (C).

    Gọi H là hình chiếu vuông góc của I trên (α) ⇒ H là tâm của (C).

    Lấy M ∈ (C) ⇒ M ∈ (S)

    Tam giác IHM vuông tại M \Rightarrow HM =
\sqrt{IM^{2} - IH^{2}} = \sqrt{5^{2} - 4^{2}} = 3

    Suy ra chu vi của đường tròn (C) bằng 2π . HM = 6π.

  • Câu 17: Vận dụng cao

    Tìm giá trị lớn nhất của biểu thức

    Trong không gian với hệ tọa độ Oxyz cho mặt cầu (S):x^{2} + y^{2} + z^{2} - 2x + 4y + 4z =
0 và điểmM(1;2; - 1). Một đường thẳng thay đổi qua M cắt (S) tại hai điểm A; B. Tìm giá trị lớn nhất của tổng MA + MB.

    Mặt cầu (S) có tâm I(1; - 2; - 2) và bán kính R = 3. Trong khi IM = \sqrt{17} > 3 nên M nằm ngoài hình cầu (S).

    Gọi H là trung điểm của AB, có M nằm trên đường AB và nằm ngoài đoạn AB nên có MA + MB = 2MH.

    Mặt khác, tam giác IHM vuông tại H nên HM \leq MI. Vậy MA + MB \leq 2\sqrt{17}.

    Đẳng thức xảy ra khi đường thẳng qua M và tâm I của mặt cầu, tức AB lúc này là đường kính của mặt cầu.

    Vậy giá trị lớn nhất của tổng MA +
MB2\sqrt{17}.

  • Câu 18: Thông hiểu

    Chọn phương án thích hợp

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d_{1}:\left\{ \begin{matrix}
x = - t \\
y = - 1 + 4t \\
z = 3t \\
\end{matrix} \right.d_{2}:\frac{x}{1} = \frac{y + 8}{- 4} = \frac{z +
3}{- 3}. Xác định góc giữa hai đường thẳng d_{1}d_{2}.

    Đường thẳng d_{1} có VTCP \overrightarrow{u_{1}} = ( - 1;4;3), d_{2} có VTCP \overrightarrow{u_{2}} = (1; - 4; - 3) = -
\overrightarrow{u_{1}}.

    Vậy đáp án cần tìm là: 0^{0}

  • Câu 19: Nhận biết

    Viết phương trình mặt cầu

    Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có tâm I(0;0; - 3) và đi qua điểm M(4;0;0). Phương trình mặt cầu (S) là:

    Phương trình mặt cầu (S) có tâm I(0;0; - 3) và bán kính R là:

    x^{2} + y^{2} + (z + 3)^{2} =
R^{2}

    Ta có: M \in (S) \Rightarrow 4^{2} +
0^{2} + (0 + 3)^{2} = R^{2}

    \Leftrightarrow R^{2} = 25

    Vậy phương trình cần tìm là: x^{2} +
y^{2} + (z + 3)^{2} = 25.

  • Câu 20: Nhận biết

    Tìm câu sai

    Chọn khẳng định sai

    Câu sai: “Nếu hai đường thẳngAB,CD song song thì vectơ \left\lbrack
\overrightarrow{AB},\overrightarrow{CD} \right\rbrack là một vectơ pháp tuyến của mặt phẳng (ABCD)”.

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 5 Phương pháp tọa độ trong không gian KNTT Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo