Tính bán kính mặt cầu
Trong không gian với hệ trục tọa độ
, cho mặt cầu
. Bán kính của mặt cầu
là:
Ta có:
suy ra tâm mặt cầu là:
Bán kính mặt cầu là:
Cùng nhau thử sức với bài kiểm tra 15 phút Toán 12 Kết nối tri thức Chương 5 Phương pháp tọa độ trong không gian nhé!
Tính bán kính mặt cầu
Trong không gian với hệ trục tọa độ
, cho mặt cầu
. Bán kính của mặt cầu
là:
Ta có:
suy ra tâm mặt cầu là:
Bán kính mặt cầu là:
Tìm tham số m thỏa mãn yêu cầu bài toán
Trong không gian
, hai đường thẳng
và
tạo với nhau góc
, giá trị của tham số m bằng
Ta có vectơ chỉ phương của hai đường thẳng lần lượt là
và
.
Theo công thức tính góc tạo bởi hai đường thẳng thì với
.
Từ giả thiết suy ra
Chọn đáp án chính xác
Trong không gian
, cho bốn điểm
và
. Có tất cả bao nhiêu mặt phẳng phân biệt đi qua ba trong năm điểm
?
Hình vẽ minh họa
Ta có mặt phẳng (ABC): .
Suy ra thuộc mặt phẳng (ABC).
Số mặt phẳng qua ba trong bốn điểm A, B, C, D là 1.
Số mặt phẳng qua điểm O và hai trong bốn điểm A, B, C, D là .
Vậy số mặt phẳng phân biệt đi qua ba trong năm điểm là
.
Phương trình đường trung trực
Cho tam giác ABC có
. Viết phương trình tổng quát của đường trung trực (d) của cạnh BC của tam giác ABC.
Theo đề bài, ta tính được
Từ đó, suy ra VTPT của mặt phẳng (ABC) là:
Phương trình (ABC) là:
Mặt khác, ta có M là trung điểm của BC nên M có tọa độ là M (-2, 8, -5)
Phương trình mặt phẳng trung trực (P) của cạnh BC là:
Phương trình tổng quát của đường trung trực (d) của cạnh BC:
Chọn phương án thích hợp
Trong không gian với hệ toạ độ
, viết phương trình mặt phẳng
đi qua hai điểm
,
đồng thời cắt các tia
lần lượt tại hai điểm
(không trùng với gốc tọa độ
) sao cho ![]()
Gọi lần lượt là giao điểm của
với các tia
Do .
Đặt
Gọi là môt vectơ pháp tuyến của mặt phẳng
Phương trình măt phẳng .
Tính góc giữa đường thẳng và mặt phẳng
Trong không gian với hệ tọa độ
cho đường thẳng
và mặt phẳng
. Tính số đo góc giữa đường thẳng d và mặt phẳng (P).
Đường thẳng (d) có vectơ chỉ phương là: .
Mặt phẳng (P) có vectơ pháp tuyến là: .
Khi đó:
Vậy .
Chọn đáp án đúng
Trong không gian với hệ tọa độ
cho hai đường thẳng
và
. Phương trình đường thẳng nằm trong
và cắt hai đường thẳng
là:
Gọi là đường thẳng cần tìm
Gọi
Gọi
đi qua điểm
và có vectơ chỉ phương
Vậy phương trình chính tắc của là
Cosin Góc giữa 2 mp
Cho hai mặt phẳng
.
Gọi
là góc nhọn tạo bởi
và
thì giá trị đúng của
là:
Theo đề bài đã cho PTTQ , ta suy ra được các vecto pháp tuyến tương ứng là:
có vectơ pháp tuyến
có vectơ pháp tuyến
Áp dụng công thức tính cosin giữa 2 vecto, ta có:
Xác định phương trình đường thẳng d
Trong không gian
, cho đường thẳng
đi qua điểm
và có một vecto chỉ phương
. Phương trình của
là:
Đường thẳng đi qua điểm
và có một vectơ chỉ phương
, phương trình của
là
Tìm tham số m để hai đường thẳng vuông góc
Trong không gian với hệ tọa độ
, cho 2 đường thẳng ![]()
. Tìm tất cả giá trị thực của
để
vuông góc với
?
Vectơ chỉ phương của lần lượt là:
.
Để thì
Viết phương trình mặt phẳng
Trong không gian
, phương trình của mặt phẳng
đi qua điểm
, đồng thời vuông góc với hai mặt phẳng
là:
Ta có lần lượt là vectơ pháp tuyến của các mặt phẳng
.
Do mặt phẳng vuông góc với hai mặt phẳng
nên
là một vectơ pháp tuyến của
.
Từ đó suy ra mặt phẳng có phương trình
.
Giao điểm 3 mp
Ba mặt phẳng
cắt nhau tại điểm A.Tọa độ của A là:
Tọa độ của A là nghiệm của hệ phương trình :
Giải (1),(2) tính x,y theo z được
Thế vào phương trình (3) được , từ đó có
.
Vậy .
Tìm điều kiện tham số m thỏa mãn yêu cầu
Với điều kiện nào của m thì mặt phẳng cong sau là mặt cầu? ![]()
![]()
Ta có:
là mặt cầu
Tính số đo góc nhị diện
Cho hình lập phương
. Số đo của góc nhị diên
bằng
Hình vẽ minh họa
Ta có góc nhị diên bằng
.
Tính giá trị nhỏ nhất của biểu thức
Trong không gian với hệ trục tọa độ
, cho hai mặt cầu
và các điểm
. Gọi
là điểm thay đổi trên
là điểm thay đổi trên
. Giá trị nhỏ nhất của biểu thức
là:
Hình vẽ minh họa
Mặt cầu có tâm
bán kính bằng
mặt cầu
có tâm
bán kính bằng 2 .
Ta có 4 diểm là 4 dỉnh của hình vuông cạnh bằng 4 và
.
Ta có (c.g.c)
.
Ta có (c.g.c)
.
Vậy nhỏ nhất là bằng
, dấu "
" xảy ra khi
là giao điểm của
với các mặt cầu.
Xác định giá trị tham số t
Giá trị t phải thỏa mãn điều kiện nào để mặt cong sau là mặt cầu:
![]()
![]()
Ta có:
là mặt cầu
Tìm số phần bằng nhau
Cho hình lập phương QABC.DEFG có cạnh bằng 1 có
trùng với ba trục
. Sáu mặt phẳng
chia hình lập phương thành bao nhiêu phân bằng nhau?
Vị trí tương đối của 2 đường thẳng
Cho hai đường thẳng (d1 ):
và ![]()
Xét VTTĐ của (d1 ) và (d2 )? Tìm câu đúng ?
Chuyển đường thẳng (d1 ) và (d2 ) về dạng tham số :
có vectơ chỉ phương
và qua
.
có vectơ chỉ phương
và hệ phương trình
vô nghiệm.
.
Xác định phương trình chính tắc
Trong không gian với hệ tọa độ
cho đường thẳng
. Phương trình chính tắc của đường thẳng đi qua điểm
, cắt và vuông góc với
là:
Gọi là đường thẳng cần tìm
Gọi
có vectơ chỉ phương
đi qua điểm
và có vectơ chỉ phương
Vậy phương trình của là
Chọn kết luận đúng
Cho hình chóp S.ABCD có ABCD là hình vuông cạnh a, SA⊥ (ABCD) và SA = a. Gọi E và F lần lượt là trung điểm của SB, SD. Côsin của góc hợp bới hai mặt phẳng (AEF) và (ABCD) là
Chọn hệ trục tọa độ Oxyz sao cho
Vectơ pháp tuyến của mp(AEF) là
Vectơ pháp tuyến của mp(ABCD) là:
Vậy côsin góc giữa 2 mặt phẳng (AEF) và (ABCD) là:
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: