Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề kiểm tra 15 phút Chương 3 Các số đặc trưng đo mức độ phân tán của mẫu số liệu ghép nhóm

Mô tả thêm:

Cùng nhau thử sức với bài kiểm tra 15 phút Toán 12 Kết nối tri thức Chương 3 Các số đặc trưng đo mức độ phân tán của mẫu số liệu ghép nhóm nhé!

  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Thông hiểu

    Tính phương sai của mẫu số liệu ghép nhóm

    Kết quả thống kê số giờ nắng trong tháng 5 từ năm 2022 đến năm 2021 tại hai địa điểm A và B:

    Số giờ

    [130; 160)

    [160; 190)

    [190; 220)

    [220; 250)

    [250; 280)

    [280; 310)

    Số năm tại A

    1

    1

    1

    8

    7

    2

    Số năm tại B

    0

    1

    2

    4

    10

    3

    Chọn kết luận đúng?

    Ta có:

    Số giờ

    [130; 160)

    [160; 190)

    [190; 220)

    [220; 250)

    [250; 280)

    [280; 310)

    Giá trị đại diện

    145

    175

    205

    235

    265

    295

    Số năm tại A

    1

    1

    1

    8

    7

    2

    Số năm tại B

    0

    1

    2

    4

    10

    3

    Số trung bình của mẫu số liệu ghép nhóm tại A là:

    \overline{x_{A}} = \frac{1.145 + 1.175 +
1.205 + 8.235 + 7.265 + 2.295}{20} = 242,5

    Phương sai của mẫu số liệu ghép nhóm tại A là:

    {S_{A}}^{2} = \frac{1}{20}\left(
1.145^{2} + 1.175^{2} + 1.205^{2} + 8.235^{2} + 7.265^{2} + 2.295^{2}
ight) - 242,5^{2} = 1248,75

    Số trung bình của mẫu số liệu ghép nhóm tại B là:

    \overline{x_{B}} = \frac{0.145 + 2.175 +
4.205 + 4.235 + 10.265 + 3.295}{20} = 253

    Phương sai của mẫu số liệu ghép nhóm tại B là:

    {S_{B}}^{2} = \frac{1}{20}\left(
0.145^{2} + 2.175^{2} + 4.205^{2} + 4.235^{2} + 10.265^{2} + 3.295^{2}
ight) - 253^{2} = 936

  • Câu 2: Nhận biết

    Chọn đáp án đúng

    Cho mẫu số liệu ghép nhóm với bộ ba tứ phân vị lần lượt là Q_{1} = 11,5; Q_{2} = 14,5; Q_{3} = 21,3. Khi đó khoảng tứ phân vị của mẫu số liệu trên là

    Khoảng tứ phân vị của mẫu số liệu là: \Delta Q = Q_{3} - Q_{1} = 21,3 - 11,5 =
9,8.

  • Câu 3: Vận dụng

    Chọn kết luận đúng

    Thống kê chiều cao của một số cây bạch đàn giống 1 tháng tuổi của 4 nông trường được cho bởi bảng sau:

    Chiều cao (cm)

    \lbrack 5;7) \lbrack 7;9) \lbrack 9;11) \lbrack 11;13) \lbrack 13;15)

    Nông trường A

    5 8 16 8 3

    Nông trường B

    5 10 8 9 6

    Nông trường C

    13 9 9 3 9

    Nông trường D

    3 12 8 12 4

    Nếu xét theo khoảng tứ phân vị thì cây bạch đàn giống 1 tháng tuổi ở nông trường nào có chiều cao đồng đều nhất?

    Nông trường A:

    n = 5 + 8 + 16 + 8 + 3 = 40.

    Q_{1} = 7 + \frac{\frac{40}{4} - 5}{8}
\cdot 2 = \frac{33}{4}, Q_{3} = 11
+ \frac{\frac{40 \cdot 3}{4} - (5 + 8 + 16)}{8} \cdot 2 =
\frac{45}{4}

    \Delta_{Q} = Q_{3} - Q_{1} =
3.

    Nông trường B:

    n = 5 + 10 + 8 + 9 + 6 = 38.

    Q_{1} = 7 + \frac{\frac{38}{4} - 5}{10}
\cdot 2 = \frac{79}{10}, Q_{3} = 11
+ \frac{\frac{38 \cdot 3}{4} - (5 + 10 + 8)}{9} \cdot 2 =
\frac{110}{9}

    \Delta_{Q} = Q_{3} - Q_{1} =
\frac{389}{90}.

    Nông trường C:

    n = 13 + 9 + 9 + 3 + 9 = 43.

    Q_{1} = 5 + \frac{\frac{43}{4}}{13} \cdot
2 = \frac{173}{26}, Q_{3} = 11 +
\frac{\frac{43 \cdot 3}{4} - (13 + 9 + 9)}{3} \cdot 2 =
\frac{71}{6}

    \Delta_{Q} = Q_{3} - Q_{1} =
\frac{202}{39}.

    Nông trường D:

    n = 3 + 12 + 8 + 12 + 4 =
39.

    Q_{1} = 7 + \frac{\frac{39}{4} - 3}{12}
\cdot 2 = \frac{65}{8}, Q_{3} = 11
+ \frac{\frac{39 \cdot 3}{4} - (3 + 12 + 8)}{12} \cdot 2 =
\frac{289}{24}

    \Delta_{Q} = Q_{3} - Q_{1} =
\frac{47}{12}.

    Ta thấy khoảng tứ phân vị của nông trường A là nhỏ nhất nên nếu xét theo khoảng tứ phân vị thì cây bạch đàn giống 1 tháng tuổi ở nông trường A có chiều cao đồng đều nhất.

  • Câu 4: Thông hiểu

    Chọn đáp án đúng

    Cho mẫu dữ liệu ghép nhóm được ghi trong bảng dưới đây:

    Khoảng

    Tần số

    Nhỏ hơn 10

    10

    Nhỏ hơn 20

    20

    Nhỏ hơn 30

    30

    Nhỏ hơn 40

    40

    Nhỏ hơn 50

    50

    Nhỏ hơn 60

    30

    Tìm khoảng tứ phân vị của mẫu số liệu đã cho?

    Ta có:

    Nhóm dữ liệu

    Tần số

    Tần số tích lũy

    (0; 10]

    10

    10

    (10; 20]

    20

    30

    (20; 30]

    30

    60

    (30; 40]

    50

    110

    (40; 50]

    40

    150

    (50; 60]

    30

    180

    Tổng

    N = 180

     

    Ta có: \frac{N}{4} = \frac{180}{4} =
45

    => Nhóm chứa tứ phân vị thứ nhất là: (20; 30]

    Khi đó: \left\{ \begin{matrix}
l = 20;\frac{N}{4} = 45 \\
m = 30,f = 30,d = 10 \\
\end{matrix} ight.

    Tứ phân vị thứ nhất là:

    Q_{1} = l + \frac{\frac{N}{4} -
m}{f}.d

    \Rightarrow Q_{1} = 20 + \frac{45 -
30}{30}.10 = 25

    Ta có: \frac{3N}{4} = \frac{3.180}{4} =
135

    => Nhóm chứa tứ phân vị thứ ba là: (40; 50]

    Khi đó: \left\{ \begin{matrix}
l = 40;\frac{3N}{4} = 30 \\
m = 110,f = 40,d = 10 \\
\end{matrix} ight.

    Tứ phân vị thứ ba là:

    Q_{3} = l + \frac{\frac{3N}{4} -
m}{f}.d

    \Rightarrow Q_{3} = 40 + \frac{135 -
110}{40}.10 = \frac{185}{4}

    \Rightarrow \Delta_{Q} = Q_{3} - Q_{1} =
\frac{185}{4} - 25 = 21,25

  • Câu 5: Nhận biết

    Tìm khoảng tứ phân vị của mẫu số liệu ghép nhóm

    Gọi Q_{1},Q_{2},Q_{3} là tứ phân vị thứ nhất, tứ phân vị thứ hai và thứ ba của mẫu số liệu ghép nhóm. Khoảng tứ phân vị của mẫu số liệu ghép nhóm là

    Khoảng tứ phân vị của mẫu ghép nhóm có công thức là: \Delta Q = Q_{3} - Q_{1}.

  • Câu 6: Vận dụng

    Ghi đáp án vào ô trống

    Mẫu số liệu dưới đây ghi lại tốc độ của 40 ô tô khi đi qua một trạm đo tốc độ (đơn vị: km/h ).

    49

    42

    51

    55

    45

    60

    53

    55

    44

    65

    52

    62

    41

    44

    57

    56

    68

    48

    46

    53

    63

    49

    54

    61

    59

    57

    47

    50

    60

    62

    48

    52

    58

    47

    60

    55

    45

    47

    48

    61

    Sau khi ghép nhóm mẫu số liệu trên thành sáu nhóm ứng với sáu nửa khoảng:

    \lbrack 40;45),\lbrack 45;50),\lbrack
50;55),\lbrack 55;60),\lbrack 60;65),\lbrack 65;70)thì trung vị của mẫu số liệu ghép nhóm nhận được bằng \frac{a}{b}(\ km/h) (\frac{a}{b} là phân số tối giản). Khi đó giá trị của a bằng bao nhiêu?

    Đáp án: 375

    Đáp án là:

    Mẫu số liệu dưới đây ghi lại tốc độ của 40 ô tô khi đi qua một trạm đo tốc độ (đơn vị: km/h ).

    49

    42

    51

    55

    45

    60

    53

    55

    44

    65

    52

    62

    41

    44

    57

    56

    68

    48

    46

    53

    63

    49

    54

    61

    59

    57

    47

    50

    60

    62

    48

    52

    58

    47

    60

    55

    45

    47

    48

    61

    Sau khi ghép nhóm mẫu số liệu trên thành sáu nhóm ứng với sáu nửa khoảng:

    \lbrack 40;45),\lbrack 45;50),\lbrack
50;55),\lbrack 55;60),\lbrack 60;65),\lbrack 65;70)thì trung vị của mẫu số liệu ghép nhóm nhận được bằng \frac{a}{b}(\ km/h) (\frac{a}{b} là phân số tối giản). Khi đó giá trị của a bằng bao nhiêu?

    Đáp án: 375

    Lập mẫu số liệu ghép nhóm bao gồm cả tần số tích luỹ nhu ở Báng 8 .

    Số phần tử của mẫu là n = 40. Ta có: \frac{n}{2} = \frac{40}{2} = 2015 < 20 < 22. Suy ra nhóm 3 là nhóm đầu tiên có tần số tích luỹ lớn hơn hoặc bằng 20 . Xét nhóm 3 có r = 50;d = 5;n_{3} = 7 và nhóm 2 có

    Nhóm

    Tần sồ

    Tần số tích luỹ

    \lbrack 40;45)

    4

    4

    \lbrack 45;50)

    11

    15

    \lbrack 50;55)

    7

    22

    \lbrack 55;60)

    8

    30

    \lbrack 60;65)

    8

    38

    \lbrack 65;70)

    2

    2

     

    n = 40

     

    cf_{2} = 15.

    Trung vị của mẫu số liệu ghép nhóm đó là:

    M_{e} = 50 + \left( \frac{20 - 15}{7}
ight) \cdot 5 = \frac{375}{7}(\ km/h).

    Suy ra a = 375.

  • Câu 7: Thông hiểu

    Tính giá trị trung bình của mẫu số liệu

    Cho bảng thống kê kết quả cự li ném bóng của một người như sau:

    Cự li (m)

    [19; 19,5)

    [19,5; 20)

    [20; 20,5)

    [20,5; 21)

    [21; 21,5)

    Số lần

    13

    45

    24

    12

    6

    Độ lệch chuẩn của mẫu số liệu đã cho là:

    Ta có:

    Cự li (m)

    [19; 19,5)

    [19,5; 20)

    [20; 20,5)

    [20,5; 21)

    [21; 21,5)

    Giá trị đại diện

    19,25

    19,75

    20,25

    20,75

    21,25

    Số lần

    13

    45

    24

    12

    6

    Cự li trung bình là:

    \overline{x} = \frac{13.19,25 + 45.19,75
+ 24.20,25 + 12.20,75 + 6.21,25}{100} = 20,015

    Phương sai của mẫu số liệu ghép nhóm là:

    S^{2} = \frac{1}{100}\left( 13.19,25^{2}
+ 45.19,75^{2} + 24.20,25^{2} + 12.20,75^{2} + 6.21,25^{2} ight) -
20,015^{2} \approx 0,277

    Độ lệch chuẩn của mẫu số liệu là:

    S = \sqrt{S^{2}} \approx \sqrt{0,277}
\approx 0,526

  • Câu 8: Nhận biết

    Tìm khoảng biến thiên của mẫu số liệu

    Kết quả khảo sát cân nặng tất cả học sinh trong lớp 11H được ghi trong bảng sau:

    Cân nặng (kg)

    Số học sinh

    [45; 50)

    5

    [50; 55)

    12

    [55; 60)

    10

    [60; 65)

    6

    [65; 70)

    5

    [70; 75)

    8

    Khoảng biến thiên của mẫu số liệu là:

    Khoảng biến thiên của mẫu số liệu đã cho là R = 75 - 45 = 30.

  • Câu 9: Nhận biết

    Tìm khoảng biến thiên của mẫu số liệu ghép nhóm

    Một vườn thú ghi lại tuổi thọ (đơn vị: năm) của 20 con hổ và thu được kết quả như sau:

    Tuổi thọ

    [14; 15)

    [15; 16)

    [16; 17)

    [17; 18)

    [18; 19)

    Số con hổ

    1

    3

    8

    6

    2

    Khoảng biến thiên của mẫu số liệu ghép nhóm này là

    Khoảng biến thiên R = 19 – 14 = 5

  • Câu 10: Nhận biết

    Tìm số trung bình

    Thống kê mức lương (đơn vị: triệu đồng) của nhân viên hai phân xưởng A và B được ghi lại trong bảng sau:

    Mức lương

    [5; 6)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

    Phân xưởng A

    4

    5

    5

    4

    2

    Phân xưởng B

    3

    6

    5

    5

    1

    Số trung bình của mẫu số liệu ghép nhóm của đối tương A và đối tượng B lần lượt là:

    Ta có:

    Mức lương

    [5; 6)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

     

    Giá trị đại diện

    5,5

    6,5

    7,5

    8,5

    9,5

     

    Phân xưởng A

    4

    5

    5

    4

    2

    N = 20

    Phân xưởng B

    3

    6

    5

    5

    1

    N’ = 20

    Số trung bình của mẫu số liệu ghép nhóm của đối tượng A là:

    \overline{x_{A}} = \frac{4.5,5 + 5.6,5 +
5.7,5 + 4.8,5 + 2.9,5}{20} = 7,25

    Số trung bình của mẫu số liệu ghép nhóm của đối tượng B là:

    \overline{x_{B}} = \frac{3.5,5 + 6.6,5 +
5.7,5 + 5.8,5 + 1.9,5}{20} = 7,25

  • Câu 11: Thông hiểu

    Ghi đáp án vào ô trống

    Thời gian hoàn thành bài kiểm tra môn Toán của các bạn trong lớp 12A được cho trong bảng sau:

    Thời gian (phút)

    [25; 30)

    [30; 35)

    [35; 40)

    [40; 45)

    Số học sinh

    9

    17

    8

    6

    Tìm khoảng tứ phân vị của mẫu số liệu ghép nhóm trên. (Kết quả làm tròn đến chữ số thập phân thứ nhất).

    Đáp án: 7,2

    Đáp án là:

    Thời gian hoàn thành bài kiểm tra môn Toán của các bạn trong lớp 12A được cho trong bảng sau:

    Thời gian (phút)

    [25; 30)

    [30; 35)

    [35; 40)

    [40; 45)

    Số học sinh

    9

    17

    8

    6

    Tìm khoảng tứ phân vị của mẫu số liệu ghép nhóm trên. (Kết quả làm tròn đến chữ số thập phân thứ nhất).

    Đáp án: 7,2

    Cỡ mẫu là n = 9 + 17 + 8 + 6 =
40. Gọi x_{1},\ \ x_{2},\ \ ...,\ \
x_{40} là thời gian hoàn thành bài kiểm tra môn Toán của 40 học sinh và giả sử rằng dãy số liệu gốc này đã được sắp xếp theo thứ tự tăng dần.

    Tứ phân vị thứ nhất của mẫu số liệu gốc là \frac{1}{2}\left( x_{10} + x_{11} ight) nên nhóm chứa tứ phân vị thứ nhất là nhóm \lbrack 30;35) và ta có: Q_{1} = 30 + \frac{10 - 9}{17}.5 \approx
30,3

    Tứ phân vị thứ ba của mẫu số liệu gốc là \frac{1}{2}\left( x_{30} + x_{31} ight) nên nhóm chứa tứ phân vị thứ ba là nhóm \lbrack 35;40) và ta có: Q_{3} = 35 + \frac{30 - 26}{8}.5 =
37,5

    Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm là \Delta_{Q} = Q_{3} - Q_{1} = 7,2.

  • Câu 12: Vận dụng

    Chọn kết luận đúng

    Giá đóng cửa của một cổ phiếu là giá của cổ phiếu đó cuối một phiên giao dịch. Bảng sau thống kê giá đóng cửa (đơn vị: nghìn đồng) của hai mã cổ phiếu AB trong 50 ngày giao dịch liên tiếp.

    A white rectangular box with black numbersDescription automatically generated

    Người ta có thể dùng phương sai và độ lệch chuẩn để so sánh mức độ rủi ro của các loại cổ phiếu có giá trị trung bình gần bằng nhau. Cổ phiếu nào có phương sai, độ lệch chuẩn cao hơn thì được coi là có độ rủi ro lớn hơn.

    Theo quan điểm trên, độ rủi ro của cổ phiếu nào cao hơn?

    Ta có bảng thống kê giá đóng cửa theo giá trị đại diện

    A grid of numbers with black textDescription automatically generated

    - Xét mẫu số liệu của cổ phiếu A

    Số trung bình của mẫu số liệu ghép nhóm là: {\overline{x}}_{1} = \frac{8.121 + 9.123 + 12.125
+ 10.127 + 11.129}{50} = 125,28.

    Phương sai của mẫu số liệu ghép nhóm là

    S_{1}^{2} = \frac{1}{50}8.121^{2} +
9.123^{2} + 12.125^{2} + 10.127^{2}

    + 11.129^{2}) - 125,28^{2} =
7,5216.

    Độ lệch chuẩn của mẫu số liệu ghép nhóm là S_{1} = \sqrt{7,5216}

    - Xét mẫu số liệu của cổ phiếu B

    Số trung bình của mẫu số liệu ghép nhóm là

    {\overline{x}}_{2} = \frac{1}{50}(16.121
+ 4.123 + 3.125 + 6.127 + 21.129) = 125,48.

    Phương sai của mẫu số liệu ghép nhóm là

    S_{2}^{2} = \frac{1}{50}(16.121^{2} +
4.123^{2} + 3.125^{2} + 6.127^{2}

    + 21.129^{2}) - 125,48^{2} =
12,4096.

    Độ lệch chuẩn của mẫu số liệu ghép nhóm là S_{2} = \sqrt{12,4096}.

    Vậy nếu đánh giá độ rủi ro theo phương sai và độ lệch chuẩn thì cổ phiếu A có độ rủi ro thấp hơn cồ phiếu B.

  • Câu 13: Vận dụng

    Xác định tính đúng sai của các nhận định

    Biểu đồ sau mô tả kết quả điều tra về điểm trung bình năm học của học sinh hai trường A và B.

    Biểu đồ sau mô tả kết quả điều tra về điểm trung bình năm học của học sinh hai trường A và B. (ảnh 1)

    a) Giá trị đại điện cho mỗi nhóm và bảng tần số ghép nhóm của mẫu số liệu trên là:

    Đúng||Sai

    b) Khoảng tứ phân vị của mẫu số liệu ghép nhóm của trường A là 2,275. Đúng||Sai

    c) Khoảng tứ phân vị của mẫu số liệu ghép nhóm của trường B là 1.526. Sai||Đúng

    d) Nếu so sánh theo khoảng tứ phân vị của mẫu số liệu ghép nhóm thì học sinh trường A có điểm trung bình đồng đều hơn trường B. Sai||Đúng

    Đáp án là:

    Biểu đồ sau mô tả kết quả điều tra về điểm trung bình năm học của học sinh hai trường A và B.

    Biểu đồ sau mô tả kết quả điều tra về điểm trung bình năm học của học sinh hai trường A và B. (ảnh 1)

    a) Giá trị đại điện cho mỗi nhóm và bảng tần số ghép nhóm của mẫu số liệu trên là:

    Đúng||Sai

    b) Khoảng tứ phân vị của mẫu số liệu ghép nhóm của trường A là 2,275. Đúng||Sai

    c) Khoảng tứ phân vị của mẫu số liệu ghép nhóm của trường B là 1.526. Sai||Đúng

    d) Nếu so sánh theo khoảng tứ phân vị của mẫu số liệu ghép nhóm thì học sinh trường A có điểm trung bình đồng đều hơn trường B. Sai||Đúng

    A.B.C.D.ĐÚNGĐÚNGSAISAI

    a) Giá trị đại diện của nhóm [5; 6) là 5,5.

    Giá trị đại diện của nhóm [6; 7) là 6,5.

    Giá trị đại diện của nhóm [7; 8) là 7,5.

    Giá trị đại diện của nhóm [8; 9) là 8,5.

    Giá trị đại diện của nhóm [9; 10) là 9,5.

    Từ biểu đồ, ta có bảng tần số ghép nhóm sau:

    b) Xét mẫu số liệu của trường A:

    Cỡ mẫu nA = 4 + 5 + 3 + 4 + 2 = 18.

    Gọi x_{1};...;x_{18}là mẫu số liệu gốc về điểm trung bình năm học của học sinh trường A được xếp theo thứ tự không giảm.

    Ta có

    x_{1};...;x_{4} \in [5; 6),

    x_{5};...;x_{9} \in [6; 7),

    x_{10};...;x_{12} \in [7; 8),

    x_{13};...;x_{16} \in [8; 9),

    x_{17};x_{18} \in [9; 10).

    Tứ phân vị thứ nhất của mẫu số liệu gốc là x_{5} \in [6; 7). Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là: Q_{1} = 6
+ \frac{\frac{18}{4} - 4}{5}(7 - 6) = 6,1

    Tứ phân vị thứ ba của mẫu số liệu gốc là x_{14} \in [8; 9). Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là: Q_{3} = 8 +
\frac{\frac{3.18}{4} - (4 + 5 + 3)}{4}(9 - 8) = 8,375

    Khoảng tứ phân vị của mẫu số liệu ghép nhóm là: ∆Q = Q3 – Q1 = 8,375 – 6,1 = 2,275.

    Xét mẫu số liệu của trường B:

    Cỡ mẫu nB = 2 + 5 + 4 + 3 + 1 = 15.

    Gọi y_{1};...;y_{20}là mẫu số liệu gốc về điểm trung bình năm học của học sinh trường B được xếp theo thứ tự không giảm.

    Ta có

    y_{1};y_{2} \in [5; 6),

    y_{3};...;y_{7} \in [6; 7),

    y_{8};...;y_{11} \in [7; 8),

     y_{12};...;y_{14} \in [8; 9),

    y_{15} \in [9; 10).

    Tứ phân vị thứ nhất của mẫu số liệu gốc là y_{4} \in [6; 7). Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là: Q_{\
_{1}}' = 6 + \frac{\frac{15}{4} - 2}{5}(7 - 6) = 6,35

    Tứ phân vị thứ ba của mẫu số liệu gốc là y_{12} \in [8; 9). Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là:  Q_{\
_{3}}' = 8 + \frac{\frac{3.15}{4} - (2 + 5 + 4)}{3}(9 - 8) =
\frac{97}{12}

    Khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \Delta_{\ _{Q}}' = Q_{\ _{3}}' - Q_{\
_{1}}' = \frac{97}{12} - 6,35 \approx 1,73

    d) Vì ∆Q = 2,275 > ∆'Q ≈ 1,73 nên nếu so sánh theo khoảng tứ phân vị của mẫu số liệu ghép nhóm thì học sinh trường B có điểm trung bình đồng đều hơn.

  • Câu 14: Thông hiểu

    Xét tính đúng sai của các nhận định

    Bảng 1 và Bảng 2 lần lượt biểu diễn mẫu số liệu ghép nhóm thống kê mức lương của hai công ty A,B (đơn vị: triệu đồng).

    Nhóm

    Giá trị đại diện

    Tần số

    Nhóm

    Giá trị đại diện

    Tần số

    \lbrack 10;15)

    12,5

    15

    \lbrack 10;15)

    12,5

    25

    \lbrack 15;20)

    17,5

    18

    \lbrack 15;20)

    17,5

    15

     \lbrack 20;25) 

    22,5

    10

     \lbrack 20;25) 

    22,5

    7

     \lbrack 25;30) 

    27,5

    10

     \lbrack 25;30) 

    27,5

    5

     \lbrack 30;35) 

    32,5

    5

     \lbrack 30;35) 

    32,5

    5

     \lbrack 35;40) 

    37,5

    2

     \lbrack 35;40) 

    37,5

    3

    n = 60 n = 60

    Bảng 1

    Bảng 2

    a) [NB] Số trung bình cộng của mẫu số liệu ghép nhóm ở Bảng 1 là \frac{62}{3} (triệu đồng). Đúng||Sai

    b) [TH] Phương sai của mẫu số liệu ghép nhóm ở Bảng 1 là: s_{1}^{2} \approx 49,1389. Đúng||Sai

    c) [TH] Độ lệch chuẩn của mẫu số liệu ghép nhóm ở Bảng 2 là: s_{2} \approx 7,61(triệu đồng). Đúng||Sai

    d) [VD] Công ty B có mức lương đồng đều hơn công ty A. Sai|||Đúng

    Đáp án là:

    Bảng 1 và Bảng 2 lần lượt biểu diễn mẫu số liệu ghép nhóm thống kê mức lương của hai công ty A,B (đơn vị: triệu đồng).

    Nhóm

    Giá trị đại diện

    Tần số

    Nhóm

    Giá trị đại diện

    Tần số

    \lbrack 10;15)

    12,5

    15

    \lbrack 10;15)

    12,5

    25

    \lbrack 15;20)

    17,5

    18

    \lbrack 15;20)

    17,5

    15

     \lbrack 20;25) 

    22,5

    10

     \lbrack 20;25) 

    22,5

    7

     \lbrack 25;30) 

    27,5

    10

     \lbrack 25;30) 

    27,5

    5

     \lbrack 30;35) 

    32,5

    5

     \lbrack 30;35) 

    32,5

    5

     \lbrack 35;40) 

    37,5

    2

     \lbrack 35;40) 

    37,5

    3

    n = 60 n = 60

    Bảng 1

    Bảng 2

    a) [NB] Số trung bình cộng của mẫu số liệu ghép nhóm ở Bảng 1 là \frac{62}{3} (triệu đồng). Đúng||Sai

    b) [TH] Phương sai của mẫu số liệu ghép nhóm ở Bảng 1 là: s_{1}^{2} \approx 49,1389. Đúng||Sai

    c) [TH] Độ lệch chuẩn của mẫu số liệu ghép nhóm ở Bảng 2 là: s_{2} \approx 7,61(triệu đồng). Đúng||Sai

    d) [VD] Công ty B có mức lương đồng đều hơn công ty A. Sai|||Đúng

    a) Đúng. Ta có: Số trung bình cộng của mẫu số liệu ghép nhóm ở Bảng 1 là:

    {\overline{x}}_{1} = \frac{15 \cdot 12,5
+ 18 \cdot 17,5 + 10 \cdot 22,5 + 10 \cdot 27,5 + 5 \cdot 32,5 + 2 \cdot
37,5}{60}

    = \frac{62}{3} \approx 20,67

    Nên mệnh đề a) Đúng

    b) Đúng. Ta có:

    15 \cdot (12,5 - 20,67)^{2} + 18 \cdot
(17,5 - 20,67)^{2} + 10 \cdot (22,5 - 20,67)^{2} +

    + 10.(27,5 - 20,67)^{2} + 5.(32,5 -
20,67)^{2} + 2.(37,5 - 20,67)^{2} \approx 2948,33494

    Phương sai của mẫu số liệu ghép nhóm ở Bảng 1 là: s_{1}^{2} = \frac{2948,334}{60} \approx
49,1389.

    Nên mệnh đề b) Đúng

    c) Đúng. Số trung bình cộng của mẫu số liệu ghép nhóm ở Bảng 2 là:

    {\overline{x}}_{2} = \frac{25 \cdot 12,5
+ 15 \cdot 17,5 + 7 \cdot 22,5 + 5 \cdot 27,5 + 5 \cdot 32,5 + 3 \cdot
37,5}{60}

    = \frac{1145}{60} \approx 19,08

    Ta có: 25 \cdot (12,5 - 19,08)^{2} + 15
\cdot (17,5 - 19,08)^{2} + 7 \cdot (22,5 - 19,08)^{2} +

    + 5.(27,5 - 19,08)^{2} + 5.(32,5 -
19,08)^{2} + 3.(37,5 - 19,08)^{2} \approx 3474,584.

    Phương sai của mẫu số liệu ghép nhóm ở Bảng 2 là: s_{2}^{2} = \frac{3474,584}{60} \approx
57,9097.

    Độ lệch chuẩn của mẫu số liệu ghép nhóm ở Bảng 2 là: s_{2} \approx \sqrt{57,9097} \approx
7,61(triệu đồng)

    Nên mệnh đề c) Đúng

    d) Sai. Độ lệch chuẩn của mẫu số liệu ghép nhóm ở Bảng 1 là:

    s_{1} \approx \sqrt{49,1389} \approx
7(triệu đồng)

    s_{1} \approx 7 < s_{2} \approx
7,61 nên công ty A có mức lương đồng đều hơn công ty B.

    Nên mệnh đề c) Sai

  • Câu 15: Thông hiểu

    Tính phương sai của mẫu số liệu ghép nhóm

    Điều tra 42 học sinh của một lớp 12 về số giờ tự học ở nhà, người ta có bảng thống kê sau:

    Tính phương sai của mẫu số liệu ghép nhóm trên.

    Chọn giá trị đại diện cho mẫu số liệu, ta có:

    A black text on a white backgroundDescription automatically generated

    Số giờ học trung bình là:

    \overline{x} = \frac{8 \cdot 1,5 + 10\cdot 2,5 + 12 \cdot 3,5 + 9 \cdot 4,5 + 3 \cdot 5,5}{42}=\frac{68}{21} \approx 3,238.

    Phương sai là:

    S^{2} = \frac{1}{42}[8 \cdot(1,5)^{2} + 10 \cdot (2,5)^{2} + 12 \cdot (3,5)^{2} + 9 \cdot (4,5)^{2}+ 3 \cdot (5,5)^{2} ]- \left( \frac{68}{21} \right)^{2} =\frac{2525}{1764} \approx 1,431.

  • Câu 16: Thông hiểu

    Xác định phương sai của mẫu số liệu ghép nhóm

    Cân nặng của các học sinh lớp 10A trường Trung học phổ thông Mnhư sau.

    Cân nặng(kg)

    \lbrack 30;36) \lbrack 36;42) \lbrack 42;48) \lbrack 48;54) \lbrack 54;60) \lbrack 60;66)

    Số học sinh lớp

    1

    2

    5

    15

    9

    6

    Phương sai của mẫu số liệu ghép nhóm trên gần nhất với kết quả nào sau đây.

    Cân nặng trung bình của học sinh lớp 10A là.

    \overline{x_{A}} = \frac{1}{38}(1.33 +
2.39 + 5.45 + 15.51 + 9.57 + 6.63) = 52,4\ \ kg

    Độ lệch chuẩn về nhóm cân nặng của học sinh lớp 10A

    {s^{2}}_{A} = \frac{1}{38}\lbrack 1.(33 -
52,4)^{2} + 2.(39 - 52,4)^{2} + 5.(45 - 52,4)^{2} + 15.(51 - 52,4)^{2} + 9.(57 - 52,4)^{2} + 6.(63 -
52,4)^{2}\rbrack \approx 50,4

  • Câu 17: Thông hiểu

    Xác định khoảng chứ tứ phân vị

    Mỗi ngày bác T đều đi bộ để rèn luyện sức khoẻ. Quãng đường đi bộ mỗi ngày (đơn vị: km) của bác T trong 20 ngày được thống kê lại ở bảng sau:

    Quãng đường

    [2,7; 3,0)

    [3,0; 3,3)

    [3,3; 3,6)

    [3,6; 3,9)

    [3,9; 4,2)

    Số ngày

    3

    6

    5

    4

    2

    Khoảng tứ phân vị của mẫu số liệu ghép nhóm là:

    Ta có:

    Quãng đường

    [2,7; 3,0)

    [3,0; 3,3)

    [3,3; 3,6)

    [3,6; 3,9)

    [3,9; 4,2)

    Số ngày

    3

    6

    5

    4

    2

    Tần số tích lũy

    3

    9

    14

    18

    20

    Cỡ mẫu N = 20

    Cỡ mẫu \Rightarrow \frac{N}{4} =
5

    => Nhóm chứa Q_{1} là [3,0; 3,3)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 3;m = 6,f = 3;c =
0,3

    \Rightarrow Q_{1} = l +\dfrac{\dfrac{N}{4} - m}{f}.c = 3 + \dfrac{5 - 3}{6}.0,3 = 3,1

    Cỡ mẫu N = 20 \Rightarrow \frac{3N}{4} =
15

    => Nhóm chứa Q_{3} là [3,6; 3,9)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 3,6;m = 14,f = 4;c =
0,3

    \Rightarrow Q_{3} = l +\dfrac{\dfrac{3N}{4} - m}{f}.c = 3,6 + \dfrac{15 - 14}{4}.0,3 =3,675.

    Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm là \Delta_{Q} = Q_{3} - Q_{1} = 0,575

  • Câu 18: Nhận biết

    Tìm giá trị đại diện của nhóm đã cho

    Cho mẫu số liệu ghép nhóm về khối lượng (đơn vị: gram) của 30 củ khoai tây như sau:

    Giá trị đại diện của nhóm \lbrack
90;100)

    Giá trị đại diện của nhóm \lbrack
90;100) là: \frac{90 + 100}{2} =
95.

  • Câu 19: Thông hiểu

    Chọn đáp án đúng

    Cho mẫu số liệu ghép nhóm:

    Nhóm

    Tần số

    (0;10]

    8

    (10;20]

    14

    (20;30]

    12

    (30;40]

    9

    (40;50]

    7

    Khoảng tứ phân vị của mẫu số liệu là:

    Ta có:

    Nhóm

    Tần số

    Tần số tích lũy

    (0;10]

    8

    8

    (10;20]

    14

    22

    (20;30]

    12

    34

    (30;40]

    9

    43

    (40;50]

    7

    50

    Tổng

    N = 50

     

    Ta có: \frac{N}{4} = \frac{50}{4} =
12,5

    => Nhóm chứa tứ phân vị thứ nhất là: (10;20]

    Khi đó: \left\{ \begin{matrix}l = 10;\dfrac{N}{4} = 12,5 \\m = 8,f = 14,d = 10 \\\end{matrix} ight.

    Tứ phân vị thứ nhất là:

    Q_{1} = l + \dfrac{\dfrac{N}{4} -m}{f}.d

    \Rightarrow Q_{1} = 10 + \frac{12,5 -
8}{14}.10 \approx 13,2

    Ta có: \frac{3N}{4} = \frac{3.50}{4} =
37,5

    => Nhóm chứa tứ phân vị thứ ba là: (30;40]

    Khi đó: \left\{ \begin{matrix}l = 30;\dfrac{3N}{4} = 37,5 \\m = 34,f = 9,d = 10 \\\end{matrix} ight.

    Tứ phân vị thứ nhất là:

    Q_{3} = l + \dfrac{\dfrac{3N}{4} -m}{f}.d

    \Rightarrow Q_{3} = 30 + \frac{37,5 -
34}{9}.10 \approx 33,9

    Vậy khoảng tứ phân vị của mẫu số liệu là \Rightarrow \Delta_{Q} = Q_{3} - Q_{1} \approx
33,9 - 13,2 = 20,7

  • Câu 20: Nhận biết

    Chọn đáp án đúng

    Đại lượng nào đo độ phân tán của nửa giữa của mẫu số liệu, không bị ảnh hưởng nhiều bởi các giá trị ngoại lệ trong mẫu số liệu?

    Khoảng tứ phân vị dùng để đo độ phân tán của nửa giữa của mẫu số liệu, không bị ảnh hưởng nhiều bởi các giá trị ngoại lệ trong mẫu số liệu.

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 3 Các số đặc trưng đo mức độ phân tán của mẫu số liệu ghép nhóm Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo